
EFFICIENT N-GRAM DECODING AND WORD-GRAPH
GENERATION IN LVCSR

Jie Zhao

Department for Electrical and Computer Engineering
Mississippi State University, Mississippi State, MS 39762

zhao@isip.msstate.edu
till
.
ve

d-
h
t
ps
ts

s a
ds
e
ich
g.
the
is
.

is
, it
els
er
For
ph
ds

o
h
d
y

s.
t
d

g
e

ABSTRACT

N-gram decoding and word-graph generation are
expensive processes inlarge vocabulary continuous
speech recognition (LVCSR). Efficient storage and
access of the language model (LM) are critical
issues in these processes. In this paper, an
effic ient N-gram decoding and word-graph
generation approachis proposed.

1. INTRODUCTION

Large vocabulary continuous speech recognition
requires the use of a language model or grammar to
select the most likely word sequence from the
relatively large number of word hypotheses produced
during the search process. Typically, one-pass
decoding using an N-gram language model is called
N-gram decoding. Alternatively, we can use N-gram
language model to generate a word-graph which
contains a large number of possible hypotheses first —
typically referred to as word-graph generation, then
rescore this word-graph with more complex acoustic
model or language model in the following pass and get
the final hypothesis.

For larger vocabularies, the N-gram language model
provides a relatively compact representation of the
linguistically probable word sequences, since it
provides estimates of the likelihood of the occurrence
of a word based on the previously observed
words. If the vocabulary size is words, then to
provide complete coverage of all possible word
sequences the language model needs to consist of

N-grams (i.e., sequences of words). This is
prohibitively expensive (e.g., a bigram language
model for a 40,000 words vocabulary will require

bigram pairs), and many such sequences
have negligible probabilities. However, even though
N-gram language models store only a small subset of

all the possible sequences of words, they are s
significantly large for large vocabulary applications
Many systems have been devised which try to impro
the efficiency of N-gram decoding [1, 2]. An
alternative to the one-pass N-gram decoding is wor
graph generation. The process of word-grap
generation is very similar to N-gram decoding, bu
instead of keeping only the 1-best hypothesis, it kee
multiple hypotheses at each word end, and outpu
them as a word-graph. This word-graph incorporate
large number of hypothesis and defines which wor
can follow which words. It then can be used as th
grammar constraints in a second pass decoding, wh
is typically referred to as the word-graph rescorin
Because the search space is strictly constrained at
word level by the word-graph, word-graph rescoring
much more efficient than the N-gram decoding
Although the process of word-graph generation
time-consuming, once a word-graph is generated
can be rescored using more complex acoustic mod
and language models. This will give an overall bett
performances in terms of both speed and accuracy.
both one-pass N-gram decoding and word-gra
generation, memory issue is a big problem towar
efficient decoding.

In this paper, we propose an efficient algorithm t
implement N-gram decoding and word-grap
generation. In our implementation, we applie
carefu l ly designed data st ructures, memor
management and advanced pruning techniques.

2. N-GRAM LANGUAGE MODEL

Every language consists of a sequence of word
Language model is to provide the probability of nex
word given preceding words. The dominantly use
LM in speech recognition is N-gram LM [3], which
uses the history of the immediately precedin
words to compute the occurrence probability of th

N 1–
M

M
N

N

1.6 10
9×

N

n 1–
P

in
l
e
s

is

e
s,

e
as
an
r
f

ad
de

ch
current word. The value of N is typically limited to 2
(bigram model) or 3 (trigram model) for feasibility.
Obviously, it is not possible for an N-gram language
model to estimate probabilities for all possible word
pairs. Typically an N-gram lists only the most
frequently occurring word pairs, and uses a backoff
mechanism to compute the probability when the
desired word pair is not found.

For instance, in a bigram LM, given , the
probability of the next word is :

(1)

where is the back-off weight for the word ,

 is the unigram probability of the

The backoff weight is calculated to ensure that
the total probability

(2)

Similarly, for a trigram,

(3)

N-gram language models have been very effective
reducing WERs in LVCSR significantly. In a typica
SWB type application, a bigram could have on th
order of a couple of hundred thousand unique bigram
with sufficient data to estimate their probabilities. Th
number could grow significantly for an application
like broadcast new where a few million uniqu
bigrams could be used. With higher order N-gram
the overall number of unique LM probabilities could
be much higher.

