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ABSTRACT Speech processing depends heavily on basic research in
the hearing science as well as research in the speech
science.[5] Both of these sciences have been studied

dextensively over the past century and will continue to be

studied well into the next century. One must understand
basic concepts from those sciences to effectively dissect
and model a speech waveform.

Communication is a key factor in life. In order to be a
productive communicator, speech must be generate
and comprehended, by fully understanding the speech
signal. Information theory states that speech can be
represented in terms of its message content. Another
way of describing speech is in terms of an acoustic
waveform, the signal relaying the message content. A
typical speech recognizer is composed of three main
elements: the front-end or acoustic model, search, and
language modeling. In this project, the first element of
a speech recognizer, the front-end model will be
discussed with special emphasis given to the fas
Fourier transform (FFT) based measurements, linear
prediction coefficient (LPC) transformations, and

feature selection. The over-all purpose of this project is
to design and implement the specific aspects of the
acoustic model mentioned above with the final goal of
incorporating them into a speech recognition system.

In order to physically communicate, a speaker has to
produce a vocalization or speech signal. This speech
signal travels a path from the speaker’s mouth to the
listener’s ear in the form of a sound pressure wave, or
more accurately stated, as an acoustic waveform. The
tacoustic waveform is also generated from the throat,
nasal cavity, and cheeks of the speaker. The ordering of
these sounds stems from various rules relative to a
language. Linguistics, the study of language and the
way relative rules re used in the communication process,
and phonetics, the study of the traits or characteristics of
sound production, comprise a large part of speech
recognition. Phonetics will be the main theme of this

paper as this paper’s primary focus is on the front-end
9. INTRODUCTION model of a speech signal.[5]

“Then you should say what you mean,” the March HareThe conversion of an acoustic waveform into a written
went on. equivalent of the information transmitted is termed

speech recognition. Speech recognition is highly
“l do,” Alice hastily replied: “At least - at least | mean Sensitive to the various constraints placed on a speaker,
what | say - that's the same thing, you know.” the speaking environment, and the context of the

information being spoken. Future applications for
“Not the same thing a bit!” said the Hatter. “Why, you Speech recognition systems continue to be unlimited.[5]

might just as well say that ‘| see what | eat’ is the sameFrom directory assistance in telephone communications
thing as ‘I eat what | see’!” to voice communication with man-made machines, the

need for reliable, robust speech recognition systems is
-Lewis Carroll, Alice’s Adventures in Wonderland.[40] unmistakable.[35]

Speech serves as a person’s primary means oPne of the initial steps in speech recognition is the
communication.[6] Just like the fictitious Alice in Parameterization of a speech signal. Meaningful
Alice’s Adventure’s in Wonderland, people often find parameters which simulate the human auditory and
themselves saying things that do not express what theperceptual systems aid algorithms that model the very
truly mean. What we say and what we mean sometime§omplicated speech signal. The ultimate goal of these
may be totally unrelated vocalizations. If the humanalgorithms is to maximize the speech recognizer’s
neural system has a difficult time deciphering a fellow performance. For this reason, the process of signal
human’s vocalizations, imagine the difficulty a speechmodeling can best be described as the methods through

recognizer must have. Afterall, we humans are the onewhich sequences of speech signals are adapted to
developing the recognizer. vectors to depict specific events in a probability
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space.[1]

Four basic components of signal modeling beneficial tc
speech research are spectral shaping, spectral analys
parameter transformation, and statistical modeling.
Spectral shaping comprises itself of analog-to-digital
(A/D) conversion (from a sound pressure wave to a
digital signal) and digital filtering (focusing on the key
frequency components of the speech signal). Spectr:
analysis, the principal theme of this paper, is formed
form six major components:

« digital filter bank

« the Fourier transform filter bank

« cepstral coefficients

« linear prediction coefficients

« linear prediction-derived filter bank amplitudes
« linear prediction-derived cepstral coefficients.

