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ABSTRACT

This paper explains the basic concepts of
using Mel-cepstrum,delta and delta-delta
features and the algorithm that uses cepstru
of the speech signal for speech recognition.

Mel scale is a better approximation of
mapping perceived frequency to a linear scal
Mel-cepstral coefficients corresponding to
short term correlation in speech signal are
significant is obtaining a better model for the
speech data. The mapping factor between th
real frequency scale and the perceived Mel
frequency scale is an important parameter
which finds a significant use in speech
recognition. A comparison of Mel-cepstral
and LP derived cepstral coefficients, based o
the efficiency will also be discussed.

Delta features are a measure of rate of chan
of a feature and useful in establishing a
significant model between two frames of
features. Delta-delta features are the second
order derivative or the measure of rate of
change of delta features. These features are
very useful in speech recognition since they
represent the dynamics of speech signals.

1. INTRODUCTION

All speech recognizers include an initial signa
processing front end that converts a nois
and/or degraded speech waveform in
features useful for further processing. Th
front end is required to extract importan
features from the speech waveform that a
relatively insensitive to talker and channe
variability unrelated to speech messag
content. This first stage also reduces the da
rate into larger stages of the speech recogni
and attempts to decrease redundancy inher
in the speech waveform. The vast majority o
front ends are based on standard sign
processing techniques, such as filter bank
l inear p red ic t ive cod ing (LPC) , o r
homomorphic analysis (cepstra). There h
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also been interest in front ends based o
known properties of the human auditor
system. Some of these front ends are linear b
with parameters that correspond to audito
properties (e.g., fi l ter bank bandwidth
increasing with frequency). Most of the
auditory-based front ends, however, ar
nonlinear since this is believed to be the ca
for many physiological and/or perceptua
processes in the auditory system. Featu
selection is generally considered a process
mapping the original measurements into mo
effective features. If the mapping is linear, th
mapping function is well defined and our tas
is simply to find the coefficients so as to
optimize based on a criterion. If a prope
criterion for evaluating the effectiveness o
features is obtained. techniques of linea
algebra can be used for simple criteria an
iterative techniques to determine the mappin
coefficients in case of complex criterion. In
many applications of pattern recognition
important features are not linear functions o
the original measurements but are high
nonlinear functions. The basic problem is t
find a nonlinear mapping function for the
given data.The selection of features becom
domain dependent in speech research. W
discuss in detail the theory behind variou
fea tu res common ly used fo r pa t te r
recognition.

2. DESCRIPTION OF FEATURES

2.1. Mel Cepstrum

Spectrum is the representation of the sign
with which we can assess the “separation”
the component parts and perhaps deri
needed information about the components a
also, the representation of the compone
signals are combined linearly in the spectrum
The shape of spectrum provides the maximu
informat ion present in speech signa
Information like high frequency (high or low),
resonance, noise information can be obtain
G DECEMBER 5, 1998
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Figure 2. Mel scale illustrating the linear relation-
using spectrum[10]. On the other hand, th
“cepstrum” represents a transformation on th
speech signal with two important properties:

1. Representatives of component signals a
separated in the cepstrum.

2. Representatives of component signals a
linearly combined in the cepstrum.

The cepstrum provides the needed informatio
to assess the properties of the compone
s igna ls . The ceps t rum der ived f rom
homomorphic processing (cepstral analys
within a general class of methods) is usual
called the complex cepstrum and real part
complex cepstrum within a scale factor i
called the real cepstrum.At a certain time i
speech research the cepstrum features bega
supplant the direct use of the LP parameters
the important feature obtained from hidde
Markov modelling strategy because of tw
convenient enhancements that were found
improve recognition rates. First, is the abilit
to easily smooth the LP based spectrum usi
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERIN
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Speech

window

DFT

log

IDFT

Cepstrum
Figure 1. Block diagram demonstrating process of
obtaining cepstrum features from a speech signal
the liftering and weighting process. Liftering
is a useful process with the real cepstrum f
obtaining an estimate of the log spectrum o
either of the separated components of th
cepstrum. Weighting is a procedure where
the euclidean distance between cepstr
coefficients for which each term of the sum i
multiplied by a predetermined weighting
coefficient . However when constan
weighting is used this reduces to the standa
cepstral distance. Triangular weighted cepst
distances comprise the subclass of weight
cepstral distance measures for which th
weighting factor increases linearly with the
index (k). Speaker dependent and speak
independent recognition experiments hav
shown that for triangular weighted cepstra
distance measures recognition performance
best when the number of cepstral differenc

