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ABSTRACT also been interest in front ends based on
known properties of the human auditory
This paper explains the basic concepts of system. Some of these front ends are linear but
using Mel-cepstrum,delta and delta-delta with parameters that correspond to auditory
features and the algorithm that uses cepstrumproperties (e.g., filter bank bandwidths
of the speech signal for speech recognition. increasing with frequency). Most of the
auditory-based front ends, however, are
nonlinear since this is believed to be the case
for many physiological and/or perceptual
processes in the auditory system. Feature
selection is generally considered a process of
mapping the original measurements into more
effective features. If the mapping is linear, the
mapping function is well defined and our task
is simply to find the coefficients so as to
optimize based on a criterion. If a proper
criterion for evaluating the effectiveness of
features is obtained. techniques of linear
algebra can be used for simple criteria and
Delta features are a measure of rate of changeterative techniques to determine the mapping

Mel scale is a better approximation of
mapping perceived frequency to a linear scale.
Mel-cepstral coefficients corresponding to
short term correlation in speech signal are
significant is obtaining a better model for the
speech data. The mapping factor between the
real frequency scale and the perceived Mel
frequency scale is an important parameter
which finds a significant use in speech
recognition. A comparison of Mel-cepstral

and LP derived cepstral coefficients, based on
the efficiency will also be discussed.

of a feature and useful in establishing a coefficients in case of complex criterion. In
significant model between two frames of many applications of pattern recognition,
features. Delta-delta features are the second important features are not linear functions of
order derivative or the measure of rate of the original measurements but are highly

change of delta features. These features are nonlinear functions. The basic problem is to

very useful in speech recognition since they  find a nonlinear mapping function for the

represent the dynamics of speech signals.  given data.The selection of features becomes
domain dependent in speech research. We

1. INTRODUCTION discuss in detail the theory behind various

. ) o features commonly used for pattern
All speech recognizers include an initial signal recognition.

processing front end that converts a noisy

and/or degraded speech waveform into2. DESCRIPTION OF FEATURES

features useful for further processing. The

front end is required to extract important 2.1, Mel Cepstrum

features from the speech waveform that are

relatively insensitive to talker and channel Spectrum is the representation of the signal
variability unrelated to speech messagewith which we can assess the “separation” of
content. This first stage also reduces the date¢he component parts and perhaps derive
rate into larger stages of the speech recognizeneeded information about the components and
and attempts to decrease redundancy inhereralso, the representation of the component
in the speech waveform. The vast majority of signals are combined linearly in the spectrum.
front ends are based on standard signaThe shape of spectrum provides the maximum
processing techniques, such as filter banksinformation present in speech signal.
linear predictive coding (LPC), or Information like high frequency (high or low),
homomorphic analysis (cepstra). There hasresonance, noise information can be obtained
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using spectrum|[10]. On the other hand, the
“cepstrum” represents a transformation on the
speech signal with two important properties:

1. Representatives of component signals ar 3000
separatedn the cepstrum.

2. Representatives of component signals ars
linearly combinedn the cepstrum.

O
The cepstrum provides the needed informatio®
to assess the properties of the componer 2000
signals. The cepstrum derived from
homomorphic processing (cepstral analysi
within a general class of methods) is usually

called the complex cepstrum and real part o
complex cepstrum within a scale factor is
called the real cepstrum.At a certain time in
speech research the cepstrum features began
supplant the direct use of the LP parameters &
the important feature obtained from hidden
Markov modelling strategy because of two
convenient enhancements that were found t
improve recognition rates. First, is the ability

to easily smooth the LP based spectrum using,

Speech

window

v

DFT

Cepstrum
Figure 1. Block diagram demonstrating process of
obtaining cepstrum features from a speech signal

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

PAGE 2 OF 11
)
&)
<
1000
|
20 40 100 200 400 1000 10000

Frequency (Hz)

