
VITERBI BASED STACK AND LEXICAL TREE SEARCH 
METHODS IN SPEECH RECOGNITION 

 
Satya Prakash Bikkina 

Department of Electrical Engineering 
Mississippi State University, Mississippi State , MS 39759 

 
 

ABSTRACT 
 

       One of the challenges in today’s state-of-the-
art speech recognition systems is the efficient 
implementation of decoder or search engine. 
Though many search algorithms have been 
developed in an effort to increase the 
efficiency of the systems, these generally fall 
under two categories: Viterbi decoding using 
beam search, or stack decoding which is a 
variant of the A∗  algorithm. This paper 
describes two search techniques based on 
these methods. Improvement in recognition 
speed and considerable memory savings can 
be achieved while preserving or improving the 
recognition accuracy. 

 
 

INTRODUCTION 
 

         The main objective of a recognition system is 
to search for the most likely sequence of 
words given the input speech. Using Bayesian 
approach [8] the search problem can be 
described as 

 
       W = argmax p(A/W)p(W) 
                   W 

 
 The probability p(A/W) that the data A is 
observed if a word sequence W is spoken is 
given by acoustic model. The probability 
p(W) that enumerates the a priori probability 
of sequence of words is determined by 
language model. Figure 1 illustrates the basic 
structure of such a statistical approach. With 
the introduction of complex language 
models, very large vocabularies and context-
dependent acoustic models, the problem of an  

 efficient search for the most probable 
sentence became increasingly important. 
When all possible sequences of words are 
considered, speech recognition gives rise to 
an exponential search space. The search cost 
is highly influenced by the size of vocabulary 
and is very high in the case of large 
vocabulary recognition. Two search 
algorithms: stack search, which is based on 
Viterbi forward and backward search [2], and 
lexical tree-based search[1] are discussed in 
the following two sections. Much emphasis is 
given to lexical tree-based search since it is 
the basis to many of the widely used search 
algorithms in most of the recognition 
systems. 

 
 

STACK DECODER 
 

Stack decoding algorithm which is similar to 
A* search is an implementation of a best–
first search. It maintains a stack of partial 
hypothesis in a breath-first manner [1]. The 
basic paradigm used by stack decoder is: pop 
the best partial hypothesis off the stack which 
are sorted in descending order, apply fast 
matches to find candidate list of successor 
words, evaluate log- likelihood. This basic 
operation of the stack decoder is as shown 
below:  
 
1. Initialize the stack with NULL. 
2. Pop the best partial hypothesis H off the         

stack. 
 3. If H is a complete hypothesis, output H & 

terminate. 
 

                         



Figure 1. Statistical speech recognition 
system 

 
 

4. Else apply acoustic & language –model fast 
matches to obtain a short list of candidate 
words. 

5.  for each word in the list 
a) apply acoustic, LM detailed 

matches & evaluate new log-
likelihoods or partial hypothesis 
H|. 

b) If H| is not complete hypothesis 
insert into the stack. 

c) If H| is a complete hypothesis 
insert into the stack with end of 
sentence flag = true. 

 
The main advantage of stack decoding is its 
capability of using more complex language 
models than bigrams LMs, thus increasing 
the recognition accuracy. The A* or stack 
search uses the scores & word-segmentations 
produced by forward & backward viterbi 
passes. Since, for each word occurrence in 
the word lattice there are several end times in 
the case of forward-decoder pass, the scores 
as a function of time must be contained in the 
stack. This distribution is the input to the next 
word model. Since A* algorithm is not a time 
synchronous algorithm, the partial hypothesis 
or theory in the stack may account for a 
different segment of speech. This poses some 
difficulty to compare the path probabilities. 
Attaching a heuristic score with every partial 

