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ABSTRACT P(O/ w)P(w;)
P(wi/O) = ———— )

In a typical speech recognition system it is assumed P(O)
that the sequence of observed speech vector - .
corresponding to a word sequence is generated bylzthe probability p(w) is known then the most

: . robable spoken word depends on the likelihood
parametric model. If a Markov model is used then th N . ) . .
problem of finding the conditional probability of e_E(O/Wl). Since the dimensionality of the observation

acoustic evidence given the word is replaced b))s large, direct computation of P(Gys impractical.

estimation of model parameters of the MarkovEgr\;vzvegrgr:;fri\évzgd%rlolﬁ(gc;:nM;ka:)S\/S;rgj; t%gr?
model. Given a set of training examples the P '

parameters of the model can be estimated by a rObug%rgbeleS::\n:)?téosgrr?;tlrrsoihwels ;?;Orlr?ecticrjsbcz‘ ?hzlmgldeerl
and efficient reestimation procedure. This process i& 9 P :

called Acoustic Training and one such procedure2 HIDDEN MARKOV MODELS
used to reestimate the parameters of the model is’

Baum-Welch Reestimation algorithm. This papers.1. overview
will focus on the details of this algorithm and its

practical implications. In a typical speech recognition system, the words in
the word sequence to be recognized are modelled
1. INTRODUCTION using a parametric model called Hidden Markov

_ _ Models (HMMs). It is assumed that the sequence of
A speech recognizer maps the input speech vectogghserved speech vectors corresponding to each word

with the word sequence that needs to be recognizegs generated by the model corresponding to that
An inherent problem with this is that the mapping word[2].

may not be one-to-one since different word

seguences can have similar speech vectors. Hence theMarkov model is a finite state machine which
problem is approached with a statistical outlookchanges state once every time unit and at eachttime
involving probabilities[1]. Given the input acoustic a statg is entered and speech vectgi®generated
vector the recognizer chooses the most likely wordrom the probability density functiony(m,). Also, the
sequence. If the speech vectors or observations anner in which the state transitions occur with the

represented by = o,,0,,...,0, wher®, isthe modelis also probabilistic and is governed by a state-
speech vector observed at time t. The output of theransition matrix. If in a Markov model the state
speech recognizer will be sequence that produced the observation sequence is
not known deterministically, then the Markov model
W = argmaxR VY/O) (1) s called Hidden Markov Model. Thus HMM'’s are

double embedded stochastic process with an
underlying stochastic process that is not directly
observable but can be observed through another set

Using Bayes rule this probability is computed as,  ©f stochastic processes that produce the sequence of
observations. Thus the elements of a HMM includes

t

Wherewi is the't' vocabulary word.



N (the number of states in the model), M (the numbercertain probabilities are estimated using the forward-
of distinct observation symbols per state), A (statebackward procedure. This makes the problem
transition probability distribution), B (observation computationally less expensive.

sequence probability distribution) and (initial state _
distribution). Consider the variable(t(l) defined as

2.2. Problems for HMM’s: at(i) = Pr((Ol, OZ’ Ot’ it: qi)/7\) 3)

Given the general form and elements of a HMM it - . .

can be easily seen that for the model to be useful fofhe pro_bablllty of the partial obs_ervatlon_ sequence
applications certain problems related to it need to béunctl'llt)'\m?r;). and tge St?te&@tdt'm? ti given the
solved. In simplistic terms the three problems are modelA . This can be solved inductively as

1. given the observation sequence O £¢g..., or) and a a,() = mb(O4) for 1<i<N “4)

model A = (A B, m) , how do we efficiently compute

P(O/\ ), the probability of the observation sequence givenWhere T[i IS thc_a initial state dlstrlb_u_tlon_for_ thg.]l
the model. state and §O,) is the output probability distribution

for statei. Then for subsequent time instants
2. Given the observation sequence O 1,¢9..., or) and =12 . T-1

the model A , how do we choose a corresponding state

sequence g = (g,...0y) that is optimal in some sense. N
3. How do we adjust the model parametdrs  to maximize It + 1(1) - z O('[(I)aij bj (Ot + 1) ©)
P(O/ A )? =1

wherea;; is the state-transition probability for

L C%ransition from state to statej. And the probability
where we optimize the model parameters so as 3¢ the observation given the model is given by
describe how the observed sequence is best

represented. This is also called tAeaining N
Sequence Problensince it is used to train the
model. This is important for most applications as it Pr(O/A) = Z O(T(i) (6)

allows to optimally adapt model parameters to
observed data and in the process create best models
for the recognizing the real data.

=1

Equation (4) initiates the forward probabilities with
the joint probability of being in the statg gt T=1
and the initial observation Q Equation (5)
epresents how the statgig reached at time t+1
rom the N possible states at time t. Sinae(i) is
rqhe probability of the joint event that {,...0, are
observed and the state stops atagtime t, the

