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ABSTRACT

In typical state-of-the-art large vocabular
continuous speech recognition (LVCSR
systems a single model is developed for a
speakers. With this, we expect that ou
systems will generalize well to all speaker
However, from experience we know that ther
are speakers who are poorly modeled usi
this paradigm. Thus, it would be advantageo
to adapt the models, during run-time, to th
new speaker. Following this premise, man
methods have been developed which use
small amount of a speaker’s data to adapt t
speaker-independent models to that speake

In this paper we describe one method whic
uses a max imum l ike l ihood l inea
regression (MLLR) approach to speake
adaptation. MLLR builds a transform for the
model means using linear regression so th
the transformed mean of each model bett
represents the new speaker. Applying th
approach to all of the models in an LVCSR
system (particularly when using mixture
models) would require an unreasonab
number of additional parameters and a larg
amount of training data for full coverage. To
attack this problem a small number o
transforms are built and tying is used. MLLR
has become a standard addition to bas
LVCSR systems and has proven successful
every major speaker-independent spee
recognition task to which it has been applied

1. INTRODUCTION

Commercially available dictation system
have recently hit the speech products mark
These have, for the most part received ra
reviews from users. Most of these system
claim to work well out of the box but perform
better as the user performs more dictation wi
it. This indicates that the systems used in the
applications are somehow adjusting to th
speaker — also that the speaker is adjusting
the subtleties of getting the application t
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work. It is this phenomena that we will discus
in this paper.

Speaker-independent recognition system
have been developed to the point that the
perform very well for LVCSR in the genera
case. However, speaker-independent system
in genera l , are known to have poore
per fo rmance than sys tems wi th
speaker-dependent models [1, 2]. The ma
reason for this is that speaker-independe
systems are discarding the knowledge that t
same speaker is, in fact, speaking eve
utterance. In doing so, the system is negati
the ability of the models to describe th
peculiarities of each specific speaker (voc
tract shape and length, accent, etc.) in favor
a general model of any speaker.

On the other hand, there is a very larg
prob lem wi th deve lop ing such a
speaker-dependent system: doing so wou
require a large amount of training data from
every speaker involved which is impractica
for most applications. There are vast amoun
of t ra in ing da ta ava i lab le fo r
speaker- independent tasks such
SWITCHBOARD [3]. This provides clear
motivation for techniques which would allow
us to adapt the speaker-independent models
a new speaker using a small amount o
adaptation data. From this need, there ha
been many attempts to develop robust spea
adaptation techniques.

2. SPEAKER ADAPTATION

The basic idea of speaker adaptation can
seen in Figure 1. Essentially, we want to use
a small amount of adaptation data as possib
to change our recognition system such th
they model as much of the speaker-specif
information as possible [4]. Many approache
have been developed which try to produce th
effect.

Speaker adap ta t ion techn iques fo
HMM-based recognition systems fall into two
G JULY 26, 1998
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Speaker-Dependent
Recognition Models

Speaker Adaptation

Common Vector Space

Reference New Speaker
basic categories. The first of these emplo
methods which transform the input speech
the new speaker to the match th
characteristics of the training speech. The
are known asspectral mapping techniques.
Second are methods which transform th
model parameters to bet ter match th
characteristics of the adaptation data. The
techniques are known asmodel mapping
approaches. The following sections describe
each of these, in brief.

2.1. Spectral Mapping Approach

The spectral mapping approach is based on
belief that a recognition system can b
improved by matching the new speaker
features vectors to the vectors of the trainin
data [5]. The mapping is designed so that th
difference between the reference vector a
the mapped vector is minimized. Thes
differences are due to the spectral differenc
of the speakers’ speech production systems

Initial attempts at spectral mapping adaptatio
were used in the spectral template matchin
systems [6, 7, 8]. These consider the templa
to be from the reference speaker an
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERIN
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automatically generate a transformation t
minimize the difference between the new
speaker and the reference speaker [5]. Oth
approaches [9] have mapped both th
reference data and the new speaker’s data i
a common vector which is said to maximall
correlate the two. A variation on thes
methods wh ich is s im i la r to speake
normalization used a transform to map eac
speaker in the speaker-independent traini
set onto a reference speaker [10, 11]. Thus, t
models generated act as speaker-depend
models. This approach is i l lustrated in
Figure 2.
Figure 1. A high-level representation of the speaker adaptation process using HMMs. The speaker adap-
tation process uses the adaptation data to affect the modeling process such that the models are a closer
match to the adaptation data. In the adaptation depicted, both the mean and variance of the data is affected
by the transform.
n
g
e

Figure 2. Spectral Mapping approach where both
the reference and new speaker feature vectors are
mapped to a common space which maximizes the
correlation between the two.
G JULY 26, 1998
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2.2. Model Mapping Approach

The aim of spectral mapping is to improve th
match between the reference speaker and n
speaker. This goal does not explicitly try t
increase the accuracy of the models for th
new speaker. This is where the model mappi
approach attempts to make its improvemen
Rather than trying to map all speakers to on
space, the model mapping approach adju
the model parameters to best represent the n
speaker.

