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ABSTRACT work. It is this phenomena that we will discuss
in this paper.
In typical state-of-the-art large vocabulary
continuous speech recognition (LVCSR)
systems a single model is developed for all
speakers. With this, we expect that our
systems will generalize well to all speakers.
However, from experience we know that there
are speakers who are poorly modeled using
this paradigm. Thus, it would be advantageous
to adapt the models, during run-time, to the
new speaker. Following this premise, many
methods have been developed which use ¢
small amount of a speaker’s data to adapt the
speaker-independent models to that speaker.

Speaker-independent recognition systems
have been developed to the point that they
perform very well for LVCSR in the general
case. However, speaker-independent systems,
in general, are known to have poorer
performance than systems with
speaker-dependent models [1, 2]. The main
reason for this is that speaker-independent
systems are discarding the knowledge that the
same speaker is, in fact, speaking every
utterance. In doing so, the system is negating
the ability of the models to describe the
peculiarities of each specific speaker (vocal
In this paper we describe one method whichtract shape and length, accent, etc.) in favor of
uses a maximum likelihood linear a general model of any speaker.

regression (MLLR) approach to speaker
adaptation. MLLR builds a transform for the
model means using linear regression so tha
the transformed mean of each model better
represents the new speaker. Applying this
approach to all of the models in an LVCSR

syséerln (partllcdularly_when using mlxtutr)? of training data available for
models) would require an unreasona espeaker-independent tasks such as

number of ad_di_tional parameters and a largeSWITCHBOARD [3]. This provides clear
amount of_tralnlng data for full coverage. To motivation for techniques which would allow
attack this proplem a ;mqll number of us to adapt the speaker-independent models to
e o 0 e MLLR  new speaker using a smal amoun of
adaptation data. From this need, there have

LVCSR syfstems and ha; proven successful "heen many attempts to develop robust speaker
every major speaker-independent Speecradaptation techniques

recognition task to which it has been applied.

On the other hand, there is a very large
problem with developing such a
speaker-dependent system: doing so would
require a large amount of training data from
every speaker involved which is impractical
for most applications. There are vast amounts

1 INTRODUCTION 2. SPEAKER ADAPTATION

The basic idea of speaker adaptation can be
seen in Figure 1. Essentially, we want to use a
a small amount of adaptation data as possible
to change our recognition system such that
they model as much of the speaker-specific

information as possible [4]. Many approaches

have been developed which try to produce this
effect.

Commercially available dictation systems
have recently hit the speech products market.
These have, for the most part received rave
reviews from users. Most of these systems
claim to work well out of the box but perform

better as the user performs more dictation with
it. This indicates that the systems used in these
applications are somehow adjusting to the
speaker — also that the speaker is adjusting ttSpeaker adaptation techniques for
the subtleties of getting the application to HMM-based recognition systems fall into two
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Figure 1. A high-level representation of the speaker adaptation process using HMMs. The speaker adap-
tation process uses the adaptation data to affect the modeling process such that the models are a closer
match to the adaptation data. In the adaptation depicted, both the mean and variance of the data is affected
by the transform.

basic categories. The first of these employsautomatically generate a transformation to
methods which transform the input speech ofminimize the difference between the new
the new speaker to the match the speaker and the reference speaker [5]. Other
characteristics of the training speech. Theseapproaches [9] have mapped both the
are known aspectral mapping techniques  reference data and the new speaker’s data into
Second are methods which transform thea common vector which is said to maximally
model parameters to better match thecorrelate the two. A variation on these
characteristics of the adaptation data. Thesemethods which is similar to speaker
techniques are known asodel mapping normalization used a transform to map each
approaches The following sections describe speaker in the speaker-independent training

each of these, in brief. set onto a reference speaker [10, 11]. Thus, the
. models generated act as speaker-dependent
2.1. Spectral Mapping Approach models. This approach is illustrated in
Figure 2.

