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1. PROBLEM DESCRIPTION

In this project we are to use the discrete HMM toolkit to build a model that best characterize
following sequences of outcomes from a coin toss experiment (Table 1). No apriori inform
about the nature of the coin (or multiple coins) used in the tossing experiment or how the c
tossed is given, except the result of each coin flip. Using only the observable outcomes, we
find the best set of parameters for the model. Once the best model is found, it is used to co
the probability of the sequences given in Table 2.

2. INTRODUCTION

Often we are given a sequence of observable symbols and are asked to build a model to
and characterize these observable symbols. The reason that we want to find such a model i
found, the model can be used to identify or recognize other sequences of observations. A H
Markov Model, commonly known as HMM, handles situation as described previously quite
cessfully and efficiently.

So what is an HMM? An HMM is a doubly stochastic process where an underlying stoch
process is not known. An HMM is characterized by the following elements:

• it has a finite number of states.
• it has a set of transition probabilities among the states.

No. of
Trials

Outcome of a Coin-Toss Experiment

1 HHTTTHHHHTTTTTHHHHHHTTTTTTTHHHHHHHHTTTTTTTTTHHHHHHHHTTTTTTTH

2 HHHHHTTTTTHHHHTTTHHTHHTTHHHHHHHHHHTHHHHHTHHHHHHHHHHTHHHTHHHH

3 HHHHHHHHHTHHHHHHHHHTTHHHHHHTHHHTHHHHHTHHHHHHHHTHHHHHHTHTHHHH

4 HHHHHHHTTHHHHHHHHHHHHHHHTHHHHHTTHHHHHHHHHHTTHHHHHHHHHHHHHTTH

5 HHHHHHHHHHHTTHHHTHHHHHHHHHHHTHHHHHHTTHHHHHTHHHTHHHHHTHTHHHHH

6 THTHHHHHHHHHTHTHHHHHHTHTHHHHHTHTTHHHHHHHHHHHHHTHTHHHHHHHHHHH

7 HTHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHTHHHHHHHHHHTTHHHHHHHTHHHHHH

8 HHHHHTHHHHTHHHHHHHHHHTHHHHHHHHHHHHTTHHHHTTHHHHHHHHHHHHHHTTHH

Table 1: Training data for the HMM.

Seq. No.

1 HTHTHTHTHTHTHTHTHTHT

2 HHHHHHHHHHHHHHHHHHHH

3 TTTTTTTTTTTTTTTTTTTT

Table 2: Test data for the HMM.
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• it has a finite number of output symbols when a transition is made.
• it has an output probability distribution.
• it has an initial state distribution.

There are three basic problems when dealing with HMMs. The first problem is how to evalu
model given a sequence of observations. We want to know how well the model performs o
sequence. From this we can choose the best model among the competing models. The
problem deals with how to uncover the hidden part of the model or the state sequence that
to produce the output. The third problem is to decide on the size of the model. Often this last
lem is the most complicated because many time we have little prior information abou
observed symbols, and without of prior information choosing the optimal set of parameters i
ficult and could result in trial and error before settling on the appropriate model.

3. EXPERIMENTS AND RESULTS

In this project we attempted to find the optimal model that best characterizes the set of sequ
of output from a coin tossing experiment. In approaching this problem, we had no apriori i
mation about how the sequences of observables were obtained. We resorted to trial by err
varied three arguments: 1) the number of iterations was varied from 10 to 10,000 iterations i
of ten, 2) the number of states was varied from 2 to 100 states in step of one, and 3) the num
output symbols was varied from 2 to 60 in step of one. The limits on the three arguments
chosen at random. The last argument, the number of output symbols was chosen with the id
it was possible that 60 coins were tossed at the same time. With these limits, we trained 6,00
models using the Viterbi algorithm and 6,000,000 models using the Baum-Welch algorithm

Because the size of the training data was so small, most of the models built were statistically
liable and were discarded. According to [2], we needed at least twenty data points to m
sound estimation of one parameter. Since we had 480 observed outputs and we needed
outputs for each parameter, our model could only have at most twenty-four parameters. For
connected HMM, the number of parameters is given by the equation below:

transition

state
l 2

3

a2 3,

a1 2,

a1 1,

a2 1,

a2 2,

a3 3,

a3 2,a3 1,

a1 3,

Figure 1: Elements of an HMM.
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where is the number of parameters and is the number of states. So for our case, to g
sensible model, the maximum number of states we could have is three. However, just in ca
carried the experiment up to four states.