wk
G DECEMBER 5, 1998
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terms are approximately equal to the order
all-pole model.This process removes th
inherent variability of the LP based spectrum
due to the excitation and improves recognitio
per fo rmance . The o ther method o
improvement over direct use of the LP
parameters is the use of so-called “Mel-bas
cepstrum”. A Mel is a unit of measure o
perceived pitch of frequency of a tone. It doe
not correspond linearly to the physica
frequency of the tone, as the human audito
system apparently does not perceive pitch
this linear manner. The precise meaning of th
Mel scale becomes clear by examining th
experiment by which it is derived. With severa
experiments in speech research i t wa
concluded that a linear relationship exist
between the real frequency scale (Hz) and t
perceived frequency scale(Mels). The grap
demonstrating the linear relationship betwee
these parameters is shown in the figure 2. T
equation illustrating the relationship betwee
the frequency scale and perceived frequen
scale is shown in equation 1.

(1)

where is the perceived frequency in Mel
and  is the real frequency in Hz.

A mel fi l ter bank (MFB) base cepstra
transformation is used as a convention
control front end in most of speech recognitio
applications. This type of filtering involves
multiplying speech waveform by a 20-ms-lon
Hamming window every 10ms and the
computing DFT for each windowed waveform
segment. In frequency domain, a vector of lo
energies is computed from each wavefor
segment by weighting the DFT coefficients b
the magnitude frequency response of a filt
bank. The center frequencies of the filters a
spaced equally on a linear scale from 100
1000 Hz and equally on a logarithmic scal
above 1000 Hz. Above 1000 Hz, each cent
frequency is 1.1 times the center frequency

Fmel
1000

2log
------------ 1

FHz

1000
------------+=

Fmel
FHz
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the previous filter. Each filter’s magnitude
frequency response has a triangular shape t
is equal to unity at the center frequency an
linearly decreasing to zero at the cente
frequencies of the two adjacent filters. Eac
vector of log energies is then processed by
inverse cosine transform creating a vector
mel filter bank cepstral coefficients. The
cepstral coefficients are then used as inp
features to the speech recognizer. On
SPARCStation 2 workstation, the MFB
cepstral front end operates in roughly one thi
real-time at a data rate of 100 frames/sec.
G DECEMBER 5, 1998
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Figure 3. Flowchart exhibiting extraction of differ-
ent features from a speech file
2.2. Delta cepstrum features

The performance of a speech recognitio
system can be greatly enhanced by adding tim
derivatives to the basic static parameters. T
delta features can be computed using th
regression formula as described in equation 

. (2)

where is a delta feature at time compute
in terms of the static parameters before an
next to the current features or coefficient.
delta window size used to configure the entir
data. Since the regression formula depends
past and future speech parameter values, so
modification is required to use the signa
occurring at beginning and end of speech fil
This can be solved by using a simple first ord
differences at the start and end of the speech
shown in equations 3 and 4.

(3)

and

(4)

where  is the total length of data file.

In addition to the cepstral or Mel-cepstra
parameters, another popular feature used
contemporary speech recognition is the de
ceps t rum. I f deno tes the
Mel-cepstrum feature values for the frames
the s igna l end ing at t ime m, the
delta-cepstrum at frame can be define
using equation 5.

(5)

for all frames comprising the data. Here
represents the number of samples by which t

dt

w ct w+ ct w––( )
w 1=

W

∑

2 w
2

w 1=

W

∑
----------------------------------------------------=

dt t

W

dt ct 1+ ct– t W<,=

dt ct ct 1–– t T W–≥,=

T

c n m,( )

s n( )
m

c n m,( )∆ c n m δQ+,( ) c n m δQ–,( )–=

Q
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window is shif ted for each frame. The
parameter is chosen to smooth the estima
and typically take a value so as to look forwar
and backward one or two frames. A vector o
such features at relatively low value of
provides information about spectral change
that have occurred since the previous fram
The delta-cepstrum can also be computed f
LP based cepstral parameters. For any typic
application of pattern recognition, 8-14
cepst ra l coeffic ients a long wi th the i r
derivatives are used in systems that empl
cepstral techniques.