The spectral mapping approach is based on the
belief that a recognition system can be
improved by matching the new speaker’s
features vectors to the vectors of the training Common Vector Space

data [5]. The mapping is designed so that the
difference between the reference vector and /\O
the mapped vector is minimized. These
differences are due to the spectral differences \

of the speakers’ speech production systems.

Reference New Speaker

Initial attempts at spectral mapping adaptation
were used in the spectral template matchingFigure 2. Spectral Mapping approach where both
systems [6, 7, 8]. These consider the templatethe reference and new speaker feature vectors are

to be from the reference speaker and mapped_ to a common space which maximizes the
correlation between the two.
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2.2. Model Mapping Approach the parameters that are directly observed in the

adaptation data.
The aim of spectral mapping is to improve the

match between the reference speaker and ne\3. MLLR

speaker. This goal does not explicitly try to

increase the accuracy of the models for themMaximum likelihood linear regression
new speaker. This is where the model mapping(MLLR) — (developed by
approach attempts to make its improvements| eggetter [1, 5, 14]) was designed to
Rather than trying to map all speakers to onegvercome the disadvantages of both the
space, the model mapping approach adjustispectral mapping and model mapping
the model parameters to best represent the neitechniques. MLLR is a transform-based
speaker. method which adapts the model parameters
Bayesian MAP (maximum a posteriori) like the MAP-based adaptation but is robust
approaches are the most commonly usecénough to produce effects from a small
techniques for model adaptation of HMMs. [n @mount of training data. This approach was
a MAP approach, the transformation is chosend€veloped from work by Hewitt [15] which
such that the new model parameters chose/@Pplied a least squares regression to adapt

templates in dynamic time warping. MLLR

maximize
extends this idea to the continuous density
F(A|O) = m HMMs and uses ML to optimize the
F(O) regression.

where O is the adaptation observation
sequence andl is the parameter set defining

the distributﬁon. Different methods_ have _been Ideally, all parameters of the system should be
used to estimate the value af including a adapted to the new speaker but, in practice,

segmental K-means approach [12] and angs would require too much adaptation data to
EM-based approach [13]. Most of these MAP gccyrately estimate the adapted models. For

approaches are limited in that they only adapt;p;g reason, MLLR only adapts the means of
the models. This is also justified by the
assumption that the primary difference

3.1. MLLR Basics

Regression Class 2

)

L L = 4

........

between speakers is in the average formant
positions for phones rather than the
distribution of the intra-speaker variation [14].
This is the same reasoning given in many
VQ/HMM adaptation schemes [16, 17].

/V% MLLR uses a set of regression-based
O ' @ transforms to adapt all of the HMM means to
: the new speaker. The number of transforms in
g Regression Class 1 this set can be as small as one — a global
transform where all means are adapted by the
same regression — or large enough so that
Figure 3. Representation of MLLR as it trans- each HMM mean had a unique regression
forms the means_of the mixtu_res. Notice that the transform. An example of the effects of

shapes of the mixtures remains the same. Also MLLR is shown in Figure 3. A method

note that the two distributions in Regression . . .
Class 1 are transformed by the same matrix. analogous to state-tying is used to find the
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optimal number of regression classes given themaking matrix inversion trivial.
adaptation data [5].

For a HMM mixture componens  with mean 4. SUMMARY

th o |
Hs. the adapted mean s given by MLLR is one of many transform-based

Hg = W&, (20  methods used for speaker adaptation. MLLR
_ _ has the distinction of being the research
whereW, is annx (n+1) transformation jnqustry standard method. MLLR has been
matrix andg is the extended mean vector for shown to be an effective method for speaker
mixture componens  given by adaptation on every task to which it has been
E = [W, Hgg, oy Hg ' 3) applied including SWITCHBOARD,
Broadcast News, and smaller vocabulary tasks
w is an offset term that may represent whenso there it is easy to understand the reason it
the feature vectors differ from the mean vector has become a default setting in most research
by an additive term such as in a different recognition systems. The drawback is that the
recording environment [4]. With this computations required to build a robust set of
transformation, the mixture density function adaptation transformations eliminates its
becomes usefulness for consumer-level applications.
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