Figure 2. Mel scale illustrating the linear relation-
ship between the real frequency scale (Hz) and the
perceived frequency scale(Mels)

the liftering and weighting process. Liftering
is a useful process with the real cepstrum for
obtaining an estimate of the log spectrum of
either of the separated components of the
cepstrum. Weighting is a procedure wherein
the euclidean distance between cepstral
coefficients for which each term of the sum is
multiplied by a predetermined weighting
coefficientw, . However when constant
weighting is used this reduces to the standard
cepstral distance. Triangular weighted cepstral
distances comprise the subclass of weighted
cepstral distance measures for which the
weighting factor increases linearly with the
index (k). Speaker dependent and speaker
independent recognition experiments have
shown that for triangular weighted cepstral
distance measures recognition performance is
best when the number of cepstral difference
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terms are approximately equal to the order othe previous filter. Each filter’'s magnitude
all-pole model.This process removes thefrequency response has a triangular shape that
inherent variability of the LP based spectrumis equal to unity at the center frequency and
due to the excitation and improves recognitiorlinearly decreasing to zero at the center
performance. The other method offrequencies of the two adjacent filters. Each
improvement over direct use of the LP vector of log energies is then processed by an
parameters is the use of so-called “Mel-baseinverse cosine transform creating a vector of
cepstrum”. A Mel is a unit of measure of mel filter bank cepstral coefficients. The
perceived pitch of frequency of a tone. It doescepstral coefficients are then used as input
not correspond linearly to the physicalfeatures to the speech recognizer. On a
frequency of the tone, as the human auditonSPARCStation 2 workstation, the MFB
system apparently does not perceive pitch ircepstral front end operates in roughly one third
this linear manner. The precise meaning of theaeal-time at a data rate of 100 frames/sec.

Mel scale becomes clear by examining the
experiment by which it is derived. With several
experiments in speech research it was
concluded that a linear relationship exists
between the real frequency scale (Hz) and the

Signal

perceived frequency scale(Mels). The graph Fourier

demonstrating the linear relationship between Transform

these parameters is shown in the figure 2. The

equation illustrating the relationship between engrgy
the frequency scale and perceived frequency * delta-energy

scale is shown in equation 1.

Cepstral
_ 100g7, ., Fus . Analysis
mel = Jog2 1000} @ Mel spaced
whereF .| is the perceived frequency in Mels cepstral coefficier|ts
andF,, is the real frequency in Hz.
A mel filter bank (MFB) base cepstral Time
transformation is used as a conventional Derivative
control front end in most of speech recognition aSerSE()Clllfll’tg|

applications. This type of filtering involves
multiplying speech waveform by a 20-ms-long
Hamming window every 10ms and then
computing DFT for each windowed waveform
segment. In frequency domain, a vector of log
energies is computed from each waveform .
segment by weighting the DFT coefficients by flr§ .
the magnitude frequency response of a filter deriyative
bank. The center frequencies of the filters are delta
spaced equally on a linear scale from 100 to
1000 Hz and equally on a logarithmic scale
above 100_0 Hz. Above 1000 Hz, each center ng ond derlvatY/e V V
frequency is 1.1 times the center frequency of elta-delta

megsurements

Time
Derivative

—
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Figure 3. Flowchart exhibiting extraction of differ- window is shifted for each frame. The
ent features from a speech file paramete® is chosen to smooth the estimate
2.2. Delta cepstrum features and typically take a value so as to look forward
and backward one or two frames. A vector of

The performance of a speech recognitiorsuch features at relatively low value of
system can be greatly enhanced by adding timprovides information about spectral changes
derivatives to the basic static parameters. Ththat have occurred since the previous frame.
delta features can be computed using thThe delta-cepstrum can also be computed for
regression formula as described in equation 2LP based cepstral parameters. For any typical
application of pattern recognition, 8-14
cepstral coefficients along with their

> W(C+w=C_w) derivatives are used in systems that employ
w=1 (2 cepstral techniques.

w

.dt =

W
2 . . .
25w In areas of signal processing, computing power
w=1 becomes a vital issue when considering the

whered, is a delta feature at tinte computecefficiency of algorithms. The most widely
in terms of the static parameters before an@PPli€d approximation for first order time
next to the current features or coefficiew,  jsderivative of signab(n) — are:
delta window size used to configure the entire 9

data. Since the regression formula depends ¢ sH(n) = as( n = s(n-s(n-1) ©)
past and future speech parameter values, son

modification is required to use the signal gip) = is( n = s(n+1)—s(n) )
occurring at beginning and end of speech file. dt

This can be solved by using a simple first ordel

differences at the start and end of the speech ¢

shown in equations 3 and 4. Ny

0
_ sn) = =s(n) = ms(n+ m (8
di = Cpyg—Cpt<W 3) ot m:z—Nd
and Equations 6 and 7 are known as backward and
d, = ¢—C_p t2T-W @) forward differerlces respe(_:ti\{ely. The sign_al
output form this differentiation process is
whereT is the total length of data file. defined as a delta parameter. The second order

time derivative can be similarly approximated
by reapplying equation 8 to the output of the
first-order differentiator, The output obtained
from second-order differentiation is referred as
delta-delta parameter.