In areas of signal processing, computing pow
becomes a vital issue when considering th
efficiency of algorithms. The most widely
applied approximation for first order time
derivative of signal  are:

(6)

(7)

(8)

Equations 6 and 7 are known as backward a
forward differences respectively. The signa
output form this differentiation process is
defined as a delta parameter. The second or
time derivative can be similarly approximate
by reapplying equation 8 to the output of th
first-order differentiator, The output obtaine
from second-order differentiation is referred a
delta-delta parameter.

2.3. LP Derived Cepstral Coefficients

Linear Prediction analysis has been among t
most popular methods for extracting spectr
information from speech. LP analysis does n
resolve the vocal-tract characteristics. Sinc
the laryngeal characteristics vary from perso

δ

n

s n( )

s∗ n( )
t∂

∂
s n( ) s n( ) s n 1–( )–= =

s∗ n( )
td

d
s n( ) s n 1+( ) s n( )–= =

s∗ n( )
t∂

∂
s n( ) ms n m+( )

m Nd–=

Nd

∑= =
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Figure 4. Comparison of the effects of MFCDCN,
IMFCDCN, CMN and RASTA algorithm on recogni-
tion accuracy for DARPA CSR evaluation data
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to person, and even for within perso
utterances of the same words, LP paramet
convey some informat ion to a speec
recognizer that degrades performanc
par t icu lar ly for speaker- independen
system.The linear prediction model is a ver
use fu l too l to compute the ceps t ra
coefficients. If the linear prediction filter is
stable (and it is guaranteed to be stable in t
autocorrelation analysis), the logarithm of th
inverse filter is expressed as follows[1].

(9)

            = log

The coe ffi c ien ts can be so lved b
differentiating both sides of the expressio
with respect to , and equating coefficient
of the resulting polynomial. This results in th
following equations.

LP error:

(10)

For ,

(11)

(12)

The coeffic ien ts are re fer red as
LP-derived cepstral coefficients.

After LP analysis of speech is carried ou
various equivalent representations of the L
parameters exist. A comparison of thes
parameters in terms of speaker recognitio
accuracy revealed that the LP cepstrum is t
best when training and testing is done on
clean speech database. The problem with t
LP cepstrum is that a mismatch in training an
tes t ing cond i t i ons sacr i fi ces much
performance, thereby diminishing th

CLP CLP i( )z i–

i 0=

Nc

∑=

F z( )

z
1–

CLP 1( ) a– LP 1( )=

2 i NC≤ ≤

CLP i( ) a– LP i( )=

1 j
i
--– 

  aLP j( )CLP i j–( )
j 1=

i 1–

∑=

CLP
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEER
n
ers
h
e,
t
y
l

robustness. The LP spectrum is derived from
all-pole transfer function that describes th
spectral envelope of the speech. This
particular gives information about the formant
that is critical for speaker recognition to b
successful. The first step involved is t
t.
P
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transform the all-pole transfer functions derive
from LP analysis into a pole-zero transfe
function that gives more emphasis to th
formants. The cepstrum of the pole-zer
t rans fe r func t ion is the fea tu re

2.4. Cepstrum based Algorithms

The demand for need of a speech recogniti
systems and spoken language systems to
robust wi th respect to thei r acoust ica
envi ronment has been increas ing. Th
penultimate focus is on the performance o
series of cepstrum-based procedures that ena
ING DECEMBER 5, 1998
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Figure 5. Comparison of the frequency response of
the highpass filters implemented by RASTA algo-
rithm as used by Stanford Research Institute
(shown in dotted curve) and as implied by CMN
(solid curve)
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the speech recognition system to maintain
high level of recognition accuracy over a wid
variety of acoustical environments. Further i
the paper, we will discuss in detail differen
types of cepstrum-based normalizatio
algorithms and their efficiency in terms o
word er ro r ra te . Mu l t ip le fi xed
codeword-dependent ceps t ra
normalization(MFCDCN) is an extension o
fi xed codedword-dependent ceps t ra
normalization(FCDCN) which provides an
additive environmental compensation t
cepstral vectors, based on the acoust
environment. MFCDCN is less complex as fa
as the computational procedures are involve
It does not require domain-specific training t
new acoustical environments[6].

