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ABSTRACT

In a typical speech recognition system it is assum
that the sequence of observed speech vect
corresponding to a word sequence is generated b
parametric model. If a Markov model is used then th
problem of finding the conditional probability of
acoustic evidence given the word is replaced b
estimation of model parameters of the Marko
model. Given a set of training examples th
parameters of the model can be estimated by a rob
and efficient reestimation procedure. This process
called Acoustic Training and one such procedu
used to reestimate the parameters of the mode
Baum-Welch Reestimation algorithm. This pape
will focus on the details of this algorithm and its
practical implications.

1. INTRODUCTION

A speech recognizer maps the input speech vect
with the word sequence that needs to be recogniz
An inherent problem with this is that the mappin
may not be one-to-one since different wor
sequences can have similar speech vectors. Hence
problem is approached with a statistical outloo
involving probabilities[1]. Given the input acoustic
vector the recognizer chooses the most likely wo
sequence. If the speech vectors or observations
represented by where is the
speech vector observed at time t. The output of t
speech recognizer will be

(1)

where  is the ith vocabulary word.

Using Bayes rule this probability is computed as,
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If the probability p(wi) is known then the most
probable spoken word depends on the likelihoo
P(O/wi). Since the dimensionality of the observatio
is large, direct computation of P(O/wi) is impractical.
However, if the word production is assumed to b
from a parametric model like an Markov model, the
the estimation of P(O/wi) is replaced by a simpler
problem of estimating the parameters of the mode

2. HIDDEN MARKOV MODELS

2.1. Overview

In a typical speech recognition system, the words
the word sequence to be recognized are model
using a parametric model called Hidden Marko
Models (HMMs). It is assumed that the sequence
observed speech vectors corresponding to each w
is generated by the model corresponding to th
word[2].

A Markov model is a finite state machine which
changes state once every time unit and at each timt
a statej is entered and speech vector ot is generated
from the probability density function bj(ot). Also, the
manner in which the state transitions occur with th
model is also probabilistic and is governed by a sta
transition matrix. If in a Markov model the state
sequence that produced the observation sequenc
not known deterministically, then the Markov mode
is called Hidden Markov Model. Thus HMM’s are
double embedded stochastic process with
underlying stochastic process that is not direct
observable but can be observed through another
of stochastic processes that produce the sequenc
observations. Thus the elements of a HMM includ

P wi O⁄( )
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N (the number of states in the model), M (the numb
of distinct observation symbols per state), A (stat
transition probability distribution), B (observation
sequence probability distribution) and (initial stat
distribution).

2.2. Problems for HMM’s:

Given the general form and elements of a HMM
can be easily seen that for the model to be useful
applications certain problems related to it need to
solved. In simplistic terms the three problems are

1. given the observation sequence O = (o1,o2,..., oT) and a

model , how do we efficiently compute

P(O/ ), the probability of the observation sequence giv
the model.

2. Given the observation sequence O = (o1,o2,..., oT) and

the model , how do we choose a corresponding sta

sequence q = (q1q2...qT) that is optimal in some sense.

3. How do we adjust the model parameters to maximi

P(O/ )?

The third problem is what we are interested in an
where we optimize the model parameters so as
describe how the observed sequence is be
represented. This is also called theTraining
Sequence Problemsince it is used to train the
model. This is important for most applications as
allows to optimally adapt model parameters t
observed data and in the process create best mo
for the recognizing the real data.

3. MATHEMATICAL SOLUTION

An attempt to solve the above problems in its dire
way will not be computationally feasible even fo
relatively small values of states and observations
an HMM and. For example, for N = 5 and T = 100
we need 1072 computations to find the probability of
observation sequence given the model[2]. A mo
efficient procedure called forward-backwar
procedure is used.

3.1. The forward-backward procedure

Before going into the details of how the mode
parameters are updated it is important to know ho
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certain probabilities are estimated using the forwar
backward procedure. This makes the proble
computationally less expensive.

Consider the variable defined as

(3)

the probability of the partial observation sequenc
(until time t) and the state qi at time t, given the
model . This can be solved inductively as

 for (4)

where is the initial state distribution for the ith

state and bi(O1) is the output probability distribution
for state i. Then for subsequent time instant
t=1,2,..., T-1

(5)

whereaij is the state-transition probability for
transition from statei to statej. And the probability
of the observation given the model is given by

(6)

Equation (4) initiates the forward probabilities with
the joint probability of being in the state qi at T=1
and the init ial observation O1. Equation (5)
represents how the state qj is reached at time t+1
from the N possible states at time t. Since
the probability of the joint event that O1O2...Ot are
observed and the state stops at qi at time t, the
product aij is then the probability of the joint
event O1O2...Ot are observed and state qj is reached
at time t+1 via state qi . Summing this over all
possible N states at timet results in the probability of
being at state qj at time t+1. Finally, the probability
of the output given the model is the sum of th
terminal forward probabilities in the last time frame
The implementation of the recursive computation
the forward variable leads to a lattice structure a

αt i( )
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OBSERVATION
shown in Figure 1.

