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ABSTRACT data sets; they are good at learning causal
relationships between the random variables under

Bayesian networks theory is under significant study; they help to integrate prior knowledge with
development in recent years. It has been found very data, if used in combination with Bayesian statistical
powerful in solving various data analysis problems in techniques; and lastly, they offer an efficient
areas such as expert systems, decision supportapproach for avoiding the overfitting of data. These
systems, and pattern recognition. A Bayesian advantages distinguish Bayesian networks from other
Network (BN), or Belief Network, is a directed data analysis methods such as rule bases, artificial
graphical model. It efficiently encodes probabilistic neural networks, and decision trees [4].
relationships among a set of random variables. In this
paper, we give an introductory review of the In this paper we will review the basic concepts
fundamental concepts and methodology underlying behind Bayesian networks. We will then describe the
the Bayesian networks theory. We also demonstrate fundamental algorithms for learning structures and
the application of Bayesian nets to Automatic Speech parameters of these networks from data. Finally, we
Recognition (ASR). Experiment results from state- will discuss how to apply Bayesian networks theory
of-the-art research work indicate that BNs are to speech recognition. We will mainly describe the

promising techniques for speech recognition. pioneering research by Zweig at University of
California at Berkeley, and present some of his
1. INTRODUCTION speech recognition results with Bayesian nets.

A Bayesian network is a graphical model that 2. CONCEPTS AND METHODOLOGY
represents probabilistic relationships among a set of

random variables. It is a compact and 2.1. Representation

computationally efficient representation of
probability distributions. Over the last decade, it has
become a popular method for encoding uncertainty in

Bayesian Networks (BNs), or Belief Networks, are
directed graphical models, in which nodes represent

artificial intelligence. Now it is playing a crucial role rand.o.m va_lrlables and dlrected_ arcs represgnt
in modern expert systems, decision support systems,cond't'onal independence assumptions. To determine

etc. [1]. More and more researchers in such related & Baygsmn netw_o'rk, yve_alsp need to specify
fields as pattern recognition are also starting to Conditional Probability Dlsmbutlons (CP_Ds) at each
realize the power of this technique because of the nodl;a.blfl_thedr_anqk;)m_ varlable§ are dls%r_e_te, tlhe
outstanding effectivity it has been demonstrating in pro ba l:l)'llt'y |strl|3|ut|ons turn mtohpohnl_ltlonr?
data analysis problems. In recent years, there hasP'oPability Tables (CPTs), which list the

been significant progress in algorithms for learning probgbllltles that. a chlld.node takes on each of its
Bayesian networks directly from data. The possible values given various combinations of values

technology is still under fast development. of its parents. For a node without any parents, the
associated table gives the prior probabilities instead

Bayesian networks can easily deal with incomplete Of the conditional ones.



An important issue with inference is the
computational efficiency. The conditional

@ independence properties help greatly in enhancing
®‘ @ the efficiency. This issue has been discussed in detall

in [2][5].

2.3. Learning Bayesian Nets From Data

Figure 1: The structure of a simple Bayesian network. ) )
As we discussed earlier, the two key elements of a

Bayesian network are the graph topology (structure)
and the parameters of each CPD. It is possible to
learn both of these from data. There are four cases of
learning a Bayesian network from training data:
structure known, data fully observable; structure
known, data partially observable; structure unknown,
data fully observable; structure unknown, data
partially observable.

The conditional independence relationships in BNs
allow us to represent the joint probability more

compactly. The simplest conditional independence
relationship encoded in a Bayesian network can be
stated as follows: if the parents of a node are given,
the node is independent of its ancestors. As an
example, in the network shown in Figure 1, we have
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2.3.1. Known Structure With Full Observability
becausdN isindependent®f  given its pare8ts

andR We use Maximum Likelihood Estimation (MLE) in

this case. The goal is to find the values of the
parameters of each CPD which maximizes the
likelihood of the training dataN independent

cases). The normalized log-likelihood of the training
setD is an averaged summation over all nodes:

Nodes in Bayesian Nets could also be of continuous
values. In this case, we have conditional probabilistic

distributions at each node. The most common

distribution for such continuous random variables is

the Gaussian distribution. Even more complicated,

there could be both continuous and discrete nodes
existing in a Bayesian net.
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A stochastic process, which is a vector of random

variables evolving over time, can also be modelled by we see that the log-likelihood scoring function

a Bayesian net. These temporal models are calleddecomposes according to the structure of the graph,
Dynamic Bayesian Networks (DBNs). DBNs allow hence we can maximize the contribution to the log-
the states of the system to be represented as a set ofikelihood at each node independently (assuming the
separate variables. parameters for each node are independent of those for
all other nodes). For Gaussian nodes, we may
compute the sample mean and variance, and use
linear regression to estimate the weight matrix. For
other kinds of distributions, more complex

c procedures are necessary.

