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ABSTRACT model parameters between phonetic classes.
Hidden Markov Model (HMM) is used as a Because of the need for accurate segmentation of

dominant approach in most state-of-the-art speech signal, pure MLP-based approaches have not

speaker-independent continuous speech recognitimprwIOUSIy been demonstrated well. HMMs provide

system. In this paper attempt is made to stimulate ailgsasri:‘]ii\;vtci)c:ﬁ L?rSSI(;nelélrgar;Aec?ruz§2%rg%r;t3:|lgrr:j ?g]d
discussion on new approach- hybrid neural P ' 9

. has shown theoretically and practically that MLPs
network/hidden Markov model (HMM) based . .
speech recognition system. The system provides Eano! HM.MS can be combined by using MLPs for t_he
remedy of the problems caused by fundamentales‘t'm""?'.o.n of HMM state-d_e_pendent observation
strong statistical assumptions of hidden Markov probabilities, thereby exploiting the advantages of

model that are unlikely to be valid for speech. It both approaches.
combines the advantages of both approaches by
using multilayer perceptrons (MLPSs) to estimate the 2. HYBRID MLP/HMM SYSTEM
state-dependent observation probabilities of an ) _ N
HMM. In this paper we described the approach for The baseline hybrid HMM/MLP speech recognition
integrating MLP-based estimation techniques. System [7] replaces the tied-mixture HMM
Comparisons with a pure HMM system illustrate the state-dependent observation probability estimates

advantages of the hybrid approach both in terms ofcomputed by MLP, keeping the HMM topology
recognition accuracy and number of parametersunchanged. The MLP architecture is a feed-forward

required. network with 234 inputs, 512 hidden units, and 69
outputs. The 234 inputs represent 9 frames of
1. INTRODUCTION cepstra, delta cepstra, log energy and

delta-log-energy that are normalized to have zero
mean and unit variance. Both the hidden and output

rrently, the m hr nition m : . . .
Currently, the most speech recognition syste us'elayers consists of sigmoidal units.

context-dependent hidden Markov models (HMMs)
[1] as a standard approach for handling the The hybrid system is a phone-based, speaker
variability due to local phonetic context. In the independent, continuous speech recognition system,
hybrid model, the multi-layer perceptron computes based on semi continuous HMMs [4]. The system
the HMM context-dependent observation extracts four features from the input speech
probabilities using a Bayesian factorization in terms waveform including 12th-order mel cepstrum,
of scaled posterior phone probabilities [3] which log-energy and their smoothed derivatives. The
reduce the assumption of independence forfront-end produces the 26 coefficients for theses four
multi-feature probability computation. Another features for each 10 ms frame of speech. Training of
advantages of MLP probability estimation include the phonetic models is based on
the inherently discriminant nature of the training maximum-likelihood estimation using the
algorithm and the distribution representation, which forward-backward algorithm [5]. Most of the
leads to efficient use of the available parameters.phonetic models in the system have three states. To
This, when applied to speech, results in the reductionallow for short realizations, a small number of phone
of the number of parameters needed for detailedmodels have two states.

phonetic modeling because of increased sharing °1High recognition performance with HMM systems



generally requires context-dependent phoneticused to convert the network outputs to the scaled

models. The context-dependent version of the hybricpohone-class conditional observation likelihoods

system uses phone models trained at a variety orequired by the HMM,

levels of context dependence. The levels include

word-specific phone, triphone, generalized triphone, P(Y./q) = P(qj/Yt) [(P(Y,)
v P(qj')

cross-word triphone, left and right biphone and

generalized biphone. Models conditioned by more _ _ - _
specific contexts are linearly smoothed with more P(d;) is the prior probability of phone class and is
general models using the deleted interpolation€Stimated by counting class occurrenckX\;) IS
algorithm [6] in order to maintain robustness even in€ommon to all states for any give time frame, and can
high specific contexts that have little training data. therefore be discarded in the Viterbi computation, since

. . it will not change the optimal state sequence used to get
The words in the hybrid system are represented ai,q recognized string.

probabilistic networks of phone models, specifying T
multiple pronunciations. These networks are Subsequent reestimation of MLP and HMM parameters

generated by the application of phonological rules tob@sed on new alignments provided by the new hybrid
baseform pronunciations for each word. To limit the MLP/HMM may improve the performance of the
number of parameters that must be estimatedhybrid system.

phonological rules are chosen based on measures t

coverage and overcoverage of a database 03. MULTIPLE PHONETIC DISTRIBUTION
pronunciations resulting in networks that maximize

the coverage of observed pronunciations whileModeling phonetic units with a sequence of
minimizing network size. Probabilities of distributions rather than a single distribution improves
pronunciations are estimated by the the performance of HMM-based systems. This allows
forward-backward algorithm at the same time thethe model to capture some of the dynamics of phonetic
phonetic models are trained, after tying togethersegments. The hybrid MLP/HMM system models most
instances of the same phonological process irphones with a sequence of three HMM states.

different words.