Bayesian MAP (maximum a posteriori
approaches are the most commonly us
techniques for model adaptation of HMMs. I
a MAP approach, the transformation is chose
such that the new model parameters chos
maximize

(1)

where is the adaptation observatio
sequence and is the parameter set defini
the distribution. Different methods have bee
used to estimate the value of including
segmental K-means approach [12] and a
EM-based approach [13]. Most of these MA
approaches are limited in that they only ada

F λ O( )
F O λ( )F λ( )

F O( )
-------------------------------=

O
λ

λ
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the parameters that are directly observed in t
adaptation data.

3. MLLR

Maximum likel ihood l inear regression
(MLLR) — (deve loped by
Leggetter [1, 5, 14]) was designed to
overcome the disadvantages of both th
spectra l mapping and model mappin
techniques. MLLR is a transform-base
method which adapts the model paramete
like the MAP-based adaptation but is robu
enough to produce effects from a sma
amount of training data. This approach wa
developed from work by Hewitt [15] which
applied a least squares regression to ada
templates in dynamic time warping. MLLR
extends this idea to the continuous densi
HMMs and uses ML to op t im ize the
regression.

3.1. MLLR Basics

Ideally, all parameters of the system should b
adapted to the new speaker but, in practic
this would require too much adaptation data
accurately estimate the adapted models. F
this reason, MLLR only adapts the means o
the models. This is also justified by the
assumption that the primary differenc
between speakers is in the average forma
pos i t ions fo r phones ra ther than th
distribution of the intra-speaker variation [14]
This is the same reasoning given in man
VQ/HMM adaptation schemes [16, 17].

MLLR uses a set of regression-base
transforms to adapt all of the HMM means t
the new speaker. The number of transforms
this set can be as small as one — a glob
transform where all means are adapted by t
same regression — or large enough so th
each HMM mean had a unique regressio
transform. An example of the effects o
MLLR is shown in Figure 3. A method
analogous to state-tying is used to find th
Figure 3. Representation of MLLR as it trans-
forms the means of the mixtures. Notice that the
shapes of the mixtures remains the same. Also
note that the two distributions in Regression
Class 1 are transformed by the same matrix.
G JULY 26, 1998
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optimal number of regression classes given t
adaptation data [5].

For a HMM mixture component with mean
, the adapted mean is given by

(2)

where is an transformation
matrix and is the extended mean vector f
mixture component  given by

. (3)

is an offset term that may represent whe
the feature vectors differ from the mean vect
by an additive term such as in a differen
recording environment [4] . With th is
transformation, the mixture density functio
becomes

. (4)

3.2. MLLR Derivation

The der iva t ion o f MLLR produces a
maximum likelihood estimate of all
transformation matrices to maximize th
likelihood of the adaptation data given th
adapted models. Rather than replicate t
lengthy derivation here, we point the reader
[14, 4] which give the extensive details of th
derivation.

One point to note from the derivation is tha
in the MLLR f ramework , find ing a
closed-form solution to the transformatio
matrices is not possible. Thus, the MLLR
approach wil l only work with diagonal
covariance matrices. Also, the computation
cost of the method given is very high but ca
be reduced if the transformation matrix i
restricted to a diagonal form. Ignoring th
offsets, all matrices can be reduced to diagon

s
µs

µ̂s Wsξs=

Ws n n 1+( )×
ξs

s

ξ w µs1 … µsn, , ,[ ]′=

w

bj O( ) 1

2π( )
n
2
---

Σ
1
2
---

------------------------e
1
2
--- o Wsµs–( )′Σs

1– o Wsµs–( )–
=

Ws
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making matrix inversion trivial.

4. SUMMARY

MLLR is one of many transform-based
methods used for speaker adaptation. MLL
has the distinction of being the researc
industry standard method. MLLR has bee
shown to be an effective method for speak
adaptation on every task to which it has bee
app l ied inc lud ing SWITCHBOARD,
Broadcast News, and smaller vocabulary tas
so there it is easy to understand the reason
has become a default setting in most resear
recognition systems. The drawback is that th
computations required to build a robust set
adaptation transformations eliminates it
usefulness for consumer-level applications.
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