EE XXXX — Fundamentals of Speech Recognition Spring Semester 1998			
1997-1998 Catalog Data:	EE XXXX: Fundamentals of Speech Recognition. Lecture 3. Credit 3. Speech Production and Perception; Acoustic Phonetics; Discrete-Time Models of Speech Production; Short-Term Spectral Measurements; Linear Prediction; Dynamic Programming; Hidden Markov Models; Statistical Language Modeling; Neural Networks; An Overview of Commercial Speech Recognition Systems.		
Textbook:	J. Deller, et. al., <i>Discrete-Time Processing of Speech Signals</i> , MacMillan Publishing Co., 1995, ISBN 0-02-328301-7.		
Reference:	L.R. Rabiner and B.H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, 1993, 496 pp., ISBN: 0-13-015157-2.		
Coordinator:	Joseph Picone, Associate Professor of Electrical and Computer Engineering		
Goals:	To provide the student with a working knowledge of the theory and application of statistical signal processing techniques to the problem of speech recognition and understanding. The course combines lectures on theory with a course project focused on applying a speech recognition system to a state-of-the-art large vocabulary continuous speech recognition problem.		

Prerequisites by Topic:

- Basic probability and statistics. Linear system theory. Signals and system theory. 1.
- 2.
- 3.
- Communications theory. 4.
- Formal language theory. 5.
- Exposure to Markov processes and state machines. 5.

EE XXXX — Fundamental of Speech Recognition (Continued)

Topics:

- 1. Review of Digital Signal Processing and Information Theory (5 classes)
- 2. Fundamentals of Speech Production and Perception (6 classes)
- 3. Short-Term Spectral and Temporal Features (6 classes)
- 4. Dynamic Programming (5 classes)
- 5. Hidden Markov Models (6 classes)
- 6. Recognition Architectures (6 classes)
- 7. Statistical Language Modeling (6 classes)
- 8. Neural Networks (5 classes)

Computer Usage:

The students work on a semester-long team project that involves building and testing a large vocabulary speech recognition system. Knowledge of C/C++ programming and Unix-based computers is essential. Familiarity with mathematical programming and tools to graphically display/manipulate data is important. Use of multimedia-oriented desktop publishing to prepare final report and presentations is required. Development of web-based demonstrations and presentation of results is also required. Basic familiarity with email, file transfer utilities, and Internet browsers is assumed as students will be expected to interact with web-based materials.

Laboratory: N/A

ABET category content as estimated by faculty member who prepared this course description:

Engineering Science:	1.5 credits	or	50%
Engineering Design:	1.5 credits	or	50%