Today, both the Fourier transform and linear prediction
components play highly instrumental roles in various
applications of speech processing. The third componer
of sighal modeling, parameter transformation, is
processed in two ways: differentiation and
concatenation. A parameter vector that contains the¢
minimal estimates of the signal forms the output of this
stage. By minimal, we mean that the smallest number o
vectors needed to reconstruct the speech signal are tt
output. The final aspect of signal modeling, the
statistical modeling of the signal parameters, involves
forcing a model of some sort on the data, training that
model, and measuring the quality of the approximation.
Because of its fundamental function to a speect
recognition system, extremely knowledgeable models
are implemented.[1]

10. THE FRONT END

A speech recognition system can be broken up into thre
main components: the front-end, search, and languag
modeling. The focus of this paper will be on particular
aspects of the front end. Figure 1 displays the three ke
components of a speech recognizer. All three
components are individual players in the game of speec
recognition, but they must all work together in some
fashion in order to have a fully working speech
recognizer.

The special features of the front-end that are of primary
concern in this project are: fast Fourier transform (FFT)
analysis with cepstral coefficients, linear prediction(LP)
transformations, and feature selection. Figure 2 depict
how these measurements can be taken from the spee
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Figure 2. The Front-End Features. speech production provide a sound foundation for
applications in the process of speech recognition.[5]

10.1. The Speech Signal

The speech signal or waveform is a time versus

amplitude depiction of the vocalizations formed by the 11. SIGNAL MODELING
speaker. Each speaker’s vocal tract shape is

characterized by a set of resonant frequencies. From th
system modeling point of view, the articulators (vocal
cords, velum, tongue, teeth, and lips) are the key .
elements which determine the properties of the speecfl,'he parameters that were selected for the testing of the
system filter. Because these resonances tend to “form@coustic model are as follows:

the overall spectrum, they are often referred to as

“formants”. It should also be noted that typical human* Sample Frequency = 16 kHz

speech is limited to a bandwidth that typically ranges )

from 7 kHz to 8 kHz. Figure 3 shows a speech* Pre-Emphasis Factor = 0.95

utterance.[5]

fl.l. Parameter Selection

o Frame Duration = 20 msec

o Window Duration = 30 msec

100 _ .
« A Hamming Window

The pre-emphasis factor was selected to be 0.95 because
50F 1 typical values range between 0.4 and 1.0. The values of
0.95 was finally chosen because it can be implemented
in hardware easier than other values, and it amplifies the
area of the spectrum above 1 kHz, where hearing has
0.0 L § been found to be more sensitive. The pre-emphasis
factor also improves the efficiency of the analysis. The
frame and window duration were selected as a pair.
These values are based on the rate of change of the vocal
tract shape. The sample frequency of 16 kHz was

50 chosen because 16 kHz offers better time and frequency
resolution than a lower sample frequency would. It
should be noted that if working in a telecommunications

10.0 . . environment, a lower sample frequency, i.e, 8 kHz,
0.0 50 10.0 15.0 should be chosen. Finally, the Hamming window was
chosen to help form a smoothed spectral estimate of the
Figure 3. A speech waveform. power in the regions where the power changes rapidly.
Other windows could have been chosen, but most
speech recognition systems today utilize the Hamming
10.2. Acoustic Theory of Production window.[1]

Much of modern signal processing notions related11.2. Frame Analysis

speech stem from extensive engineering research

performed on the analog acoustic modeling of speeciThe continuous-time Fourier transform is a particularly
production. A great deal of this research was performedeneficial tool in the analysis of a speech signal. In its
in the mid-twentieth century. The primary motivation fundamental definition, however, the Fourier transform
for understanding the means of speech productionequires our knowledge of the signal for all time, and
comes from the fact that speech is a human being’s maihatever feature we wish to discover by use of the
means of communication. Because of the developmentsourier transform (i.e., a spectrum) must remain time-
in acoustic theory, more and more aspects of humaimnvariant during the duration of the signal. An
voice production are now understood by researchersynderlying assumption in most speech processing
The continued quest of basic speech analysis haschemes is that the properties of a speech signal change
provided new and more realistic means of performingrelatively slowly with time.[2]] Most signals fail to
speech synthesis, coding, and recognition. It should alspemain “stationary” with respect to the desired
be noted that the mathematical representations of humameasurement for the signal duration. This is very true
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when you refer to the speech signal. Therefore, we mus2Fn.[3] The window slides along the signal in time
analyze the signal on a “short-term” basis. One shortselecting portions of the signal in the process. A longer
term tool for signal analysis is the discrete Fourierwindow requires a longer period to cross transitional
transform (DFT). The DFT focuses on “static” analysis boundaries in the signal. Also, events from different
in which a single frame of a signal is operated on. Weregions of the signal will probably be blurred together
cannot be content however to analyze speech on a shomnore frequently than if a shorter window had been
term basis in a single frame. Therefore, we must analyzeselected. Therefore, a trade-off in window selection is
a sequence of frames of the speech signal as thosencountered in the choice of window length. A longer
frames move through time and attempt to capture thevindow tends to produce a better spectral picture of the
transient features of the signal. A frame of speech can bsignal, but only while the window lies in a stationary
defined as a product of a shifted window with the speectregion of the signal. A shorter window tends to resolve
sequence. events in the signal better in time, often referred to as
spectral-temporal resolution trade-off.[5]