SDCN (SNR Dependent Ceps t ra
Normal izat ion) - This is the simplest
compensation algorithm and is applied to th
correction vector in the cepstral domain tha
depends exclusively on the instantaneous SN
of the signal. The correction vector is th
average difference in cepstra betwee
simultaneous stereo recordings of spee
samples from both the training and testin
environments at each SNR of speech in th
testing environment. When the SNR values a
hight, the correct ion vector pr imari ly
compensates for differences in spectral t
between the training and testing environmen
and at low SNR values the vector provides
form of noise subtract ion. The SDCN
algorithm is simple and effective, but i
required environment-specific training[6].

FCDCN (Fixed codeword-dependent cepstr
normalization)- This normalization algorithm
is a form of compensation that provide
greater recognition accuracy than SDCN b
in a more computationally-efficient manne
than the CDCN algorithm.The FCDCN
algorithm applies an additive correction tha
depends on the instantaneous SNR of the inp
but that can also vary from codeword t
codeword[6].
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where for each frame represents th
estimated cepstral vector of the compensat
speech, is the cepstral vector of the incomin
speech in the target environment, is an ind
identifying the vector quantization codeword

is an index identifying the SNR, and is
the correction vector.

The selection of the appropriate codeword
done at the vector quantization stage, so th
the label  is chosen to minimize

(14)

where the are the vector quantizatio
codewords of the speech in the trainin
database. The new correction vectors a
est imated wi th an EM algor i thm tha
maximizes the likelihood of the data.

The probability density function of is

x̂ z r k l[ , ]+=

x̂

z
k

l r k l[ , ]

k

z r k l[ , ] c k[ ]–+
2

c k[ ]

x
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Figure 7. Performance of CDCN algorithm
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assumed to be a mixture of Gaussian densiti

(15)

The cepstra of the corrupted speech a
modeled as Gaussian random vectors, who
variance depends also on the instantaneo
SNR, , of the input.

(16)

MFCDCN (Mul t ip le fi xed
codeword-dependent cepstral normalization)-
This algorithm is an extension of FCDCN
algorithm and it does not require environme
specific training. Here, the compensatio
vectors are precomputed in parallel for a set
target environments using the FCDCN
algori thm. When an utterance from a
unknown envi ronment is input to the
recognition system, compensation vecto
computed using each of the possible targ
environments are applied successively and t
environment is chosen that minimizes th
average residual vector quantization distortio
over the entire utterance,

p x( ) P k[ ] Nxc k[ ] k∑( , )
k 0=

k 1=

∑=

l

p z k r, l( , )
C

""

σ l[ ]
---------- 1–

2σ2
---------- z r k l[ , ] c k[ ]–+( ) 2

 
 
 

exp=
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where refers to the vector quantizatio
codeword, to the SNR,and to the targe
environment used to train the ensemble
compensat ion vectors. The success
MFCDCN depends on the availability o
training data with stereo pairs of speec
recorded from the training environment an
from a variety of possible target environment
and on the extent to which the environments
the training data are representative of what
actually encountered in testing[6].

IMFCDCN (Incremental Mult iple fixed
codeword-dependent cepstral normalization)
This is a unsupervised incremental adaptati
algorithm. MFCDCN involves environment
selection for the compensation vectors o
utterance-to-utterance based whereas t
probabi l i ty of correct select ion can be
improved by allowing the classification
process to make use of cepstral vectors fro
previous utterance[6].

CDCN (Codeword-Dependent Cepstra
Normalization) -This algorithm uses Expected
maximization techniques to compute ML
estimates of the parameters characterizing t

z r k l m,[ , ] c k[ ]–+
2

k
l m
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contributions of additive noise and linea
filtering that when applied as inverse functio
to the cepstra of an incoming utteranc
produce an ensemble of cepstral coefficien
that best match the cepstral coefficients of th
incoming speech in the testing environment
the locations of vector quantization codeword
in the training environment[6].

RASTA -This is a filtering algorithm which
prov ides cons iderab le amount o
environmental robustness at almost negligib
cost. In RASTA a high-pass filter is applied t
a log-spectral representation of speech such
the cepstral coefficients. The highpass filte
can be described by the difference equation

(18)

where and are the time-varying
cepstral vectors of the utterance before a
after RASTA filtering, and the index refers
to the analysis frames[6].