Because of the large mount of N-gram models, th
representation of N-gram model data structure h
direct effect upon the memory size. Figure 1 shows
efficient organization of the N-gram LM. Each orde
N-gram is stored as a list. Each list is an array o
N-gram nodes. Each unigram node points to the he
of a set of bigram successors, and each bigram no
points to the head of its trigram successors. Ea

wi
wj

p̂ wj wi()
p wj wi() wi wj,() exists

b wi()p wj() otherwise



=

b wi() wi

p wi() wi

b wi()

p̂ wi wj,()
j

∑ 1=

p̂ wj whwi()
p wj whwi() wh w,

i
wj,() exists

b whwi() p̂ wj wi() otherwise



=

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, null,
score, 0

word, null,
score, 0

word, null,
score, 0

word, null,
score, 0

Unigrams Bigrams N-grams
Figure 1: N-gram language model storage scheme

k

aa

r

h

ey

r

ax

d

d

d

ord
a

e
ly
in
ge

e
s,
off
d
n

CARD

taa

HARD

HEART

HART

A

Figure 2: An example of a lexical treet
N-gram node has the following components: wor
identity, N-gram probability, a backoff weight, a
pointer to the head of the next order N-gram
successors. The word here only records the last w
of an N-gram. For example, a bigram should be
word-pair. Since all the bigram followers of a singl
unigram are grouped under the unigram, it is on
necessary to record the second word of this bigram
its data structure. This scheme can save a lar
amount of space to store the words.

The storage can be further minimized i f w
distinguish the highest-order N-gram list with other
because the highest-order gram doesn’t have back
weight and pointer to the next N-gram list, an
usually the highest order LM has a very large amou
e
er
he
of
e
m
of
y
y
e
y
m
ct
.

to
ce

ry

er
4].
sed
is
d if
de
ace
d,
)
g
er,

his
of N-gram nodes. In addition, a lookup table can be
used to minimize the total cost to store the LM and
backoff score. That means to quantize those float
numbers and limit them to a certain amount. Suppose
we save 4bytes on each N-gram node, and there are
total 500,000 N-gram nodes, then we can save 16MB
memory.

3. N-Gram Lexical Tree

In LVCSR, the search space is usually organized as a
lexical tree [1]. An example of the lexical tree is
shown in Figure 2. Each lexical node contains a list of
the words on that path covered by the monophone held
in the lexical node. The dark circles represent starts
and ends of words, but the word identity is unknown
until a word-end lexical node is reached. This lexical
tree is used to generate phone hypotheses. The scores
for word transitions are computed based on the
position in this lexical tree and the current N-gram
history.

Typically, in lexical tree-based searches, the LM
scores are stored in the lexical tree nodes. At each
lexical node, we maintain a list of next words. When a
word end is reached during the decoding process, the
decoder constructs a new lexical tree encompassing all
the possible next words which are used to generate the
next phone hypotheses. For word-graph rescoring,
constructing new lexical trees is necessary since the
possible next words are different for each word, and
the number of possible next words is relatively small.
However in N-gram decoding and word-graph

generation using N-gram LM, each word (except th
sentence start word) can be followed by any oth
word, so for large vocabulary speech recognition, t
lexical tree would be very large. Even a few copies
the complete lexical tree will quickly overshoot th
available memory. Since we know that the N-gra
lexical tree structure is the same for all occurrences
each word, and that only the LM scores var
according to their N-gram histories, making man
trees with the same structure is a waste of both tim
and memory. Therefore, instead of making man
copies of the lexical tree, we reuse the same N-gra
lexical tree for each occurrence of a word, disconne
the history words and LM scores from the lexical tree

A data structure called instance is introduced
represent the unique position in the search spa
which is determined by the corresponding histo
word(s), the lexical node and the phone. LM
lookahead is performed at each lexical node in ord
to apply the language model as early as possible [
The highest language model score is acquired ba
on the current word and the history word(s), and
stored in the instance. Two instances can be merge
they have the same word history, the same lexical no
and phone, i.e. at the same position in the search sp
regardless of time. Now when a word end is reache
this word and its N-2 previous history words (if any
will become the new history words for the comin
word. Since the instances are reused in the decod
the score calculation needs to be done only once. T
minimize the total access times to the N-gram.

n
ry
ing

is
h

y

ry

e
h

e

e,

e,

ch
4. PRUNING

To constrain the computing and memory resources
space, it’s imperative to identify less-likely partial
paths and stop them from growing further. Multiple
pruning criteria are used to remove such paths from
decoding process [5].

Firstly, beam pruning is used. A path is pruned away if
its path score is below the current best hypothesis
score minus a specified beam width. Beam width can
be different at each level in the search hierarchy.
Usually heavier pruning is applied at word end
because there are much more possible next words at
word end than possible next phones at phone end.
Secondly, we set a maximum number of words
allowed at each frame. Thirdly, instance pruning is
applied at each frame, which is limiting the number of
model instances active at a given time. The instances
are sorted according to their scores. Only the instances
having better scores can survive.