f(n,m = s(nNw(m-n
s( ) (Mw( ) 11.4. Sampling

s(n) represents the speech sequence and is a po
signal. w(n) is a window function which will be
explained later. Practically, a frame is a “segment” of
speech which has been tapered by a window. Formall
it is a new sequence omwhich is zero outside the

frame. A frame of speech may not necessarily be greduce the sequence.

periodic signal.[5] Frames can be repeated periodically

as often as desired and compose a sequence of X(n) = X (nT)
samples.[2]

WS use digital signal processing (DSP) methods on

speech, it is necessary to represent the signal as a
sequence of numbers. This operation is performed by
ySampling the analog signal, &), periodically to

—00 < N<oo

11.3. Window Analysis

Typically, values for the frequency range from 8 kHz to
A window in the time domain, is a real, finite length 16 kHz, where T=1/frequency.[3]
sequence that is used to select a specific frame of the ) ] o
original signal by a simple multiplication process. SomeSpeech signals are not necessarily bandlimited, although
commonly used windows are the rectangular window,the spectrum does tend to fall off at rapidly high
the Kaiser window, the Hamming window, the Hanning freque_nues. To accurately represent all speech sour_1ds, a
window, and the Blackman window. It is usually sampling rate greater than 20 kHz would be required
assumed that windows are causal sequences beginnifgcause for voiced sounds, the high frequencies are
at time n=0 when speaking of w(n) and are linear phasemore than 40 dB below the peak of the spectrum for all
The duration of a window is normally denoted by N. frequencies above 4 kHz. For unvoiced sounds, the
The most commonly used window in speech recognitiorSpectrum has not fallen off noticeably even above 8 kHz.
is the Hamming window. The Hamming window gives But, in most applications, a 20 kHz sampling rate is not
greater attenuation outside the passband, and attenuatidgeded. For example, if the speech is filtered by a sharp
is independent of window duration.[2] The following cut-off analog filter prior to sampling, to force the
equation shows the formula for the Hamming window Nyquist rate to 4 kHz, then a sampling rate of 8 kHz is

and other relevant information.[31] highly possible.[5]
n The conditions under which the sequence of samples is
w(n) = 0.54- 0_463(5% ZT—E valid can be shown as follows: If a signal (), has a
N-1 bandlimited Fourier transform, 4 w), such that X(jw)
nN=01..N=-1 = 0 for w >= 1iFn, then X(t) can ultimately undergo a

unique reconstruction from equally spaced samples
When sampling at this rate, no information is lost, so it X4(nT) if 1/T=2Fn and Fn = Nyquist frequency. This is
is highly possible to exactly fabricate the sequence. Thé&nown as the Sampling Theorem. When given samples
Hamming window operates as a smoother to distort thef a bandlimited analog signal, it is possible to
temporal waveform on the range of N points, but with reconstruct the original signal if the sampling rate is at
less abrupt truncations at the boundaries.[2] In othefeast 2Fn by the following equation[3]
words, the Hamming window aids in aliasing. Aliasing
is when a high frequency takes on the identity of a lower
frequency. It is avoided if the Fourier transform is
bandlimited and the sampling frequency is (1/T) >
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. (t—nT)O autocorrelation of the output signal be equivalent to the
® SNA—=—1 autocorrelation of the original speech signal. If the