In addition to the cepstral or Mel-cepstral
parameters, another popular feature used i
contemporary speech recognition is the delt:
cepstrum. If c(nm denotes the

Mel-cepstrum feature values for the frames of
the signals(n) ending at time m, the

delta-cepstrum at framen  can be definec

using equation 5. Linear Prediction analysis has been among the
Ac(n, m) = c(n, m+3Q) —c(n, m=23Q)(5) most popular methods for extracting spectral
information from speech. LP analysis does not

for all frames comprising the data. Hef@  resolve the vocal-tract characteristics. Since
represents the number of samples by which ththe laryngeal characteristics vary from person

2.3. LP Derived Cepstral Coefficients
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to person, and even for within personrobustness. The LP spectrum is derived from an
utterances of the same words, LP parameteall-pole transfer function that describes the
convey some information to a speectspectral envelope of the speech. This in
recognizer that degrades performanceparticular gives information about the formants
particularly for speaker-independentthat is critical for speaker recognition to be

system.The linear prediction model is a veryssuccessful. The first step involved is to

useful tool to compute the cepstral

coefficients. If the linear prediction filter is

stable (and it is guaranteed to be stable in the

autocorrelation analysis), the logarithm of the CSR BASELINE
inverse filter is expressed as follows[1]. EVALUAT'PN SYSTEM
N . 4¢ ' |
P
Cip= 3 Cp()z ©) ‘\ :
i=0
3q \ !
= logF(2) - \ |
S
P %
The coefficients can be solved by& \\ I
differentiating bpth sides of the expressiorE \‘
with respecttaz = , and equating coefficientsd R
of the resulting polynomial. This results in the 14 o S -
following equations .
' ~-H-—--& N
LP error: |
|
CLp(1)= -3 p(1) (10) 0 No RASTA CMN CMN& CMN&
] processing MFCDCN IMFCDCN
For2<i<Ng,
20

Figure 4. Comparison of the effects of MFCDCN,
IMFCDCN, CMN and RASTA algorithm on recogni-
tion accuracy for DARPA CSR evaluation data

i—1 .
= 3 H-1e()Cpi-1) 1

=1 transform the all-pole transfer functions derived
The coefficientsC_, are referred asfrom LP analysis into a pole-zero transfer
LP-derived cepstral coefficients. function that gives more emphasis to the

) ) _ formants. The cepstrum of the pole-zero
After LP analysis of speech is carried outs,ansfer function is the feature.

various equivalent representations of the LP

parameters exist. A comparison of these 4. Cepstrum based Algorithms

parameters in terms of speaker recognition

accuracy revealed that the LP cepstrum is thEhe demand for need of a speech recognition
best when training and testing is done on gystems and spoken language systems to be
clean speech database. The problem with th®@bust with respect to their acoustical
LP cepstrum is that a mismatch in training anénvironment has been increasing. The
testing conditions sacrifices muchpenultimate focus is on the performance of
performance, thereby diminishing theseries of cepstrum-based procedures that enable
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the speech recognition system to maintain a

high level of recognition accuracy over a wide 10 CMN
variety of acoustical environments. Further in /
the paper, we will discuss in detail different € = 2 4 6 8
types of cepstrum-based normalization ’
algorithms and their efficiency in terms of
word error rate. Multiple fixed a
codeword-dependent cepstral_\g/
normalization(MFCDCN) is an extension of 2
fixed codedword-dependent cepstralg
normalization(FCDCN) which provides an gs
additive environmental compensation tos
)
cepstral vectors, based on the acoustie
environment. MFCDCN is less complex as far -4
as the computational procedures are involved.
It does not require domain-specific training to
new acoustical environments|[6]. 50