theory H, that accounts for the remaining 
portion of the speech not included in H 
solves this problem. With this approach the 
scores in the stack can be compared to one 
another & can be expanded in a best–first 
manner. This A* algorithm produces correct 
result as long as the heuristic score is an 
upper bound of all possible likelihoods from 
H [8]. The maximum difference between this 
upper bound & each partial hypothesis is 
used to determine the best hypothesis. 
Hypothesis whose score is less than a 
threshold is pruned from stack. The backward 
pass viterbi algorithm provides an 
approximation to the heuristic score attached 
to the partial hypothesis. Since the backward 
pass & the forward viterbi search produces 
word lattices, the A* is restricted to search 
words in these two lattices to obtain acoustic 
probabilities for a wider range of word 
beginning & end times there by increasing 
the accuracy. As mentioned above since the 
heuristic score is only an approximation, the 
scores stored in the stack may not be in 
descending order of likelihood. But by 
choosing a large number of N best hypothesis 
there is a high probability that the best 
hypothesis is included. The output with the 
best score from this list is chosen as the 
recognized sentence.   
 

 
LEXICAL TREE SEARCH 

 
The search process makes a decision on the 
spoken words based on the information 
obtained from different knowledge sources: 
the language model, acoustic models, & the 
pronunciation lexicon. The      complexity of 
the search space depends on the 
representation used for these knowledge 
sources. In case of small and medium–sized 
applications, word–internal, context-
dependent acoustic models are found to yield 
satisfactory results. However in large 
vocabulary systems such as conversational 
speech cross-word context dependent models 
are used. Due to this the search complexity  

Acoustic Models 
         P(A/W) 
 

search 
Language model       

P(W) 

Hypothesized word 



                                    Baker   Baked 
 
Figure 2:  word network. 

 
increases since the last phone in the  current 
word depends on the next word, which is not 
known until latter in time. Figure 3 illustrates 
the cross-word network for the word network 
in figure 2. As can be seen from figure 3, the 
word end must be hypothesized many times 
for every possible next word. This increases 
the size of the network to a large extent. 
However, even though the number of words 
is very high, the phonemes used to represent 
these words are very less. Using this fact, a 
large amount of computational efficiency can 
be achieved by using a tree-based lexical 
search instead of a flat structure. In this 
approach the lexicon is organized in the form 
of a tree, in which each arc represents a 
phoneme model. An example lexical tree is 
shown in figure 4. Since we wish to use 
context-dependent phones such as triphones, 
some changes have to be made to figure 4 so 
it can handle cross-word triphone models. 
However with cross-word triphone modeling, 
the phonetic right contexts are not known 
since they belong to words that would occur 
later in time. This leads to a large amount of 
fan out at the leaves of the lexical tree, since 
all phonetic probabilities have to be 
considered. To avoid this problem, a 
technique known as dynamic triphone 
mapping [7] is used. Here the triphones 
resulting from different phonetic left contexts 
are multiplied with the states of the single 
root HMM. The lexical tree is constructed 
using a technique known as dynamic 
generation of context–dependent phone 

models [1]. In this case, context–dependent 
phones are generated dynamically by 
traveling the lexical tree nodes. However due 
to the phone sharing that occurs in the tree-
structured lexicon the words does not have 
identifiable distinct initial states. Hence it 
poses a difficulty in applying LM score at the 
instantiation of the very first phone of the 
word. The identity of the word is known only 
when the leaf of the tree has been reached, 
causing a delay in applying correct LM score. 
A solution to this problem is to use language 
model Lookahead [1] technique. The basic 
idea in this technique is to incorporate LM 
probabilities as early as possible, there by 
reducing the growth in the complexity of 
search. This is achieved by having LM 
probabilities at each node that corresponds to 
the maximum LM probability over all words 
that can be reached via a particular node. 
This LM score is combined or attached with 
the score of the hypothesis. The maximum 
score that is obtained after this process is 
used for acoustic & histogram pruning. Once 
the leaf of the tree is reached, the actual word 
LM score is added to the path score [1]. 
Some of the computational advantages that 
can be obtained because of the use of lexical 
trees are: The number of words internal 
HMMs that need to be evaluated are reduced 
because of the high degree of sharing at the 
root nodes, the number of cross-word 
transitions are also reduced to a great extent  
[7].   

