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1. PROBLEM DESCRIPTION

In this project we are to implement a program that uses linear discriminant analysis techniq
identify which of the data sets, given in Figure 1 below, each of the test vectors belongs.

Each data set is to contain 100 2-D points. Both data sets have a mean approximately

, respectively. The test vectors are given in Table 1. Linear discriminant analysis is us
identify the class of the each of the test vectors. The results are compared to those obtaine
Euclidean distance method.

2. INTRODUCTION

Linear discriminant analysis is one of the numerous data classification techniques. This tech
maximizes the class separability by maximizing the ratio of the between-class variance
within-class variance or the ratio of the overall variance to the within-class variance. Choosin
former or the latter case rests on the type of transformation used. There are two types of tra

Test vectors Coordinates

a -1, -1

b 0, 0

c 0.5, 0.5

d 0.5, -0.5

Table 1: Test vectors.

u1 2– 2,[ ]=

u2 2 2–,[ ]=

set 1

set 2

2 2,–[ ]
2 2–,[ ]

Figure 1: General shape of the data sets.
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mation: class-dependent transformation and class-independent transformation.

The class-dependent transformation maximizes the separability of the classes by maximizi
ratio of the variance between the classes to the variance within the classes while the clas
pendent transformation maximizes the class separability by maximizing the ratio of the o
variance to the variance within the classes [1].

Class-dependent transformation is given by Equation (1):

(1)

where is the data set and is the transformation matrix obtained by taking

non-redundant eigen vectors of  which can be obtained by Equation (2):

(2)

For class-dependent transformation, there is one transformation matrix obtained from one
rion for each data set. Thus, for  data sets, we will have  criteria and  transformation ma

Class-independent transformation is given by Equation (3):

(3)

where is the combined data set (merging data sets into one) and i

transformation matrix obtained by taking the non-redundant eigen vectors of which
be obtained by Equation (4):

(4)

Unlike the class-dependent transform, class-independent transform has only one criterion a
transformation matrix.

The between-class scatter, , and the within-class scatter, , in the above equations

found using Equation (5) and Equation (6).

(5)

(6)

transformed_set_j transform_j
T

set_j×=

set_j j transform_j

criterion_j

criterion_j inv covj( ) Sb×=

j j j

transformed_set transform
T

total_data
T×=

total_data j transform

criterion

criterion inv Sw( ) Sb×=

Sb Sw

Sb µ j µ–( ) µ j µ–( )T×
j

∑=

Sw pj covj×
j

∑=
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where is the mean of the data set , is the mean of the combined data set, and

covariance of data set . The covariance can be found using Equation (7) and the mea

the combined data set can be found using Equation (8).

(7)

(8)

where  is the apriori probability of the class .

3.  PROCEDURES

Two data sets were created following the required specifications. The specifications are 1
data sets must have a general shape as given in Figure 1, 2) each set contains 100 2-D poi
3) one set must have a mean of [-2, 2], and the other must have a mean of [2, -2].

Xmgr, a Unix graphing tool, was used to create the data sets following the general shape as
in Figure 1. The data sets were readjusted so that their means met the specifica

 and . The result is given in Figure 2.

µ j j µ covj

j covj µ

covj xj µ j–( ) xj µ j–( )T×
j

∑=

µ pj µ×
j

j
∑=

pj j

µ1 2 2,–[ ]= µ2 2 2–,[ ]=

* test vectors

o set 1
+ set 2

u2 2.0022– 2.0028,[ ]=

u1 1.9991– 2.0050,[ ]=

Figure 2: Data sets and test vectors in original space.
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Both data sets were merged to create a combined data set. The mean of the combined data

was computed using Equation (8). No information was given for the apriori probability factor
we assumed them to be 0.5.

The covariance of set 1 and that of set 2 were calculated using Equation (7).

Having the means and the covariances, the between-class scatter and the within-class scat
computed using Equation (5) and Equation (6).

For the class-dependent transform, the optimizing criterion for each class was calculated
Equation (2) and for the class-independent transform, the overall optimizing criterion was c
lated using Equation (4). Thus, for the class-dependent transform, we had criteria for da
with each set representing a class.

Next, the eigen vectors and eigen values of the optimizing criteria were calculated. The
redundant eigen vectors formed the transformation matrix. To find the non-redundant eige
tors, we discarded the redundant eigen vectors were discarded using the rule: an eigen v
redundant if its corresponding eigen value in the diagonal matrix is zero.

The data sets and the test vectors were transformed using Equation (1) for class-dependen
form and Equation (2) for class-independent transform.

The means of the transformed data sets were calculated, and the Euclidean distance betwe
transformed test vectors and each of the means of the transformed data sets was calculat
shortest distance among the distances classifies the test vector as belonging to class
results are given in the next section.

4. RESULTS

The test vectors were first classified using Euclidean distance in original space, in transfo
space using class-independent and class-dependent transforms. The results are given in T

Figure 3, Figure 4, and Figure 5 show the decision regions of various classification approa
One can see that the class-independent transform is good with generalization but poor wi
crimination, and vice versa is true with class-dependent transform.

µ

j j

k j k
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Test Vectors Original Space Class-Ind. LDA Class-Dep. LDA

a set 2 set 2 set 1

b set 1 set 1 set 1

c set 1 set 1 set 1

d set 2 set 2 set 1

Table 2:  Classes of test vectors based on different types of classification approaches.

* test vectors

o set 1
+ set 2

Figure 3: Decision region in original space.
Le 5 of 7



* test vectors

o set 1
+ set 2

Figure 4: Decision region in transformed space using class-independent transform.
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Figure 5: Decision region in transformed space using class-dependent transform.
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