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ABSTRACT

Hidden Markov Model (HMM) is used as a
dominant approach in most state-of- the-a
speaker-independent continuous speech recognit
system. In this paper attempt is made to stimulate
discussion on new approach- hybrid neura
network/hidden Markov model (HMM) based
speech recognition system. The system provide
remedy of the problems caused by fundament
strong statistical assumptions of hidden Marko
model that are unlikely to be valid for speech.
combines the advantages of both approaches
using multilayer perceptrons (MLPs) to estimate th
state-dependent observation probabilities of a
HMM. In this paper we described the approach fo
integrating MLP-based estimation technique
Comparisons with a pure HMM system illustrate th
advantages of the hybrid approach both in terms
recognition accuracy and number of paramete
required.

1. INTRODUCTION

Currently, the most speech recognition system u
context-dependent hidden Markov models (HMMs
[1] as a standard approach for handling th
variability due to local phonetic context. In the
hybrid model, the multi-layer perceptron compute
the HMM contex t -dependen t observa t io
probabilities using a Bayesian factorization in term
of scaled posterior phone probabilities [3] whic
reduce the assumption of independence f
multi-feature probability computation. Anothe
advantages of MLP probability estimation includ
the inherently discriminant nature of the trainin
algorithm and the distribution representation, whic
leads to efficient use of the available paramete
This, when applied to speech, results in the reducti
of the number of parameters needed for detail
phonetic modeling because of increased sharing
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model parameters between phonetic classe
Because of the need for accurate segmentation
speech signal, pure MLP-based approaches have
previously been demonstrated well. HMMs provid
a framework for simultaneous segmentation an
classification of speech. Morgan and Bourlard [3
has shown theoretically and practically that MLP
and HMMs can be combined by using MLPs for th
estimation of HMM state-dependent observatio
probabilities, thereby exploiting the advantages
both approaches.

2. HYBRID MLP/HMM SYSTEM

The baseline hybrid HMM/MLP speech recognitio
system [7] replaces the t ied-mixture HMM
state-dependent observation probability estimat
computed by MLP, keeping the HMM topology
unchanged. The MLP architecture is a feed-forwa
network with 234 inputs, 512 hidden units, and 6
outputs. The 234 inputs represent 9 frames
ceps t ra , de l ta ceps t ra , log energy an
delta-log-energy that are normalized to have ze
mean and unit variance. Both the hidden and outp
layers consists of sigmoidal units.

The hybrid system is a phone-based, speak
independent, continuous speech recognition syste
based on semi continuous HMMs [4]. The syste
extracts four features from the input speec
waveform including 12th-order mel cepstrum
log-energy and their smoothed derivatives. Th
front-end produces the 26 coefficients for theses fo
features for each 10 ms frame of speech. Training
the phone t i c mode ls is based o
maximum-l ike l ihood est imat ion using the
forward-backward algorithm [5]. Most of the
phonetic models in the system have three states.
allow for short realizations, a small number of phon
models have two states.

High recognition performance with HMM system
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generally requires context-dependent phone
models. The context-dependent version of the hyb
system uses phone models trained at a variety
levels of context dependence. The levels includ
word-specific phone, triphone, generalized triphon
cross-word triphone, left and right biphone an
generalized biphone. Models conditioned by mo
specific contexts are linearly smoothed with mor
general models using the deleted interpolatio
algorithm [6] in order to maintain robustness even
high specific contexts that have little training data.

The words in the hybrid system are represented
probabilistic networks of phone models, specifyin
multiple pronunciations. These networks ar
generated by the application of phonological rules
baseform pronunciations for each word. To limit th
number of parameters that must be estimate
phonological rules are chosen based on measure
coverage and overcoverage of a database
pronunciations resulting in networks that maximiz
the coverage of observed pronunciations whi
min imiz ing network s ize. Probabi l i t ies of
p ronunc ia t ions are es t imated by th
forward-backward algorithm at the same time th
phonetic models are trained, after tying togeth
instances of the same phonological process
different words.