CMN (Cepstral Mean Normalization) -This is
a filtering algorithm used to obtain high-pas
filter cepstral coefficients wherein the mean
cepstral vectors are subtracted from th
cepstral coefficients of that utterance on
sentence-by-sentence basis.

(19)

where is the total number of frames in a
utterance and  is the signal.

3. EXPERIMENTAL SUPPORT

The normalization and filtering algorithms
were evaluated using the CMU recognitio
system on a data of continuous speec
recognition systems using a 5000-wor
closed-vocabulary task consisting[6] o
dictation of sentences from the Wall Stree
Journal. A component of that evaluatio
involved utterances from a set of unknow
“secondary” microphones, including deskto

y n[ ] x n[ ] x n 1+[ ]– 0.97y n 1–[ ]+=

x n[ ] y n[ ]

n

y n[ ] x n[ ] 1
N
---- x n[ ]

n 1=

N

∑–=

N
x n[ ]
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mach ines , te lephone handse ts an
speakerphones, stand mounted microphon
and lapel-mounted microphones.

3.1. Results of cepstral algorithms for
DARPA evaluations

The MFCDCN algorithm was trained using 1
env i ronments in the t ra in ing set an
developmental test set for this evaluation. It
observed that both CDCN and MFCDCN
algor i thms s ign i ficant ly improve the
recognition accuracy obtained with seconda
micropohones[6], with very little or no loss in
performance when applied to speech from th
close-talking(CLSTLK) microphone. The
small degradation in recognition accurac
observed for speech from the CLSTLK
microphone using the MFCDCN algorithm
may be at least in part a consequence of erro
in se lec t ing the env i ronment fo r the
compensa t ion vec to rs
Environment-classification errors occurred o
48.8% of the CLSTLK utterances and o
28.5% of the utterances from seconda
microphone. The evaluation were repeate
using MFCDCN compensation vector
obtained using only seven categories o
microphones instead of original 15 acoust
environment. This modification produced onl
a modest increase in error rate for speech fro
secondary microphones (from 17.7% t
18.9%) and actually improved the error rat
for speech from CLSTLK microphone (from
9.4% to 8.3%). Figure 6 and 7 illustrate th
resu l ts o f eva lua t ions us ing cepst ra
algorithms.

3.2. Results of cepstral algorithms for
stress-test evaluation

The data for stress-test evaluation consists
spontaneous speech, utterances contain
out-of-vocabulary words and speech from
unknown microphones and environments, a
related to Wall Street Journal domain. Th
speech recognition system was trained o
G DECEMBER 5, 1998
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13,000 speaker-independent utterances fro
the Wall Street Journal task and 14,00
utterances of spontaneous speech from t
ATIS travel planning domain. The trigram
grammar for the system was derived from 70
million words of text without verbalized
punctuation and 11.6 million words with
verbalized punctuation. The performance
baseline system was compared with syste
added with IMFCDCN. The baseline system
achieved a a word error rate of 22.9% usin
only the bigram language model. The syste
operating with IMFCDCN reduced the erro
rate only to 22.7% compared to 20.8% for th
stress-test system using IMFCDCN. Th
IMFCDCN provided only a small significant
change in the results because only a sm
percentage of data in this test was fro
secondary microphones.

3.3. Results using LP derived cepstral
features

The conventional feature used is the line
predictive (LP) cepstrum derived from an
all-pole transfer function. A new cepstra
feature based on a pole-zero function calle
adaptive component weighted or ACW
cepstrum is considered for compariso
purposes and two other features (known
PFL1 cepstrum and PFL2 cepstrum) are bas
on pole-zero postfi l ter used in speec
enhancement. To test the system, a te
utterance from one of the speakers
converted to a set of test feature vectors. Ea
of the test feature vector is quantized by ea
of the codebooks. The quantized vector
that which is closest according to som
distance measure to the test feature vector. T
squared euclidean distance is the best meas
for pattern recognition. Hence, differen
distances are recorded, one for each codebo
and the process is repeated for every te
feature vector. The distances are accumula
over the entire set of feature vectors. Th
codebook tha t renders the smal les