@)

The current MLP architecture uses three separate output
The MLP is trained using stochastic gradient descenlayers, corresponding to the three states of HMM phone
and a relative-entropy error criterion. The hybrid models [10]. Each output layer consists of 69 units, one
system is bootstrapped from the pure HMM for each phonetic class. During training, only frames
DECIPHER system [8]. Recognition uses the Viterbi aligned with first states of HMM phones are presented
algorithm [5] to find the HMM state sequence that to the first output layer, while frames aligned with last
has the highest probability of generating the states of HMM phones are presented to the third output
observed acoustic sequence. layer and those aligned with second states of three-state
HMM phones are presented to the second output layer.
Thus this can be viewed as a set of three MLPs,
. : . _corresponding to the three HMM state-positions, which
the training does not get stuck in poorly performing have the same input-to-hidden weights. Since the

local minima, the back-propagation-trainedt . q i h outout |  of
three-layer feedforward MLP approximates [9] the training proceeds as It €ach output fayer were part o an

posterior class probabilitieE’(q-/Yt) . where g gwdependent net\_/vork, the system learns discri_mi_nation
corresponds to the j-th phone class and thésYhe etween phonetic classes (as represenFed ywt'hln _each
acoustic vector at time t. The initial learning rate is output Iayer),_but does not learn the dlscrlmln_atlon
kept constant until cross-validation performanceb(’\tween the different states of the same phonetic class
increases less than 0.5%. After that point it iS(because they are represented in different output

reduced as 1/2until performance does not increase Iayers)..Dturlngt thtel V|terb| re]f:ognltlc()jndsearc(?_, the
any further. Frame classification performance on an2PPropriate outputiayer is referenced depending on

independent cross-validation set is used to control th(Wh'Ch. HMM state—posmon IS be_lng visited. This
learning rate. During recognition, Bayes's rule is technique has been combined with the approach to

Assuming we have enough training data, choose al
appropriate number of parameters in the MLP, and



context-dependent modeling. MLP. During training, only one of the M inputs is set
to 1 for each pattern presentation, and the others are

4. CONTEXT-DEPENDENT HYBRID setto 0.

Another possible implementation [11] also uses the
Experience with HMM technology has shown that 1-of-M binary context inputs but with multiplicative
use of context-dependent phonetic models improvesconnections that adjust the value of the network
recognition accuracy significantly [11], because weights depending on which context is active. The
acoustic correlates of coarticulatory effects are modulation of weights, in principle, allows the
modeled explicitly, producing sharper and less network to have a complete different pattern of
overlapping probability density functions for the connections between features and outputs units for
different phone classes. every different context.

Using a Bayesian factorization in terms of scaled An alternative implementation is based on a direct
context-dependent posterior phone probabilitiesinterpretation of the definition of conditional
computed with a set of context-specific MLPs, the probability, considering the condition on én
context-independent hybrid MLP/HMM is extended P(qj |Yt’ c,) as restricting the set of input vectors
to model context-dependent phonetic classes. Twconly to those produced in the context & M is the
approaches are used to deal with the increasetumber of context classes, this implementation uses
number of parameters: error-based smoothing ofg set of M MLPs similar to those used in
context-dependent and context-independentcontext-independent case, except that each MLP is
parameters, and sharing of input-to-hidden weightstrained using only input-output examples obtained
between all context-specific networks. Separate netswhen corresponding context ig.dn this approach,
are used to model different context effects in initial the same network architecture and training method
and final states of HMM phonetic models. applied to every context-specific net, permitting the

smoothing scheme and sharing of parameters.

4.1. Context-Dependent Factoring The factorP(ckLYt) can be computed using a

three-layer feed-forward context-independent MLP
whose outputs correspond to the context classes. The
factors P(qngCk) andP(c) are constants for a
given training set and are estimated by counting over
the trained examples. The likelihoda(Y,;) is
common to all states for any given time frame, and
can be discarded in the computation of Viterbi
algorithm.

In a context-dependent HMM, every state is
associated with a specific phone class and context
During the viterbi algorithm search,
context-dependent phonetic modeling requires the
computation ofP(Ythj, C,) . the probability
density of acoustic vectorygiven the phone clasg q

in the context class,¢ for each phone. Required
HMM probabilities are computed using the
following factorization:

P(qj|Yt, ) EP(Yt|ck)

4.2. Training and Smoothing

An initial context-independent MLP is trained to

P(qj|ck) estimate the context-independent posterior
probabilities over the N phone classes. After the
convergence of context-independent training, the

P(Y,[dj: &) =

where P(Yt|ck) can be factored again as:

P(Ck|Yt) [P(Y;) resulting weights are used to initialize the weights
P(Yy|c) = o) (3)  going to the context-specific output layers
Ck Context-dependent training proceeds by

The factorP(q;|Y,, ¢,) is the posterior probability Pack-propagating error from only the appropriate
of phone C|assj.(given the input vector yand the output Iayer. Otherwise, the training procedure IS
context class ¢ It can be computed with MLPs in a  Similar to that for the context-independent net, using
different ways. One possible implementation treats Stochastic gradient descent and a relative-entropy
the g as M additional binary inputs [3] to a single training criterion. Overall classification performance



evaluated on an independent cross-validation set i<4.3. Recognition

used to determine learning rate and stopping point.