The MLP is trained using stochastic gradient desce
and a relative-entropy error criterion. The hybri
system is bootstrapped from the pure HMM
DECIPHER system [8]. Recognition uses the Viterb
algorithm [5] to find the HMM state sequence tha
has the highest probabil ity of generating th
observed acoustic sequence.

Assuming we have enough training data, choose
appropriate number of parameters in the MLP, an
the training does not get stuck in poorly performin
local minima, the back-propagation-traine
three-layer feedforward MLP approximates [9] th
posterior class probabilities , where qj
corresponds to the j-th phone class and the Yt is the
acoustic vector at time t. The initial learning rate i
kept constant until cross-validation performanc
increases less than 0.5%. After that point it
reduced as 1/2n until performance does not increas
any further. Frame classification performance on a
independent cross-validation set is used to control t
learning rate. During recognition, Bayes’s rule i

P qj Yt⁄( )
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used to convert the network outputs to the scale
phone-class conditional observation likelihood
required by the HMM,

(1)

is the prior probability of phone class qj and is
estimated by counting class occurrences.
common to all states for any give time frame, and ca
therefore be discarded in the Viterbi computation, sin
it will not change the optimal state sequence used to g
the recognized string.

Subsequent reestimation of MLP and HMM paramete
based on new alignments provided by the new hybr
MLP/HMM may improve the performance of the
hybrid system.

3. MULTIPLE PHONETIC DISTRIBUTION

Model ing phonet ic un i ts wi th a sequence o
distributions rather than a single distribution improve
the performance of HMM-based systems. This allow
the model to capture some of the dynamics of phone
segments. The hybrid MLP/HMM system models mo
phones with a sequence of three HMM states.

The current MLP architecture uses three separate out
layers, corresponding to the three states of HMM pho
models [10]. Each output layer consists of 69 units, o
for each phonetic class. During training, only frame
aligned with first states of HMM phones are presente
to the first output layer, while frames aligned with las
states of HMM phones are presented to the third outp
layer and those aligned with second states of three-st
HMM phones are presented to the second output lay
Thus this can be viewed as a set of three MLP
corresponding to the three HMM state-positions, whic
have the same input-to-hidden weights. Since t
training proceeds as if each output layer were part of
independent network, the system learns discriminati
between phonetic classes (as represented within e
output layer), but does not learn the discriminatio
between the different states of the same phonetic cl
(because they are represented in different outp
layers). During the viterbi recognition search, th
appropriate output layer is referenced depending
which HMM state-position is being visited. This
technique has been combined with the approach

P Yt qj⁄( )
P qj Yt⁄( ) P Yt( )⋅

P qj( )
------------------------------------------=

P qj( )
P Yt( )
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context-dependent modeling.

4. CONTEXT-DEPENDENT HYBRID

Experience with HMM technology has shown tha
use of context-dependent phonetic models improv
recognition accuracy significantly [11], becaus
acoustic correlates of coarticulatory effects a
modeled explicitly, producing sharper and les
overlapping probability density functions for the
different phone classes.

Using a Bayesian factorization in terms of scale
context-dependent posterior phone probabilitie
computed with a set of context-specific MLPs, th
context-independent hybrid MLP/HMM is extende
to model context-dependent phonetic classes. T
approaches are used to deal with the increas
number of parameters: error-based smoothing
context-dependent and context- independe
parameters, and sharing of input-to-hidden weigh
between all context-specific networks. Separate n
are used to model different context effects in initia
and final states of HMM phonetic models.