SDCN (SNR Dependent Cepstral
Normalization)- This is the simplest
compensatlon alg_orlthm and is applled_ to theFigure 5. Comparison of the frequency response of
correction vector in the cepstral domain thaty,e pighpass filters implemented by RASTA algo-
depends exclusively on the instantaneous SNRthm as used by Stanford Research Institute
of the signal. The correction vector is the (shown in dotted curve) and as implied by CMN
average difference in cepstra between(solid curve)

simultaneous stereo recordings of speech , _
samples from both the training and testing X =z+rlk] (13)
environments at each SNR of speech in thewhere for each frame& represents the
testing environment. When the SNR values areestimated cepstral vector of the compensated
hight, the correction vector primarily speechz isthe cepstral vector of the incoming
compensates for differences in spectral tiltspeech in the target environmekt, is an index
between the training and testing environmentsidentifying the vector quantization codeword,
and at low SNR values the vector provides al is an index identifying the SNR, andk,I]  is
form of noise subtraction. The SDCN the correction vector.

algorithm is simple and effective, but it 1he selection of the appropriate codeword is
required environment-specific training|6]. done at the vector quantization stage, so that
FCDCN (Fixed codeword-dependent cepstralthe labelk is chosen to minimize
normalization)- This normalization algorithm 5

is a form of compensation that provides [z+ r[k 1l —c[K]| (14)

greater recognition accuracy than SDCN bulyhere thec[k] are the vector quantization
than the CDCN algorithm.The FCDCN {atabase. The new correction vectors are

algorithm applies an additive correction that o stimated with an EM algorithm that
depends on the instantaneous SNR of the inpLyaximizes the likelihood of the data.

but that can also vary from codeword to o . . .
codeword[6]. The probability density function ok is

cepstral freq(framéd's
sec)

o

RASTA

o

o
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assumed to be a mixture of Gaussian densities.
k=1 50
p(x) = 5 PIKI(N,c[K].Y k) (15)
k=0

40
The cepstra of the corrupted speech arg

modeled as Gaussian random vectors, Whoadeso

PAGE 7 OF 11

Q

\ CDCN algorithm

AN
AN

AN
\, Secondary

variance depends also on the mstantaneours \nicrophone
SNR, | , of the input. S \\
©20 N
p(zlk 1) = Oﬂ]expgz—u(u Ak1-c)I’S  (16) AN
10 N
MFCDCN (Multiple fixed ioophone O
codeword-dependent cepstral normalizatien) [ ]

This algorithm is an extension of FCDCN O
algorithm and it does not require environment
specific training. Here, the compensationgigyre 7. performance of CDCN algorithm
vectors are precomputed in parallel for a set of
target environments using the FCDCN 2
alg%rithm. When an uttergnce from an Iz+ rlk 1, m —clK]]|
unknown environment is input to the wherek refers to the vector quantization
recognition system, compensation vectorscodeword,| to the SNR,ant to the target
computed using each of the possible targeenvironment used to train the ensemble of
environments are applied successively and thcompensation vectors. The success of
environment is chosen that minimizes theMFCDCN depends on the availability of
average residual vector quantization distortiontraining data with stereo pairs of speech
over the entire utterance, recorded from the training environment and
from a variety of possible target environments,
and on the extent to which the environments in
the training data are representative of what is

No processing CDCN

17)

__ 500 actually encountered in testing[6].
S : .
g Q MECDCN aldorith IMFCDCN (Incremental Multiple fixed
5 40 N algonithm codeword-dependent cepstral normalization) -
S N\ This is a unsupervised incremental adaptation
w30 \\ algorithm. MFCDCN involves environment
\ selection for the compensation vectors on
N A S
N utterance-to-utterance based whereas the
20 N probability of correct selection can be
N\ improved by allowing the classification
10 A N process to make use of cepstral vectors from
CLSTLK N previous utterance[6].
microphone
I R LR [ ] CDCN (Codeword-Dependent Cepstral
0 | Normalization) -This algorithm uses Expected
No processing MFCDCN

maximization techniques to compute ML

Figure 6. Performance of MFCDCN algorithm estimates of the parameters characterizing the
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contributions of additive noise and linear machines, telephone handsets and
filtering that when applied as inverse function speakerphones, stand mounted microphones,
to the cepstra of an incoming utterance and lapel-mounted microphones.

