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1. INTRODUCTION

There are many possible techniques for classification of data. Principle Component Analysis
and Linear Discriminant Analysis (LDA) are two commonly used techniques for data classific
and dimensionality reduction. Linear Discriminant Analysis easily handles the case wher
within-class frequencies are unequal and their performances has been examined on ra
generated test data. This method maximizes the ratio of between-class variance to the withi
variance in any particular data set thereby guaranteeing maximal separability. The use of
Discriminant Analysis for data classification is applied to classification problem in spe
recognition.We decided to implement an algorithm for LDA in hopes of providing be
classification compared to Principle Components Analysis. The prime difference between LDA
PCA is that PCA does more of feature classification and LDA does data classification. In PCA
shape and location of the original data sets changes when transformed to a different space w
LDA doesn’t change the location but only tries to provide more class separability and dr
decision region between the given classes.This method also helps to better understa
distribution of the feature data.
Case I:
Figure 1. Figure showing data sets and test vectors for case I in original space
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2. Problem Description

The data sets, set1 and set2 were given in linear space each consisting of 100 points. The test
were also given which are to be classified belonging to either set1 or set2. The condition given
that each data set 1 should have a mean of (-2,2) and data set2 should have a mean of (2, -2)
objective is to transform the data sets into a new space and using the euclidean distance class
test vectors to one of the two sets. There are two ways of approaches in this technique: Class
dent method and Class independent method. Both approaches were applied to this problem.

Table 1:  Test vectors considered for the problem

3. Implementation and Results

This classification problem was solved using matlab package. The data sets were created usin
a graphical tool in Unix environment. The steps adopted to solve this problem are as follows:

1. Data set1 and set2 were created in such a way that the mean of set1 was (2,-2) and m

of set 2 was (-2,2). The data obtained from xmgr was adjusted in matlab code to get th

required mean. The four test vectors were defined and all these points were plotted in
graph which pictorially demonstrates three points belonging to both sets.

2. Compute the mean of each data set and mean of entire data set. Let and be the m

of set 1 and set 2 respectively and be mean of entire data, which is obtained by mergin

set 1 and set 2, is given by Equation 1.

(1)

where and are the apriori probabilities of the classes. In the case of this simple

class problem, the probability factor is assumed to be 0.5.

3. In LDA, within-class and between-class scatter are used to formulate criteria for clas
separability. Within-class scatter is the expected covariance of each of the classes. T
scatter measures are computed using Equations 2 and 3.

Data point Coordinates

x1 -1,-1

x2 0, 0

x3 0.5, 0.5

x4 0.5, -0.5

µ1

µ2

µ1 µ2

µ3

µ3 p1 µ1 p2 µ2×+×=

p1 p2



THEORY OF LDA PAGE 3 OF 13

and

mean

of
g this
nsform
is a
ss.
(2)

Therefore, for the two-class problem,

(3)

All the covariance matrices are symmetric. Let and be the covariance of set 1
set 2 respectively. Covariance matrix is computed using the following equation.

(4)

The between-class scatter is computed using the following equation.

(5)

Note that can be thought of as the covariance of data set whose members are the

vectors of each class. As defined earlier, the optimizing criterion in LDA is the ratio
between-class scatter to the within-class scatter. The solution obtained by maximizin
criterion defines the axes of the transformed space. However for the class-dependent tra
the optimizing criterion is computed using equation (6). It should be noted that if the LDA
class dependent type, forL-class separate optimizing criterion are required for each cla
The optimizing factors in case of class dependent type are computed as

(6)

For the class independent transform, the optimizing criterion is computed as

(7)

Cov
Optimizing

criterion

set 1

Sw pj covj( )×
j

∑=

Sw 0.5 cov1× 0.5 cov2×+=

cov1 cov2

covj x j µ j–( ) x j µ j–( )T
=

Sb µ j µ3–( ) µ j µ3–( )T×
j

∑=

Sb

L

criterionj inv covj( ) Sb×=

criterion inv Sw( ) Sb×=

Sb Sw

3.5271 2.1607

2.1607 2.8932

4.0001 4.00–

4.00– 4.0001

2.3284 0.9778

0.9778 2.2503

3.6519 3.651–

4.109– 4.109
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Table 2:  Covariance, between class scatter, within class scatter and optimizing criterion for class
dependent type

Table 3:  Covariance, between class scatter, within class scatter and optimizing criterion for class
independent type

4. By definition, an eigen vector of a transformation represents a 1-D invariant subspace of t
vector space in which the transformation is applied. A set of these eigen vectors who
corresponding eigen values are non-zero are all linearly independent and are invariant un
the transformation. Thus any vector space can be represented in terms of line
combinations of the eigen vectors. A linear dependency between features is indicated by
zero eigen value. To obtain a non-redundant set of features all eigen vectors correspond
to non-zero eigen values only are considered and the ones corresponding to zero eig
values are neglected. In the case of LDA, the transformations are found as the eigen vec
matrix of the different criteria defined in Equations 6 and 7.