Only hidden-to-output weights are adjusted during Recognition is accomplished using the Viterbi

context dependent training. algorithm, it requires computation of the observation
s probabilities associated with each state of HMM.

The smoothed context-dependent posterior
probabilities supplied by the MLP are converted

estimatingP(qj Yt) " and from that it follows a during recognition to state-conditioned observation

trajectory in welght space, incrementally moving prot_)abilities us?ng the normalization factors
away from the context-independent parameters adProvided by equations (1) and (2). However, because

long as classification performance on the these values are a result of smoothing
cross-validation set improves. As a result, the net CONtext-dependent and independent networks, the
retains useful information from the normalization factors should be a combination of

context-independent initial conditions. those corresponding to the context-dependent and

_ _ _ _ ~ context-independent cases. Following interpolations
A hierarchy of context classes is defined, in which for converting the smoothed posteriors

each context class at one level is included in a ps(q, Y. C). to smoothed observation
broader class at the previous level. Each probatLiIiEiesPS(Y |q"ck) :

context-specific MLP at a given level is initialized e

with the weights of a previously trained  p%vy,|q.,c,) = PXq:|Y, c,) Of(j,k,t) (4)
context-specific MLP at the previous level in the (¥e[9) &) (] Ve 6 1D
hierarchy Figure 1. where

Every context-specific net asymptotically converge
to the context conditioned posterio®{ ;| Y, C,) -
As a result of the initialization, thé net starts

Context-Independent Training

Generate finer Context-Dependent

nets initialized with lower level

Context-Dependent Training

using Cross-Validation

Figure 1. Context-Dependent Training and Smoothing



i j 1 . significance. Tables given below show the
f(l k1) = Oy Dﬁ(q_) +W(j.k 1) ®) percentage word error rate for pure HMM and
J hybrid MLP/HMM models for no grammar and
j P(c/Y,) all-word grammar.
VrkO = G- g 7o gy ©
and WER No. of
_ % Params.
Ay = (7) CI-MLP 30.9 300K

Ngi() +BIN4(], k)]

. . CD-MLP 24.9 1,4000K
N¢;(]) is the number of training examples for
phone class j for the context-independent net, and CD-HMM 26.6 5,500K
N.q(],K) is the number of training examples for MIXED 215 6.100K
the phone class j and for the context-specific net
corresponding to context class k. The constaig  Table 1:Number of system parameters and percent
optimized in a development set for minimum word error for pure HMM and hybrid MLP/HMM with

recognition error. no grammar
5. EVALUATION AND RESULTS

WER (%)
The training and recognition experiments comparing
the MLP/HMM hybrid to pure HMM system was CI-MLP 9.5
conducted by M. Cohen et al. [10] using the CD-MLP 6.6
speaker-independent, continuous speech, DARPA
Resource management database. The vocabular CD-HMM 7.0
size of 99_8 words was u;ed. Tests were run both on & MIXED 5.7
word pair grammar with perplexity 60 and an

all-word grammar with perplexity 998. The training Table 2: Percent word error rate for pure HMM
set was composed of 3990 sentences equivalent tand hybrid MLP/HMM with word pair grammar
about 1.5 million frames. The acoustic analysis

consisted of a mel cepstrum computed every 10 msg DISCUSSION

using overlapping windows of 25 ms., four acoustic

features were computed resulting in 26 coefficients T4 results shown in above tables suggest that MLP
produced per frame. For the context-dependent neggtimation of HMM observation likelihoods can
which estimatesP(q;|Y;, ¢,) , a nine-frame 506 the performance of standard HMMs. These
window of 234 input values was presented as the ggits also suggest that systems that use MLP-based
input vectorY, to the input layer. probability estimation make more efficient use of
Training of the context-dependent net consisted oftheir parameters than standard HMM systems do. In
first trainirég a context-independent net, which standard HMMs, most of the parameters in the
estimatesP? (qjlYt) . Then this net’s weights were system are in the distributions associated with the
used to initialize the context-dependent net. Theindividual states. MLPs use representations that are
final cross-validation error for the context-dependent more distributed in nature, allowing more sharing of
net was 21.4% vs. 30.6% obtained with the representational resources and better allocation of
context-independent network. them based on training. In addition, since MLPs are
trained to discriminate between classes, they focus
on modeling boundaries between classes rather than
class internals. The reduction in memory needs that

Combining all the tests, the differences between the
context-independent and context-dependent hybric
was statistically significant at 0.05 level of



may be attained by replacing HMM distributions [6]
with MLP based estimates must be traded off against
increased computational load during training and
recognition.

The tables show that the performance of CD-MLP
system is roughly equivalent to that of CD-HMM,
although CD-MLP is a far simpler system, with [7]
approximately a factor of four fewer parameters and
modeling of only generalized biphone phonetic
contexts. The best performance is that of the
MIXED system. 8]

7. CONCLUSIONS

MLP-based probability estimation can be useful for [9]
both improving recognition accuracy and reducing
memory needs for HMM-based speech recognition
systems. These benefits, however, must be weighte«
against the increased computational requirements

using MLPs, especially during training. [10]
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