Pruning has dramatic impact on the search speed and
memory cost. Heavy pruning with less lose of
accuracy is important for efficient N-gram decoding
and word-graph generation.

5. EVAULATION

The performance has been evaluated using by word-
graph generation followed by a word-graph rescoring
on the SWB part of Hub-5 evaluation data set. The
Language model being used is a pruned trigram
backoff language model provided by SRI [6]. It was
trained from Switchboard, Callhome and Broadcast
news. A bigram version was used for word-graph
generation, and a trigram version for rescoring word-
graphs. Acoustic models are 16-mixture cross-word
triphones models trained on 60 hours of SWB-I and 20
hours of English Call Home data.

The overall recognition WER is 42.9%. The memory
usage varies with the length of the utterance. On a
5-second utterance, the maximum memory usage
during decoding is about 500M.

6. SUMMARY

We introduced an N-gram decoding and word-graph
generation algorithm. Comparing with our previous

implementation [7], we have made improvement o
performance in terms of both accuracy and memo
usage. Further enhancement can be made by us
disk-based LM [8], where chunks of the LM are
brought into memory on-demand from the disk. Th
requires the LMs to be organized efficiently in bot
memory and disk to avoid long access times.

REFERENCES

[1] J. Odell,The Use of Context in Large Vocabular
Speech Recognition, Ph.D. Thesis, Cambridge
University, 1995.

[2] J. Odell, V. Violative and P. Woodland, “A One-
Pass Decoder Design for Large Vocabula
Recognition,”Proceedings of the DARPA Human
Language Technology Workshop, March 1995.

[3] R. Rosenfeld, “Adaptive Statistical Language
Modeling,” Ph.D thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, April. 1994.

[4] S. Ortmanns, H. Ney and A. Eiden, “Languag
Model Look-ahead for Large Vocabulary Speec
Recognition”, Proceedings of the Fourth
International Conference on Spoken Languag
Processing, pp. 2095-2098, October 1996.

[5] Deshmukh, A. Ganapathiraju and J. Picon
“Hierarchical Search for Large Vocabulary
Conversational Speech Recognition,”IEEE
SignalProcessing Magazine, vol. 16, no. 5, pp. 84-
107, September 1999.

[6] SRI Language Modeling toolkit, http://
www.speech.sri.com/projects/srilm, SRI inter-
national Corporation, CA.

[7] A. Ganapathiraju, N. Deshmukh, and J. Picon
"ISIP Public Domain LVCSR System,"
Proceedings of the Hub-5 Conversational Spee
Recognition (LVCSR) Workshop, Linthicum
Heights, Maryland, USA, June 1999.

[8] Mosur K. Ravishankar,Efficient Algorithms for
Speech Recognition, Ph.D. Thesis, Carnegie
Mellon University, 1996.

	EFFICIENT N-GRAM DECODING AND WORD-GRAPH
	GENERATION IN LVCSR
	Jie Zhao
	Department for Electrical and Computer Engineering
	Mississippi State University, Mississippi State, MS��39762
	zhao@isip.msstate.edu

	ABSTRACT
	1.�� INTRODUCTION
	2.�� N-GRAM LANGUAGE MODEL
	(1)
	(2)
	(3)

	3.�� N-Gram Lexical Tree
	4.�� PRUNING
	5.�� EVAULATION
	6.�� SUMMARY

	REFERENCES
	[1] J. Odell, The Use of Context in Large Vocabulary Speech Recognition, Ph.D. Thesis, Cambridge ...
	[2] J.�Odell, V.�Violative and P.�Woodland, “A One- Pass Decoder Design for Large Vocabulary Reco...
	[3] R.�Rosenfeld, “Adaptive Statistical Language Modeling,” Ph.D thesis, Carnegie Mellon Universi...
	[4] S. Ortmanns, H. Ney and A. Eiden, “Language Model Look-ahead for Large Vocabulary Speech Reco...
	[5] Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conversat...
	[6] SRI Language Modeling toolkit, http:// www.speech.sri.com/projects/srilm, SRI inter- national...
	[7] A. Ganapathiraju, N. Deshmukh, and J. Picone, "ISIP Public Domain LVCSR System," Proceedings ...
	[8] Mosur K. Ravishankar, Efficient Algorithms for Speech Recognition, Ph.D. Thesis, Carnegie Mel...
	Figure�1:�� N-gram language model storage scheme
	Figure�2:�� An example of a lexical tree