set 2

Cov
Optimizing

criterion

set 1

set 2

Eigen values Eigen vectors

set 1

Cov
Optimizing

criterion
Sb Sw

1.1298 0.250–

0.250– 1.6074

4.0001 4.00–

4.00– 4.0001

2.3284 0.9778

0.9778 2.2503

3.1621 3.162–

2.0851– 2.085

Sb Sw

3.5271 2.1607

2.1607 2.8932

4.000 4.00–

4.00– 4.000

2.3284 0.9778

0.9778 2.2503

3.0145 3.01–

3.08– 3.0874

1.1298 0.205–

0.205– 1.6074

4.000 4.00–

4.00– 4.000

2.3284 0.9778

0.9778 2.2503

3.0145 3.01–

3.01– 3.0874

0 0

0 6.1020

0.7071– 0.6986

0.7071– 0.7155–
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Figure 2. Figure for eigen vector direction in class dependent type
Figure 3. Figure for eigen vector direction in class independent type
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Figure 4. Data sets in original space and transformed space along with the transformation axis for
class dependent LDA of a 2-class problem
Figure 5. Data sets in original space and transformed space along with the transformation axis for
class independent LDA of a 2-class problem
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Table 4:  Eigen values and eigen vectors of data sets for class dependent type

Table 5:  Eigen values and eigen vectors of data sets for class independent type

6. For anyL-class problem we would always haveL-1 non-zero eigen values. This is
attributed to the constraints on the mean vectors of the classes in Equation 1. The eig
vectors corresponding to non-zero eigen values for the definition of the transformation

For our 2-class example, Figures 2 and 3 show the direction of the significant eige
vector along which there is maximum discrimination information. Having obtained the
transformation matrices, we transform the data sets using the single LDA transform o
the class specific transforms which ever the case may be. From the figures it can
observed that, transforming the entire data set to one axis provides definite boundaries
classify the data. The decision region in the transformed space is a solid line separati
the transformed data sets thus,

For the class dependent LDA,

(8)

For the class independent LDA,

(9)

Similarly the test vectors are transformed and are classified using the euclidean dista
the test vectors from each class mean.

set 2

Eigen values Eigen vectors

set 1

set 2

Eigen values Eigen vectors

5.2472 0

0 0.0

0.8348 0.7071

0.5505– 0.7071

0 0

0 6.1020

0.7071– 0.6986

0.7071– 0.7155–

0 0

0 6.1020

0.7071– 0.6986

0.7071– 0.7155–

transformed_set_j transform_j
T

set_j×=

transformed_set transform_spec
T

data_set
T×=
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The two Figures 4 and 5 clearly illustrate the theory of Linear Discriminant Analysis app
to a 2-class problem. The original data sets are shown and the same data set
transformation are also illustrated. It is quite clear from these figures that transform
provides a boundary for proper classification. In this example the classes were pro
defined but cases where there is overlap between classes, obtaining a decision re
original space will be very difficult and in such cases transformation proves to be
essential. Transformation along largest eigen vector axis is the best transformation.

7. Once the transformations are completed using the LDA transforms, Euclidean distan
or RMS distance is used to classify data points. Euclidean distance is computed usi

Equation 10 where is the mean of the transformed data set, is the class inde

and is the test vector. Thus for classes, euclidean distances are obtained for ea
test point.

(10)

Table 6: Euclidean distance of test vectors from data sets in transformed space for class
dependent type

Table 7:  Euclidean distance of test vectors from data sets in transformed space for class
independent type

set 1 set 2 classification

x1 2.8452 2.8113 set 2

x2 2.8283 2.8282 set 2

x3 2.8198 2.8367 set 1

x4 3.5353 2.1212 set 2

set 1 set 2 classification

x1 2.8452 2.8113 set 2

x2 2.8283 2.8282 set 2

x3 2.8198 2.8367 set 1

x4 3.5353 2.1212 set 2

µntrans n

x n n

dist_n transform_n_spec( )T
x× µntrans–=
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8. The smallest Euclidean distance among the distances classifies the test vector

belonging to class .

Case II:

Parallel ellipses: Class dependent and class independent LDA approaches are applie
different type of data which are parallel ellipses as shown in figure 6. The variances of both
sets are just the same. LDA fails to provide a proper classification for this type of data. The
reasons are that both data sets have same mean, same variance and are parallel to ea
Figure 7 and 8 clearly show that LDA fails to obtain a definite decision region separating
data sets in original space hence becomes further complex to draw a line in transformed sp

n
n
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Figure 6. Figure showing data sets and test vectors for case II in original space
Figure 7. Data sets for case II in original space and transformed space along with the transforma-
tion axis for class dependent LDA
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Case III:

Overlapping sets: The third case for this problem are overlapping sets, each stretching at an angle
of to the axes as shown in figure 8. Both sets are perpendicular to each other. Both class
specific LDA and class independent LDA are applied to both data sets to find the decision regions.
One of the problem encountered in this case is that there exist some data points which are common
to both sets and would not help in obtaining a perfect decision region. Figure 9 and 10 shows plots
of the two data sets in the original space and data sets in the transformed space along with the
decision regions using class specific LDA and class independent LDA. The class specific LDA
does a better job compared to class independent type because the data sets are transformed
separately into the transformed space which enables to obtain different separate decision regions
for each half of the data sets.

45°

Figure 8. Data sets for case II in original space and transformed space along with the transforma-
tion axis for class independent LDA
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Figure 9. Figure showing data sets and test vectors for case III in original space
Figure 10. Data sets for case III in original space and transformed space along with the transfor-
mation axis for class dependent LDA
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Figure 11. Data sets for case III in original space and transformed space along with the transfor-
mation axis for class independent LDA
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4. CONCLUSIONS

We have presented the theory and implementation of LDA as a classification technique
approaches to LDA, namely, class independent and class dependent, have been impleme
the given problem. The choice of the type of LDA depends on the data set and the goals
classification problem. If generalization is of importance, the class independent transforma
preferred. However, if good discrimination is what is aimed for, the class dependent type s
be the first choice.

5. SOFTWARE

All Matlab code written for this project is available for public from our website
www.isip.msstate.edu

6. REFERENCES
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