4.1. Context-Dependent Factoring

In a context-dependent HMM, every state i
associated with a specific phone class and conte
Dur ing the v i te rb i a lgor i thm search ,
context-dependent phonetic modeling requires t
computation of , the probabil ity
density of acoustic vector Yt given the phone class qj
in the context class ck, for each phone. Required
HMM probabi l i t ies are computed using the
following factorization:

(2)

where  can be factored again as:

(3)

The factor is the posterior probability
of phone class qj given the input vector Yt and the
context class ck. It can be computed with MLPs in a
different ways. One possible implementation trea
the ck as M additional binary inputs [3] to a single

P Yt qj ck,( )

P Yt qj ck,( )
P qj Yt ck,( ) P Yt ck( )⋅

P qj ck( )
--------------------------------------------------------=

P Yt ck( )

P Yt ck( )
P ck Yt( ) P Yt( )⋅

P ck( )
----------------------------------------=

P qj Yt ck,( )
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MLP. During training, only one of the M inputs is se
to 1 for each pattern presentation, and the others
set to 0.

Another possible implementation [11] also uses th
1-of-M binary context inputs but with multiplicative
connections that adjust the value of the netwo
weights depending on which context is active. Th
modulation of weights, in principle, allows the
network to have a complete different pattern o
connections between features and outputs units
every different context.

An alternative implementation is based on a dire
interpretation of the definition of conditional
probability, considering the condition on ck in

as restricting the set of input vector
only to those produced in the context ck. If M is the
number of context classes, this implementation us
a set o f M MLPs s imi la r to those used in
context-independent case, except that each MLP
trained using only input-output examples obtaine
when corresponding context is ck. In this approach,
the same network architecture and training meth
applied to every context-specific net, permitting th
smoothing scheme and sharing of parameters.

The factor can be computed using
three-layer feed-forward context-independent ML
whose outputs correspond to the context classes. T
factors and are constants for a
given training set and are estimated by counting ov
the trained examples. The likelihood is
common to all states for any given time frame, an
can be discarded in the computation of Viterb
algorithm.

4.2. Training and Smoothing

An initial context-independent MLP is trained to
est imate the context- independent poster i
probabilities over the N phone classes. After th
convergence of context-independent training, th
resulting weights are used to initialize the weigh
going to the context-speci fic output layer
Contex t -dependen t t ra in ing proceeds b
back-propagating error from only the appropria
output layer. Otherwise, the training procedure
similar to that for the context-independent net, usin
stochastic gradient descent and a relative-entro
training criterion. Overall classification performanc

P qj Yt ck,( )

P ck Yt( )

P qj ck( ) P ck( )

P Yt( )
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evaluated on an independent cross-validation se
used to determine learning rate and stopping poi
Only hidden-to-output weights are adjusted durin
context dependent training.

Every context-specific net asymptotically converge
to the context conditioned posteriors
As a result of the initialization, the net start
estimating , and from that it follows a
trajectory in weight space, incrementally movin
away from the context-independent parameters
long as c lass i fica t ion per formance on th
cross-validation set improves. As a result, the n
re ta ins use fu l in fo rmat ion f rom the
context-independent initial conditions.

A hierarchy of context classes is defined, in whic
each context class at one level is included in
broader c lass a t the prev ious leve l . Eac
context-specific MLP at a given level is initialized
wi th the we igh ts o f a prev ious ly t ra ined
context-specific MLP at the previous level in th
hierarchy Figure 1.

P qj Yt ck,( )

P qj Yt( )
Figure 1. Context-Dependent Training and Smoothing

Context-Indepen

Generate finer Cont

nets initialized with

Context-Depende

    using Cross
is
t.
g

s

s

t

a
h

4.3. Recognition

Recognition is accomplished using the Viterb
algorithm, it requires computation of the observatio
probabilities associated with each state of HMM
The smoothed context-dependent poster i
probabilities supplied by the MLP are converte
during recognition to state-conditioned observatio
probabilit ies using the normalization factor
provided by equations (1) and (2). However, becau
these va lues are a resu l t o f smooth in
context-dependent and independent networks,
normalization factors should be a combination o
those corresponding to the context-dependent a
context-independent cases. Following interpolatio
fo r conver t ing the smoothed pos te r io r

to smoothed observa t ion
probabilities :

(4)

where

P
s

qj Yt ck,( )
P

s
Yt qj ck,( )

P
s

Yt qj ck,( ) P
s

qj Yt ck,( ) f j k t, ,( )⋅=
dent Training

ext-Dependent

 lower level

nt Training

-Validation
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(5)

(6)

and

(7)

is the number of training examples fo
phone class j for the context-independent net, a

is the number of training examples fo
the phone class j and for the context-specific n
corresponding to context class k. The constantb is
optimized in a development set for minimum
recognition error.