produce an ensemble of cepstral coefficients

that best match the cepstral coefficients of the3.1. Results of cepstral algorithms for
incoming speech in the testing environment to DARPA evaluations

the locations of vector quantization codewords _ ) _
in the training environment[6]. The MFCDCN algorithm was trained using 15

o o _ ) environments in the training set and
RAST_A -Thisis a f_||ter|n9 algorithm which developmental test set for this evaluation. It is
provides considerable amount of gpgerved that both CDCN and MECDCN
environmental robustness at almost neg"g'blealgorithms significantly improve the
cost. In RASTA a high-pass filter is applied t0 recognition accuracy obtained with secondary
a log-spectral representation of speech such amicropohones[6], with very little or no loss in
the cepstral coefficients. The highpass filter performance when applied to speech from the
can be described by the difference equation close-talking(CLSTLK) microphone. The
y[n] = x[n]-x[n+1] + 0.9%[n-1] (18 Small degradation in recognition accuracy
) _ observed for speech from the CLSTLK
wherex[n] andy[n] are the time-varying microphone using the MFCDCN algorithm

cepstral vectors of the utterance before andmyay pe at least in part a consequence of errors
after RASTA filtering, and the index  refers selecting the environment for the

CMN (Cepstral Mean Normalization)Fhisis ~ Environment-classification errors occurred on
a filtering algorithm used to obtain high-pass 48.8% of the CLSTLK utterances and on
filter cepstral coefficients wherein the mean of 28.5% of the utterances from secondary
cepstral vectors are subtracted from themicrophone. The evaluation were repeated

cepstral coefficients of that utterance on ausing MFCDCN compensation vectors
sentence-by-sentence basis. obtained using only seven categories of

microphones instead of original 15 acoustic
N . . - .
3 1 environment. This modification produced only
yinl = x[n] -5 % x[nl (19 a modest increase in error rate for speech from
n=1 secondary microphones (from 17.7% to
whereN is the total number of frames in an 18.9%) and actually improved the error rate

utterance anda[n] is the signal. for speech from CLSTLK microphone (from
9.4% to 8.3%). Figure 6 and 7 illustrate the

3. EXPERIMENTAL SUPPORT results of evaluations using cepstral
algorithms.

The normalization and filtering algorithms _
were evaluated using the CMU recognition 3.2. Results of cepstral algorithms for
system on a data of continuous speechstress-test evaluation

recognition systems using a 5000-word . _
closed-vocabulary task consisting[6] of The data for stress-test evaluation consists of

dictation of sentences from the Wall Street SPontaneous speech, utterances containing
Journal. A component of that evaluation Out-of-vocabulary words and speech from
involved utterances from a set of unknown Unknown microphones and environments, all

speech recognition system was trained on

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DECEMBER 5, 1998



SPEECH RECOGNITION USING FRONT END FEATURES PAGE 9 OF 11

13,000 speaker-independent utterances fronaccumulated distance identifies the speaker.
the Wall Street Journal task and 14,000 When many utterances are tested, the success
utterances of spontaneous speech from theate is the number of utterances for which the
ATIS travel planning domain. The trigram speaker is identified correctly divided by the
grammar for the system was derived from 70.0total number of utterances tested. The
million words of text without verbalized codebooks are trained for one particular
punctuation and 11.6 million words with condition, namely, for clean speech. Different
verbalized punctuation. The performance oftest conditions corresponding to clean and
baseline system was compared with systencorrupted speech is used to provide a
added with IMFCDCN. The baseline system definitive and quantitative evaluation of
achieved a a word error rate of 22.9% usingrobustness. If a feature is robust, a mismatch
only the bigram language model. The systembetween the testing and training conditions
operating with IMFCDCN reduced the error causes a slight degradation in performance or
rate only to 22.7% compared to 20.8% for the success rate. Two data bases are used in the
stress-test system using IMFCDCN. The experiments - TIMIT and King data base.
IMFCDCN provided only a small significant TIMIT comprises only clean speech, 20
change in the results because only a smallspeakers from the New England dialect are
percentage of data in this test was from considered. The speech is downsampled from

secondary microphones. 16 to 8 KHz. For each speaker, there are ten

sentences. The first five are used for training
3.3. Results using LP derived cepstral the vector quantizer classifier. The classifier is
features trained only on clean speech. The remaining