M
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M
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accumulated distance identifies the speak
When many utterances are tested, the succ
rate is the number of utterances for which th
speaker is identified correctly divided by th
total number of utterances tested. Th
codebooks are trained for one particula
condition, namely, for clean speech. Differen
test conditions corresponding to clean an
corrupted speech is used to provide
definitive and quantitative evaluation o
robustness. If a feature is robust, a mismat
between the testing and training condition
causes a slight degradation in performance
success rate. Two data bases are used in
experiments - TIMIT and King data base
TIMIT comprises only clean speech, 2
speakers from the New England dialect a
considered. The speech is downsampled fro
16 to 8 KHz. For each speaker, there are t
sentences. The first five are used for trainin
the vector quantizer classifier. The classifier
trained only on clean speech. The remainin
five sentences are individually used for testin
King data base consists of 26 San Diego a
25 Nutley speakers. Speech is recorded ov
long distance telephone lines and sampled a
KHz. There are ten recording sessions, ea
having one utterance per speaker. The data
divided such that there is a big mismatch in th
conditions between sessions 1 to 5 an
sessions 6 to 10. This mismatch is due to
change in the recording equipment, whic
t rans la tes to a s ign i fi cant ly change
environment. Training is done on session
Testing “within the great divide” correspond
to the utterances in sessions 2 to 5 in whic
there is some mismatch with session 1. Testi
“across the great divide” corresponds to th
utterances in sessions 6 to 10, which in tu
provide a big mismatch. Training is done o
session 2 while the remaining nine sessio
are used for testing. The total number of te
utterances considered “within the grea
divide” were 208 for San Diego portion and
200 for the Nutley portion whereas for “acros
the great divide” was 260 for San Diego
G DECEMBER 5, 1998
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 64
portion and 250 for the Nutley portion.

3.4.1. Testing on Clean Speech

This experiment involves testing of clea
speech which is performed by using TIMIT
database[8]. The performance does not alwa
monotonically increase as the codebook ge
bigger. Therefore, just using a large codebo
size does not benefit in terms of performanc
and imposes a cost in terms of memory an
search complexi ty. In the l imi t as the
codebook size equals the number of vectors
the training set, a nearest neighbor classifier
obtained. Experiments show that the neare
neighbor classifier is inferior to the vecto
quantizer using modest size codebooks. Th
is because overlearning of the training data h
taken place. Results on testing of clean spee
are illustrated in table 1.

3.5.2. Testing on Noisy Speech

Here, the test speech is degraded by addit
white Gaussian noise[8] . As the SNR
decreases, the mismatch between the train
and test conditions becomes more glaring a
the performance for all the features decreas
Results are illustrated in table 2.

Table 1 Identification Success rate as a
percent for clean speech (Timit

database). Success rates correspond to
codebook sizes of 16, 32 and 64

Features
Identification
success rate

LP cepstrum 91 96 94

ACW 92 93 91

ACW2 90 96 93

PFL1 92 92 95

PFL2 89 94 95
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4. SUMMARY

The use of MFCDCN and phone-depende
cepstral normalization algorithms reduce th
error rate by 40 percent compared to resu
obtained with CMN alone.

When training a system with clean speech a
testing with noisy speech, LP cepstra is n
suitable the performance is significantly wors
than mel cepstrum.Experiments conducte
using both the TIMIT and King data base
reveal that performance under mismatche
training and testing conditions is a goo
measure of robustness . The adapt iv
component weighted cepstrum and th
cepstrum based on the pole-zero transf

Table 2 Identification Success rate as a perce
for speech degraded by additive white gaussi

noise (Timit database). Success rates
correspond to codebook sizes of 16, 32 and

Feature

Test Condition

Noisy
speech
30 dB
SNR

Noisy
speech
20 dB
SNR

Noisy
speech
10 dB
SNR

LP cep-
strum

79 85.3
86.3

47 56.3
61.3

18.7
24.7 21

ACW
82.3

84.7 87
57 64.7

64

26.3
26.7
23.3

ACW2
84.3
88.3
91.3

50.7
63.3
60.7

19.3
23.7
23.3

PFL1
87 83.3

86
63 67 68

27 28.3
22.7

PFL2
82.3 85

88.7

52.7
62.7
63.3

22.3 24
23
G DECEMBER 5, 1998
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functions perform better than the LP cepstrum
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