3. MATHEMATICAL SOLUTION

An attempt to solve the above problems in its direc
way will not be computationally feasible even for
relatively small values of states and observations i

an HMM and. For example, for N =5 and T = 100, productat(i) a; is then the probability of the joint

we need 167 computations to find the probability of .
observation sequence given the model[2]. A moreevent QO....Q are observed and statpigreached

efficient procedure called forward-backward at tlr_ne t+l via stat_e d S“mm'”g this over all
procedure is used. possible N states at tintgesults in the probability of

being at state;cat time t+1. Finally, the probability
3.1. The forward-backward procedure of the output given the model is the sum of the
terminal forward probabilities in the last time frame.
Before going into the details of how the model The implementation of the recursive computation of
parameters are updated it is important to know howhe forward variable leads to a lattice structure as
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Figure 1: Lattice structure for the recursive computation of the forward variable

shown in Figure 1. N )
By using the forward method we obtain a B(i) = Z i (O + 1(1))

computational savings of 69 orders of magnitude =1

than with direct calculation. The key to this is that

since there are only N states, all possible paths wils for forward variable, the backward variable is also

merge into these N states no matter how long thegomputed recursively and follows a lattice structure.
observation sequence is. At each time instant the

calculation involves N previous values calculated in4. BAUM-WELCH REESTIMATION

the previous time instant because each of the N states

is reached from the same N states at the previoushe forward-backward procedure defined in the

time instant. This helps in avoiding redundantprevious section helps in reestimating the model

calculations and hence the computational savings. parameters. There is no analytical method to solve
for the model parameter set that maximizes the

Similarly, we can consider the backward variable asprobability of the observation sequence in a closed
form. So we use an iterative procedure to reestimate

Bt(i) = |:>r(ot T ot o o /| =q, )\)(7) the models SO that the Iikelih_ood of the observation

sequence given the model increases. The Baum-

Welch method is one such method for reestimating

hich is th ility of th tial ti
which is the probability of the partial observation the parameters[3].

sequence from t+1 to the end given statatimet
and the model. The backward variable can also bg 1. Reestimation
solved inductively as o

_ _ Let Et(i, j) denote the probability of being in state
Br(i) = 1fori<i<N (8) attimet and in statg at time t+1, given the model
and the observation i.e.
and

&(.0) =P(a =i, ,=]/0O,N) (0



From the definition of forward and backward
variablesEt(i, j) can be expressed in the form
= expected number of transitions from state

. p(qt = i’qt+1 =j,0/}\) state |
&(i.]) = (11) ”» .
(b ( F;EBO/)\)( ) expected number of transitions from state i
a.(i)a:b.(o i
_ ot i Rt A i e .
= FO/N) (12) and,
ar(ia:bi(o,, 1)B; 4 1(i)
- — L ijojt+ 1Pt +1 (13) T |
| | > v
> > araybiop, 1B, 1() =
i=1j=1 o]

=V,
Also, let yt(l) be defined as the probability of being

in statei at time t, given the entire observation z Vt(j)
sequence and the model. This can be related to

€(i, j) by summing over as t=1

= expected number of times in stgtand
observing symbql v

N
i@ =y &0 (14)

= expected number of times in state j
J =

i . . . If we define the current model as= (A, B, 1) and
If we sumy,(i) over the time index t, it can be 50 (15) (16) and (17) to compute reestimated
interpreted as the expected number of times that St rameterss = (A, B ) then it can be shown[1]

| is visited or in other words, expected number Ofy, o either the initial modeh  defines a critical point
transitions made from state i. In the same manner

) Al ) of the likelihood function in which cas® = A or
summation of¢ (i, j) ovet is the expected number

p tons f . " Usina th the modelX is more likely than the modAl in the
of transitions from stateto state j. Using t e_concept sense that P(QV ) > P(Q&/ ). If we above procedure
of event occurrences we can reestimate th

£ th he initial §s done over several iterations then we can improve
param_e.ters of the HMM namely  (the initia _s_tate the probability of the observation sequence being
transition probabilities), A (state transition

observed from the model.
probabilities) and B (output probability distribution).

This can be represented as 4.2. Practical Issues:
ﬁj = yl(i) (15)  Though we have reduced the computations involved
in reestimation process using the forward-backward
= number of times in statat timet = 1 procedure the computations become exhaustive as

the input utterances on which the model is trained
T-1 becomes long. This is because as the utterance length
o increases the number of models that are present in
Z & (i,1) that utterance also increases leading to a situation
t=1 where the number of forward and backward

aij - T-1 (16) probabilities that need to be calculated is really large.
Z Y;(i) For a speech recognition system used a typical left-
t=1 right model topology this hurdle can be overcome by

employing the fact that not all states can be reached



parameters based on these probabilities rather than

choose a single best state sequence and update the
A model parameters based on the state sequence.

Usually continuous distribution gaussian mixtures
are used to model the input vector and the means and
covariances are updated after every pass of training.
The iteration is done over 4 or 5 passes for the
models to be sufficiently trained. Also there should
be sufficient data for all the models to get trained

properly
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first state of the first model. So windowing of the

models is done during every time frame to choose

only those models that are likely to be hypothesized

in this time frame. Figure 2 shows how the number of

models hypothesized varies at various instants. It can

be seen that at the beginning only a few models are

hypothesized but as the time progresses the number

of models also increases. It saturates and remains

constant and as the time progresses to the last frame

the number of models start to decreased.

Another way of saving on computations is by
pruning off those models that have low probabilities.
If the backward probability for a model is very low
and falls below a threshold then the corresponding
forward probability for that model is not calculated.
In other words the model is not hypothesized in this
time frame and is said to be pruned. This method of
pruning based on the backward probabilities is call
Beta-pruning.

5. CONCLUSION

The Baum-Welch method of training differs from the
Viterbi training in the sense that the Baum-Welch
algorithm assumes that any state can occur at any
time with some probability and updates the model
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