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1. INTRODUCTION

One method to determine which class a test point belongs to is to find the Euclidean dis
between a test point and each of the classes and assign a test point to the class that has t
mum distance. A Euclidean distance is used because it is simple. However, a Euclidean d
does not give meaningful results with data that is not orthonormal data. Instead a linear tra
mation is used to transform the data so that a Euclidean distance can be used. In this pro
Euclidean distance in the original space and that in a transformed space using principal c
nent analysis are compared.

2. PROBLEM DESCRIPTION

Given four test points (see Table 1), determine which data set each of the test points belong
two data sets should have shapes similar to the ones shown in Figure 1. Each data set conta
points and should have the mean centered around (-2, 2) and (2, -2). Use principal comp
analysis and Euclidean distance to classify the data points in transformed spaces and comp
classification results with the results obtained from original space.

Figure 1: General shape of the data sets.

Data point Coordinates

a -1,-1

b 0, 0

c 0.5, 0.5

d 0.5, -0.5

Table 1: Data points to be classified.

u1 2– 2,[ ]=

u2 2 2–,[ ]=

set 1

set 2
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3. IMPLEMENTATION AND RESULTS

First, the data sets were generated using xmgr, a Unix graphing tool. Data points were gen
by using the point-click mouse operation to get the general shapes as indicated in Figure 1.
script was used to adjust the means of the two data sets to have the required means. The r
data sets are given in Figure 2. The test points to be classified are also shown in Figure 2.

Figure 2: Generated data sets and given data points to be classified.

Next, the Euclidean distance between each of the data points and each of the means of t
sets was calculated using Equation (1). The minimum distance determines which data set th
points belong. The results are summarized in Table 2. The decision regions are given in Fig

(1)

x Distance(x-u1) Distance(x-u2) Class

-1,-1 3.1667 3.1667 set 2

0, 0 2.8313 2.8320 set 1

0.5, 0.5 2.9173 2.9190 set 1

0.5, -0.5 3.5384 2.1249 set 2

Table 2: Classification of the test points using minimum distance criterion.

u2 2.0022– 2.0028,[ ]=

u1 1.9991– 2.0050,[ ]=

set 1

set 2

* data points

o set 1
+ set 2

xy x1 y1–( )2
x2 y2–( )2

+=
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Figure 3: Decision regions in original space.

The Euclidean distance gives the physical notion of distance. However, it works only on orth
mal data [1]. Sometimes the data is not orthonormal. By using the Euclidean distance on
data, we will not obtain meaningful results. A linear operation must be applied to transform
data to orthonormal space so that Euclidean distance can give meaningful results. The trans
tion is given by Equation (2).

(2)

where is the transformed data, is the transformation matrix, and is the original data.
be calculated using Equation (3).

(3)

where is the transformation matrix, is the matrix of eigenvalues, and is the transpo
the eigenvectors.

Returning to our classification problem we can see that the Euclidean distance in the or
space can not differentiate which data set the test points belong. We do not know if Eucl
distance is a good measure or if the data sets are not orthnormal. To determine this we

formed the data sets. The , , and for the two data sets are given in Table 3. Each

u2 2.0022– 2.0028,[ ]=

u1 1.9991– 2.0050,[ ]=

set 1

set 2

* data points

o set 1
+ set 2
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data sets was transformed using the corresponding transformation matrix . The transforme
sets are given in Figure 4 and Figure 5 for data set 1 and data set 2 respectively.

Figure 4: Data set 1 and test points in transformed space 1.

Data set Cov

set 1

set 2

Table 3: Eigenvalues, eigenvectors, and transformation matrices for the two data sets.

y Distance(y-u1) Distance(y-u2) Class

-1,-1 3.4877 2.6175 set 2

0, 0 3.2350 1.8465 set 2

0.5, 0.5  3.1572 2.0311 set 2

0.5, -0.5 4.0428 1.3854 set 2

Table 4: Classification of the test points that have been transformed.

T

Λ ΦT T

3.2637 1.8923

1.8923 2.1805

0.4617 0

0 1.1517

0.7985– 0.6020–

0.6020 0.7985–

0.3687– 0.2780–

0.6934 0.9197–

1.4500 0.8691–

0.8691– 1.5204

1.2748 0

0 0.6516

0.7213 0.6926

0.6926– 0.7213

0.9195 0.8830

0.4514– 0.4700

* data points using t1

o set 1

u1 0.0726 1.8450–,[ ]=

set 1
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Figure 5: Data set 2 and test points in transformed space 2.

Having transformed the data sets and the test points, the Euclidean distances were reco
and the test points were reassigned according to the new distance. The results are summa
Table 4. The decision regions are given in Figure 6. The covariance matrices of the transfo
data sets were found to be identity matrices as expected and are shown in Table 5.

Next, the original data sets were readjusted so that their means are centered around the orig
readjusted data sets were transformed using the transformation matrices obtained above. T
is expressed in Equation (4). The results of the transformation of the readjusted data are g
Figure 7. Transformed data points are also shown in Figure 7.

(4)

Transformed data set Cov

set 1

set 2

Table 5: Covariance matrices of the transformed data sets.

+ set 2

data points using t2

u2 0.1797 3.2300–,[ ]=

set 2

1.0000 0.0000

0.0000 1.0000

1.0000 0.0000

0.0000 1.0000

Y T X u–( )=
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Figure 6: Decision regions in transformed space.

Figure 7: Shifted and transformed data sets.

The main point we can conclude from the results that we have obtained is that principal co
nent analysis takes the variance of the data into account in classification while straight Euc

* data points

o set 1
+ set 2

u1 1.9991– 2.0050,[ ]=

set 2

set 1

u2 2.0022– 2.0028,[ ]=

o set 1
+ set 2
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