At least we knew the number of states needed to be around two to four so that limited the s
space somewhat. We still had no clue about how many output symbols should we use. For t
experiment, we started out with two symbols. The results are given in Figure 2 and Figure
the Viterbi and Baum-Welch algorithm respectively.
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We noted that for the models trained with Viterbi the log probability is non-decreasing with e
iteration. It either increases or stays constant but never decreases. Those trained with Baum
behaved a bit differently. Although the log probability is generally non-decreasing as seen in
trained with Viterbi, it fluctuates once in a while. It is possible that numerical precision and e
in estimating the underlying distributions causes this behavior.

From the five models built, the best model is a three state two output symbol model training
Viterbi with a log probability of -97.9579.
Figure 2: Log probability of various HMM models as a
function of training iterations using two output symbols

per state with Viterbi algorithm.

Fig
a

ure 3: Log probability of various HMM models as
 function of training iterations using two output
symbols per state with Baum-Welch algorithm.
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For the second experiment, we used the same parameters as described in the first exp
except that we increased the number of output symbols from two to three. The results are g
Figure 4 and Figure 5. We noticed the same the results of this experiment follow the trend
first experiment. However, the log probabilities of these models are lower than those obtain
the first experiment. The best model, a three state three output symbol model with log proba
of -98.646400, is still lower than the best model in the first experiment.

Since there is no increase in the probability as the number of output symbols increase
stopped and picked the three state two output symbol model using Viterbi as the optimal m
that characterizes our training data. We used this model and evaluated it on our train and te
and the results are given in Table 3 and Table 4. Both tables show the model’s performanc
various testing modes on different kinds of data.

Model
Testing Mode

Viterbi Baum-Welch

Viterbi -97.9579 -124.7057

Table 3: Raw scores of our best model’s performance on training data.
Figure 4: Log probability of various HMM models as
a function of training iterations using three output

symbols per state with Viterbi algorithm.
Figure 5: Log probability of various HMM models as
a function of training iterations using three output

symbols per state with Baum-Welch algorithm.
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From the scores above, one would comment that model did very badly on the training dat
very well on the test data. This is opposite to what is expected because usually the mode
well on what it has been taught and not so well on things that it has not been taught. It is po
that the test data is too easy, and thus model performed very well. However, this is not the ca
the widely differences in the scores. The reason is due to the size differences in the trainin
test sets. Thus, to make the scores comparable we normalized them with respect to the t
data, and the normalized scores are given in  Table 5 and Table 6.

From the normalized scores, we can see that the model performed very poorly on the tes
One reason could be that the size of our training data is not large enough to yield a statis
reliable model. Another reason is that our test data do not mirror the training data. Whatev
case may be, additional data and more experiments must be performed to find the reason
model’s poor performance with the test data.

4. CONCLUSIONS

We have presented here the results of our experiments of finding the best model to repre
sequence of observable outputs using the HMM toolkit. We have found that our best mode
three state two output symbol model. We have found that our best model performed poorly o
test data. We concluded that additional data and experiments are needed to determine the
for the poor performance.

5. REFERENCES

[1] J. Picone, “ECE 8993 Speech Processing Course Notes,” Mississippi State Univ., Star
MS, 1998.

Model
Testing Modes

Viterbi Baum-Welch

Viterbi -20.1899 -28.7742

Table 4: Raw scores of our best model’s performance on test data.

Model
Testing Modes

Viterbi Baum-Welch

Viterbi -97.9579 -124.7057

Table 5: Normalized scores of our best model’s performance on training data.

Model
Testing Modes

Viterbi Baum-Welch

Viterbi -161.5192 -230.1936

Table 6: Normalized scores of our best model’s performance on test data.
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[2] L. Rabiner and B. Juang, “An Introduction to Hidden Markov Models,”IEEE ASSP Magazine,
January 1986.
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