) _ ) five sentences are individually used for testing.
The conventional feature used is the IlnearKirlg data base consists of 26 San Diego and
predictive (LP) cepstrum derived from an o5 Nytley speakers. Speech is recorded over
all-pole transfer function. A new cepstral |ong gistance telephone lines and sampled at 8
feature based on a pole-zero function calledx 4, There are ten recording sessions, each
adaptive component weighted or ACW haying one utterance per speaker. The data is
cepstrum is considered for comparison gjyiged such that there is a big mismatch in the
purposes and two other features (known asgonditions between sessions 1 to 5 and
PFL1 cepstrum and PFL2 cepstrum) are base(essions 6 to 10. This mismatch is due to a
on pole-zero postfilter used in speech change in the recording equipment, which

utterance from one of th&!  speakers is gnyironment. Training is done on session 1.
converted to a set of test feature vectors. Eactrggting “within the great divide” corresponds

of the M codebooks. The quantized vector is there js some mismatch with session 1. Testing

that which is closest according to some «5¢rogs the great divide” corresponds to the
distance measure to the test feature vector. Thy,tterances in sessions 6 to 10, which in turn

squared euclidean distance is the best measuiy gyide a big mismatch. Training is done on

for pattern recognition. Henceyl  different gessjon 2 while the remaining nine sessions
distances are recorded, one for each codebooge sed for testing. The total number of test

and the process is repeated for every tesyiterances considered “within the great
feature vector. The distances are accumulatejyide” were 208 for San Diego portion and

codebook that renders the smallestihg great divide” was 260 for San Diego

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DECEMBER 5, 1998
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portion and 250 for the Nutley portion.

3.4.1. Testing on Clean Speech Table 2 Identification Success rate as a percent

This experiment involves testing of clean for speech degraded by additive white gaussian
speech which is performed by using TIMIT noise (Timit database). Success rates
database[8]. The performance does not alway:correspond to codebook sizes of 16, 32 and 64

monotonically increase as the codebook gets —
bigger. Therefore, just using a large codebook Test Condition
size does not benefit in terms of performance . . .
and imposes a cost in terms of memory and Feature Noisy Noisy Noisy
search complexity. In the limit as the speech | speech | speech
codebook size equals the number of vectors in 30dB 20 dB 10dB
the training set, a nearest neighbor classifier is SNR SNR SNR
obtained. Experiments show that the neares| | p cep- | 79853 | 4756.3| 187
neighbor classifier is inferior to the vector | gium 86.3 61.3 24.7 21
guantizer using modest size codebooks. This
is because overlearning of the training data hag 82 3 57647 | 263
taken place. Results on testing of clean speecl ACW | o/ 5o 64 26.7
are illustrated in table 1. ' 23.3
Table 1 Identification Success rate as a 84.3 50.7 19.3
percent for clean speech (Timit ACW2 88.3 63.3 23.7
database). Success rates correspond to 91.3 60.7 23.3
codebook sizes of 16, 32 and 64
’ PEL1 87 83.3 63 67 68 27 28.3
e 86 22.7
Identification
Features success rate 52.7
82.385 ' 22.324
PFL2 62.7
LP cepstrum 91 96 94 88.7 63.3 23
ACW 929391
ACW2 90 96 93 4. SUMMARY
PFL1 92 92 95 The use of MFCDCN and phone-dependent
cepstral normalization algorithms reduce the
PFL2 89 94 95 error rate by 40 percent compared to result

3.5.2. Testing on Noisy Speech

obtained with CMN alone.

When training a system with clean speech and

Here, the test speech is degraded by additivétesting with noisy speech, LP cepstra is not

white Gaussian noise[8]. As the SNR

suitable the performance is significantly worse

decreases, the mismatch between the trainingthan mel cepstrum.Experiments conducted

and test conditions becomes more glaring ancusing both the TIMIT and King data bases
the performance for all the features decreasesreveal that performance under mismatched

Results are illustrated in table 2.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

training and testing conditions is a good
measure of robustness. The adaptive
component weighted cepstrum and the
cepstrum based on the pole-zero transfer
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functions perform better than the LP cepstrum.[7]
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