2.2. Inference

The most common task we wish to accomplish using
Bayesian networks is probabilistic inference.
Bayesian nets can be used for both diagnosti
reasoning (from effects to causes) and causal

_ , 2.3.2. Known Structure With Partial Observability
reasoning (from causes to effects). We use Bayes

rule for inference. When some of the nodes are hidden, we may use the
Expectation Maximization (EM) algorithm to find a
- _ - locally optimal maximum likelihood estimate of the
P(X= XP(Y= yX= X
P(X= XY=y = ( — P _yl — ) (2 parameters. In the first step, we compute the expected
IZP(X— X)P(Y= yX= X) values for all nodes using an inference algorithm, and

then treat these expected values as though they were
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Figure 2: A DBN representatlon of a simple HMM. Figure 3: A DBN structured to model speaker type.

observed (distributions) so that we may maximize the speech recognition.

parameters. Then we recompute the expected values,

redo the maximization again. This iterative procedure 3-1. Model Composition With DBNs
is guaranteed to converge to a local maximum of the

likelihood surface. From this procedure, we see that
when nodes are hidden, inference becomes a
subroutine which is called by the learning procedure.

Hence fast inference algorithms are crucial.

In order to apply DBNs to ASR, it is necessary to
develop a technique for combining soberer phonetic
models into whole word and multiple-word
models [3]. For model composition, we need to
specify legal submodel sequences first. Stochastic
2.3.3. Unknown Structure With Full Observability Finite-State Automata (SFSAs) have been used to
describe a probability distribution over possible
This case is complicated since we do not know submodel sequences. Bayesian networks are used to
exactly what the structure is like. The strategy here is specify the behavior of each submodel. The model
to search through the model space. We need to selectcomposition allows for parameter tying between
an appropriate model according to a scoring function, multiple occurrences of the same phone model.
and we optimize this function over the space of

models. Figure 2 illustrates an example of a DBN that is
structured for model composition in speech
2.3.4. Unknown Structure With Partial Observability recognition. It is equivalent to a standard HMM.

This is the hardest case of all, where the structure is 3.2. Model Structures For ASR

unknown and there are hidden variables and/or

missing data. We can use an iterative method, which DBNs can be adapted to address the requirements of
alternates between evaluating the expected score of aautomatic speech recognition. They can model many
model with an inference engine, and changing the of the important factors affecting the speech
model structure, until a local maximum is reached. recognition process, such as articulatory motion,

This is also known as the Structural EM (SEM) speaking style, noise, etc. [3]. Figure 3 illustrates a
algorithm. DBN structured to model speaker type. More

examples, such as DBN structured to model
3. APPLICATION IN ASR articulatory motion, DBN structured to model
speaking rate, perceptually-structured model and
Dynamic Bayesian networks (DBNs) are used to combined perceptual-generative model, can be found
model stochastic processes. It is capable of modeling in Zweig’s dissertation [3].
arbitrary sets of variables with arbitrary conditional
independence assumptions. This property enables the3.3. Performance

construction of explicit models of speech generation
and perception, hence makes DBNs suitable for SP€€ch recognition experiments with DBNs on a



(

-~

~

Phone
Context
Observations

Correlation PD-Correlation
Phone
F— (5 — Context
Observations
Chain Articulator

Figure 4: The acoustic models for four of the network topol-
ogies tested. The index and transition variables are omitted.

The dotted lines indicate conditioning on the previous
frame.

large-vocabulary multi-speaker database of isolated
words have been described in [3]. Some network

Network Parameters [Error Rate
Baseline HMM 127k 4.8%
Correlation 254k 3.7%
PD-Correlation 254k 4.2%
Chain 254k 3.6%
Articulator 255k 3.4%

Table 1: Word error rates for the four models in Figure 4
using the basic phoneme alphabet.

efficiency. Finally, gains in statistical efficiency result
in computational efficiency.

4. CONCLUSIONS

In this paper, we reviewed the basic concepts behind
the theory of Bayesian networks. We also discussed
important issues involved in inference and learning a
Bayesian network from data. We demonstrated the

structures tested and the corresponding results arePossibility and the benefits of applying Bayesian

shown in Figure 4 and Table 1, respectively.

Here, the “Correlation” network models intra-frame
observation correlations in a phone-independent way.
The “PD-Correlation” network models the
correlations in a phone-dependent way. The “Chain”
network models phone-independent temporal
correlations. And the “Articulator” network models
phone-dependent articulatory target positions and
inertial constraints. The Articulator network provided
the best performance.

3.4. Advantages Of DBNs-based Speech Recognition

First, arbitrary sets of variables can be associated
with each timeslice. This enables a highly expressive

representational framework. Second, there are [3]

efficient, general-purpose algorithms for doing
inference, and no special-purpose algorithms need to
be derived for handling extensions to HMMs such as
articulator models. Third, sharing variables between
submodels leads to a natural way of describing
transitional behavior, which is important for
modeling coarticulation. Fourth, DBNs are factored
representations of a probability distribution, and may
have exponentially fewer parameters than unfactored

representations such as standard HMMs. Hence these
parameters can be estimated more accurately with a

fixed amount of data. This is also known as statistical

networks to speech recognition. Finally we presented
experiment results on speech recognition with
Bayesian nets from state-of-the-art research work.
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