 
 
 
 aw-td+b 
 
                      sil-ax+b     ax-b+aw      b-aw+td aw-td+b 
    silence                                                    aw-td+b              
   
                  sil-ax+b                                                 
 sil                                 ax-b+ah        b-ah+v 
 
         sil 
 axr-b+ex 
                                 sil-b+ey          b-ey+k        ey-k+axr  
          silence                           axr-b+ex 

Figure 3: word network expanded using 
cross-word trigrams. 

 
                                      About 
                
                       Silence Bakery 
 
                                                                             
                                             above                      Silence                                                  

 
 

                Silence  
                



 
                           aw             td                 
                                                                 About 
                b 
      ax                                                              
  Above  
                        ah               v     
 
 Baked 
       b      kd           td 
 
                    ey 
                                       k       axr            iy        Bakery 
 
 

Figure 4: Lexical tree   
 

 
 

CONCLUSIONS 
 

 Two search techniques that are incorporated 
into most of the LVCSR system are 
discussed. Though sub-optimal, these 
methods showed significant improvements 
in terms of speed & recognition accuracy.  

 These techniques still have the ir own 
deficiencies, like for example; they have a 
very high word error rate for conversational 
speech performed under ideal conditions.  
Pruning techniques that are used along with 
these methods are not discussed in this 
paper. Many variations of these methods can 
be implemented. For e.g. the tree–based 
search can be used in a forward–backward 
implementation, where a simplified lexical 
tree produces forward hypothesis. The 
backward pass produces the detail scores & 
the final word sequence. 

 
 

REFERENCES 
 

[1] Neeraj Deshmukh, Aravind 
Ganapathiraju and Joseph Picone, 
“Hierarchical search for large vocabulary 
conversational speech Recognition,” IEEE 
Signal Processing Magazine, vol. 16, no. 5, 
pp. 84-107, September 1999. 
 

[2] D.B. Paul, “Algorithms for an Optimal 
A* Serach and Linearizing the Search in the 
Stack Decoder,” Proceedings of the IEEE 
International Conference on Acoustics, 
Speech, and Signal Processing, pp.693-696, 
Toronto, Canada, 1991. 
 
[3] D.B. Paul,  “An Efficient A* Stack 
Decoder Algorithm for Continuous Speech 
Recognition with a Stochastic Language 
Model,” Proceedings of the IEEE 
International Conference on Acoustics, 
Speech, and Signal Processing, Vol. I, 
pp.405-409, San Francisco, California, 
USA, March 1992. 
 
[4] D.B. Paul, “The Lincoln Large-
Vocabulary Stack Decoder Based HMM 
CSR,” Proceedings of the IEEE 
International Conference on Acoustics, 
Speech, and Signal Processing, pp.374-379, 
Minneapolis, Minnesota, USA, April 1993. 
 
[5] J. Zhao, J. Hamaker, N. Deshmukh, A. 
Ganapathiraju and J. Picone, "Fast Search 
Algorithms for Continuous Speech 
Recognition," Proceedings of the IEEE 
Southeastcon, pp. 36-39, Lexington, 
Kentucky, USA, March 1999. 
 
[6] N. Deshmukh, J. Picone and Y.H. Kao, 
"Efficient Search Strategies in Hierarchical 
Pattern Recognition Systems," Proceedings 
of the 27th IEEE Southeastern Symposium 
on System Theory, pp. 89-91, Mississippi 
State, Mississippi, USA, March 1995. 

 
[7] Mosur K. Ravishankar, “Efficient 
Algorithms for speech Recognition”, Thesis 
research paper, Carnegie Mellon University,  
May 1996.    

 
[8]  F.Jelinek, “Statistical methods for 
speech recognition”, MIT Press, Cambridge, 
Massachusetts, USA, 1997. 

 

 