5. EVALUATION AND RESULTS

The training and recognition experiments comparin
the MLP/HMM hybrid to pure HMM system was
conducted by M. Cohen et al. [10] using the
speaker-independent, continuous speech, DAR
Resource management database. The vocabu
size of 998 words was used. Tests were run both o
word pair grammar with perplexity 60 and an
all-word grammar with perplexity 998. The training
set was composed of 3990 sentences equivalen
about 1.5 million frames. The acoustic analys
consisted of a mel cepstrum computed every 10 m
using overlapping windows of 25 ms., four acoust
features were computed resulting in 26 coefficien
produced per frame. For the context-dependent n
which est imates , a nine-frame
window of 234 input values was presented as th
input vector  to the input layer.

Training of the context-dependent net consisted
first training a context-independent net, whic
estimates . Then this net’s weights wer
used to initialize the context-dependent net. Th
final cross-validation error for the context-depende
net was 21.4% vs. 30.6% obtained with th
context-independent network.

Combining all the tests, the differences between t
context-independent and context-dependent hyb
was statist ical ly significant at 0.05 level o

f j k t, ,( ) αk
j 1

P qj( )
-------------- Ψ j k t, ,( )+⋅=

Ψ j k t, ,( ) 1 αk
j

–( )
P ck Yt⁄( )

P qj ck⁄( ) P ck( )⋅
-----------------------------------------⋅=

αk
j Nci j( )

Nci j( ) b Ncd j k,( )[ ]+
------------------------------------------------------=

Nci j( )

Ncd j k,( )

P qj Yt ck,( )

Yt
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s igni ficance. Tables given below show th
percentage word error rate for pure HMM an
hybrid MLP/HMM models for no grammar and
all-word grammar.

6. DISCUSSION

The results shown in above tables suggest that M
estimation of HMM observation likelihoods can
improve the performance of standard HMMs. Thes
results also suggest that systems that use MLP-ba
probability estimation make more efficient use o
their parameters than standard HMM systems do.
standard HMMs, most of the parameters in th
system are in the distributions associated with th
individual states. MLPs use representations that a
more distributed in nature, allowing more sharing o
representational resources and better allocation
them based on training. In addition, since MLPs a
trained to discriminate between classes, they foc
on modeling boundaries between classes rather th
class internals. The reduction in memory needs th

WER
%

No. of
Params.

CI-MLP 30.9 300K

CD-MLP 24.9 1,4000K

CD-HMM 26.6 5,500K

MIXED 21.5 6,100K

Table 1:Number of system parameters and percent
word error for pure HMM and hybrid MLP/HMM with

no grammar

WER (%)

CI-MLP 9.5

CD-MLP 6.6

CD-HMM 7.0

MIXED 5.7

Table 2: Percent word error rate for pure HMM
and hybrid MLP/HMM with word pair grammar
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may be attained by replacing HMM distribution
with MLP based estimates must be traded off again
increased computational load during training an
recognition.

The tables show that the performance of CD-ML
system is roughly equivalent to that of CD-HMM
although CD-MLP is a far simpler system, with
approximately a factor of four fewer parameters an
modeling of only generalized biphone phoneti
contexts. The best performance is that of th
MIXED system.

7. CONCLUSIONS

MLP-based probability estimation can be useful fo
both improving recognition accuracy and reducin
memory needs for HMM-based speech recognitio
systems. These benefits, however, must be weigh
against the increased computational requireme
using MLPs, especially during training.
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