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Figure 1. The meaing of life is depicted here, and
explained in a full sentence.

Table 1. This table is really important, so we
spend a lot of time explaining it.

Date Time Value

3 4 7

6 6 6

5 5 5
ABSTRACT

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

1. INTRODUCTION

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon. The primary problem seems t
stem from poor acoustic-level matching as
result of a high degree of variabil ity in
pronunciations. Three common approaches
overcome this problem are (1) prediction o
common al ternate pronunciat ions an
incorporation of these as additional paths
the acoustic models, (2) use of acoustic un
that specifically model multi-word phrases
and (3) reestimation of the acoustic models
such a way that the models automatically lea
such alternate pronunciations.

A real ly cool equat ion, that expla ins
everything in life, is as follows:

(1)

A second equation, that is equally profound
is:

(2)

I think we need a figure here to explain wh
this equation is the bomb. See Figure 1, whic
explains the meaning of l ife in a block
diagram.

The first approach suffers from relate
problems of intelligent integration of languag
model and acoustic model scores. The la
approach, which is featured in this whit
paper, requires robust training algorithms th
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1.1. My First Sub-Heading

I think it is about time to introduce a simple
table. In Table X, we see how a table shou
look. Recent progress on conversation
speech recognition has been painstaking
s low, and has resul ted in measurab
reductions in word error rate primarily
through intricate pronunciation modeling an
hand-tailoring of the lexicon.

1.2. My Second Sub-heading

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

1.3. My Third Sub-Heading

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
G MAY 9, 1998
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the lexicon.

1.4.1. A Really Deep Theory

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

2. DECISION TREES

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

3. APPLICATIONS IN LVCSR

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

4. EXPERIMENTAL SUPPORT

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.

5. SUMMARY

Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.
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Recent progress on conversational spee
recognition has been painstakingly slow, an
has resulted in measurable reductions in wo
error rate pr imar i ly through int r icate
pronunciation modeling and hand-tailoring o
the lexicon.
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