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1. PROBLEM DESCRIPTION

In this project we are to implement a program that uses linear discriminant analysis technique to
identify which of the data sets, given in Figure 1 below, each of the test vectors belongs.

A

u, = [2,-2]

y

Figure 1: General shape of the data sets.

Each data set is to contain 100 2-D points. Both data sets have a mean approxjratély and

[2, -2], respectively. The test vectors are given in Table 1. Linear discriminant analysis is used to
identify the class of the each of the test vectors. The results are compared to those obtained from

Euclidean distance method.

Test vectors Coordinates
a -1, -1
b 0,0
c 0.5,05
d 0.5,-0.5

Table 1: Test vectors.

2. INTRODUCTION

Linear discriminant analysis is one of the numerous data classification techniques. This technique
maximizes the class separability by maximizing the ratio of the between-class variance to the
within-class variance or the ratio of the overall variance to the within-class variance. Choosing the
former or the latter case rests on the type of transformation used. There are two types of transfor-
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mation: class-dependent transformation and class-independent transformation.

The class-dependent transformation maximizes the separability of the classes by maximizing the
ratio of the variance between the classes to the variance within the classes while the class-inde-
pendent transformation maximizes the class separability by maximizing the ratio of the overall
variance to the variance within the classes [1].

Class-dependent transformation is given by Equation (1):

transformed_set f transformT _Kset j (1)

whereset_j is the data sg¢t arichnsform_j is the transformation matrix obtained by taking the
non-redundant eigen vectors@iterion_j  which can be obtained by Equation (2):

criterion_j = inv(covj) xS, (2)

For class-dependent transformation, there is one transformation matrix obtained from one crite-
rion for each data set. Thus, for data sets, we will have criterip and transformation matrices.

Class-independent transformation is given by Equation (3):

T T
transformed_set transfornx total data (3)
wheretotal_data is the combined data set (merging data sets into onejransform is the
transformation matrix obtained by taking the non-redundant eigen vectargerion which can

be obtained by Equation (4):
criterion = inv(§,) x §, (4)

Unlike the class-dependent transform, class-independent transform has only one criterion and one
transformation matrix.

The between-class scatte, , and the within-class sc&jger, , in the above equations can be
found using Equation (5) and Equation (6).

S = Y (- x (-1 ©)
J

SHE ij X COV, (6)
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where M is the mean of the data getu, is the mean of the combined data seO\qnd is the

covariance of data s¢t . The covariarmy, can be found using Equation (7) and the mean  of
the combined data set can be found using Equation (8).

-
cov; = Z(Xj—llj)x(xj—llj) (7)
J
u= ijxuj (8)
J

where p; is the apriori probability of the clgss

3. PROCEDURES

Two data sets were created following the required specifications. The specifications are 1) both
data sets must have a general shape as given in Figure 1, 2) each set contains 100 2-D points, and
3) one set must have a mean of [-2, 2], and the other must have a mean of [2, -2].

Xmgr, a Unix graphing tool, was used to create the data sets following the general shape as given
in Figure 1. The data sets were readjusted so that their means met the specifications,

U, = [-2, 2] andp, = [2,-2] . The result is given in Figure 2.

Diata Sets and Data Points in Criginal Space
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Figure 2: Data sets and test vectors in original space.
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Both data sets were merged to create a combined data set. The mean of the combined data set, ,

was computed using Equation (8). No information was given for the apriori probability factors so
we assumed them to be 0.5.

The covariance of set 1 and that of set 2 were calculated using Equation (7).

Having the means and the covariances, the between-class scatter and the within-class scatter were
computed using Equation (5) and Equation (6).

For the class-dependent transform, the optimizing criterion for each class was calculated using
Equation (2) and for the class-independent transform, the overall optimizing criterion was calcu-
lated using Equation (4). Thus, for the class-dependent transform, wie had critgria for data sets
with each set representing a class.

Next, the eigen vectors and eigen values of the optimizing criteria were calculated. The non-
redundant eigen vectors formed the transformation matrix. To find the non-redundant eigen vec-
tors, we discarded the redundant eigen vectors were discarded using the rule: an eigen vector is
redundant if its corresponding eigen value in the diagonal matrix is zero.

The data sets and the test vectors were transformed using Equation (1) for class-dependent trans-
form and Equation (2) for class-independent transform.

The means of the transformed data sets were calculated, and the Euclidean distance between each
transformed test vectors and each of the means of the transformed data sets was calculated. The

shortest distanck among the distances classifies the test vector as belonging ko class . The
results are given in the next section.

4. RESULTS

The test vectors were first classified using Euclidean distance in original space, in transformed
space using class-independent and class-dependent transforms. The results are given in Table 2.

Figure 3, Figure 4, and Figure 5 show the decision regions of various classification approaches.

One can see that the class-independent transform is good with generalization but poor with dis-
crimination, and vice versa is true with class-dependent transform.
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Test Vectors

Original Space

Class-Ind. LD

A

Class-Dep. L

DA

a

set 2

set 2

setl

b

setl

setl

setl

c

setl

setl

setl

d

set 2

set 2

setl

Table 2: Classes of test vectors based on different types of classification approaches.

Decision Region for the Two-Class Problem in Original space
Cgertii
phiseti2nn

testveetons

Figure 3: Decision region in original space.
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Decision Region for the Two-Class Problem Using Class-Independent Trans.

Figure 4: Decision region in transformed space using class-independent transform.
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Decision Region for the Two-Class Problem Using Class-Dependent Trans.
5 R R R R R R R R R R L R

Figure 5: Decision region in transformed space using class-dependent transform.
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