By us ing the forward method we obta in a
computational savings of 69 orders of magnitud
than with direct calculation. The key to this is tha
since there are only N states, all possible paths w
merge into these N states no matter how long t
observation sequence is. At each time instant t
calculation involves N previous values calculated
the previous time instant because each of the N sta
is reached from the same N states at the previo
time instant. This helps in avoiding redundan
calculations and hence the computational savings.

Similarly, we can consider the backward variable a

(7)

which is the probability of the partial observation
sequence from t+1 to the end given state qi at timet
and the model. The backward variable can also
solved inductively as

 for (8)

and
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As for forward variable, the backward variable is als
computed recursively and follows a lattice structure

4. BAUM-WELCH REESTIMATION

The forward-backward procedure defined in th
previous section helps in reestimating the mod
parameters. There is no analytical method to sol
for the model parameter set that maximizes th
probability of the observation sequence in a clos
form. So we use an iterative procedure to reestima
the models so that the likelihood of the observatio
sequence given the model increases. The Bau
Welch method is one such method for reestimatin
the parameters[3].

4.1. Reestimation

Let denote the probability of being in statei
at time t and in statej at time t+1, given the model
and the observation i.e.

(10)

βt i( ) aij b j Ot 1+ j( )( )
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Figure 1: Lattice structure for the recursive computation of the forward variable
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From the definition of forward and backward
variables  can be expressed in the form

(11)

(12)

(13)

Also, let be defined as the probability of bein
in statei at time t, given the entire observation
sequence and the model. This can be related

 by summing over as

(14)

If we sum over the time index t, it can be
interpreted as the expected number of times that st
i is visited or in other words, expected number o
transitions made from state i. In the same mann
summation of overt is the expected number
of transitions from statei to state j. Using the concept
of event occurrences we can reest imate th
parameters of the HMM namely (the initial stat
transit ion probabi l i t ies), A (state transit ion
probabilities) and B (output probability distribution)
This can be represented as

(15)

         = number of times in state i at time t = 1

(16)
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= expected number of transitions from statei to
               state j

               expected number of transitions from state

and,

(17)

= expected number of times in statej and
                      observing symbol vk

                        expected number of times in state j

If we define the current model as an
use (15), (16) and (17) to compute reestimate
parameters then it can be shown[1
that either the initial model defines a critical poin
of the likelihood function in which case or
the model is more likely than the model in th
sense that P(O/ ) > P(O/ ). If we above procedu
is done over several iterations then we can impro
the probability of the observation sequence bein
observed from the model.

4.2. Practical Issues:

Though we have reduced the computations involv
in reestimation process using the forward-backwa
procedure the computations become exhaustive
the input utterances on which the model is traine
becomes long. This is because as the utterance len
increases the number of models that are presen
that utterance also increases leading to a situat
where the number of forward and backwar
probabilities that need to be calculated is really larg

For a speech recognition system used a typical le
right model topology this hurdle can be overcome b
employing the fact that not all states can be reach

bj k( )
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at all times.If the input utterance is known that on
need not hypothesize all the states at the first tim
instant. This is because it is clearly known that th
only state that correspond to the input vector is th
first state of the first model. So windowing of the
models is done during every time frame to choo
only those models that are likely to be hypothesize
in this time frame. Figure 2 shows how the number
models hypothesized varies at various instants. It c
be seen that at the beginning only a few models a
hypothesized but as the time progresses the num
of models also increases. It saturates and rema
constant and as the time progresses to the last fra
the number of models start to decreased.

Another way of saving on computations is b
pruning off those models that have low probabilitie
If the backward probability for a model is very low
and falls below a threshold then the correspondi
forward probability for that model is not calculated
In other words the model is not hypothesized in th
time frame and is said to be pruned. This method
pruning based on the backward probabilities is ca
Beta-pruning.

5. CONCLUSION

The Baum-Welch method of training differs from th
Viterbi training in the sense that the Baum-Welc
algorithm assumes that any state can occur at a
time with some probability and updates the mod
e
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parameters based on these probabilities rather th
choose a single best state sequence and update
model parameters based on the state sequen
Usually continuous distribution gaussian mixture
are used to model the input vector and the means a
covariances are updated after every pass of traini
The iteration is done over 4 or 5 passes for th
models to be sufficiently trained. Also there shoul
be sufficient data for all the models to get traine
properly
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Figure 2: Illustration of number of models hypothesized
against the progression of time.
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