X, (1) = Z X,(nT) modeled system is truly pth order all-pole system
a a (t—nT) excited by one impulse, the model derived during the
n=-e n T linear prediction process will be the same as the original

system. However, voiced speech is represented by a

Practical D/A (digital-to-analog) strive to approximate Egtr\',\?:e'ﬁ zljgclqcaelsii)ilztlr:a?igéi igﬁtggj::g :jné\(jigg(;?]r}(rzgm
the above equations. An important factor which is oftenthe desired res onseFE18]

overlooked when sampling is that although the signal P :

waveform may have a bandlimited spectrum, the sign : o L
may be constructed by wideband random noise prior ?cj)The fundamental idea behind linear prediction is that a

A/D conversion. For these cases, the signal plus nOiségrig%gt%in;FIZsctinek;?:hasgrr)rqol):smgtergina}fnigir:Intizr
combination should be filtered with an analog low pass P pe pes. by 9
filter which cuts off sharply above the Nyquist sum of the squared differences between the actual

frequency so that replications of the high frequencysﬁ?eCh 3??2'?3 atndfthre (Ijlint;:arrly p;ﬁdilcrtﬁ‘d onnef;), a
noise are not aliased into the baseband.[2] unique, distinct Set ol predictor coetlicients can be
determined. The predictor coefficients are the weighting

L : . . coefficients used in the linear combinations. Linear
Sampling is practical in many speech processmgprediction provides a robust, reliable, and accurate

algorithms that try to estimate basic parameters o ethod for estimating the parameters that characterize

speech production, such as pitch and formanﬁ:e linear, ime-varying system of speech.[5]
frequencies. In such cases, an analog function is no ' ying sy P :

available to be sampled directly, as in the case of.l_
sampling the speech waveform itself. However, such

parameters change very slowly with respect to time an ; , J -
can be estimated or sampled at rates on the order of 1 hese techniques and methods of linear prediction have

samples/second. When given samples of a speec een availablc_a inlengineering for many de_cades.[2] In
parameter, a bandlimited analog function for thatthe usual applications of LPC to the analysis of speech,

parameter can be constructed. Sometimes, the ter@iosisergecgsaersa?;g}er is used in both the voiced and
decimation is used when talking about the sampling :

rocess. Decimation is a process of sampling rat : . : -
b P PING A%y hen used in speech processing, linear prediction refers

reduction. One important consideration Whento a variety of equivalent formulations of the difficult
implementing decimators is in the choice of the low pass y qu
roblem of modeling the speech waveform. The key

filter (LPF). A noticeable amount of computational giﬁerences among the various formulations are usuall
efficiency over other alternative filter types can be 9 y

: : oo those of the way in which the problem is viewed, or
obtained by using a finite impulse response filter (FIR) . , X P
in a standard direct form implementation. In the even in the details of the computations used to obtain the

decimation process, only one of each output sample Orfrgbﬁg?igﬁg%fpﬂggrs' LZ?CXg;'?#;hjg_me“mes equal,
needs to be calculated.[2] P '

he common set of linear prediction analysis techniques
usually referred to as linear predictive coding or LPC.

« covariance method

12. LP TRANSFORMATIONS

« autocorrelation formulation

One of the most powerful tools for speech analysis is the )

method of linear predictive analysis. This method has® lattice method

become the leading technique for estimating the basic i )

speech parameters, such as pitch, formants, spectrurh,inverse filter formulation

and vocal tract area functions, to describe a signal or the ) ]

system that generated the signal. Linear prediction is SPectral estimation

also beneficial for representing speech for low bit rate ) o )
transmission or storage. It provides extremely accurate Maximum likelihood formulation
estimates of the speech parameters and is highly . )

efficient in computational matters.[2] » inner product formulation

Linear prediction is widely used in speech processing tdnly the first three of these methods really need to be
model the speech source.pth order all pole filter is ~ Studied, because the remainder of the formulations are

found, such that when excited by impulses, its outputtguivalentin some way to one of the first three.[2] In the
has a power spectrum that matches the spectrum of gonventional LP, the linear prediction coefficientgs
given speech signal. Normally, it is required that theare found by either the autocorrelation method or the
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covariance method.[3]

p
—k
The importance of linear prediction lies in the accuracy P(2) = Z &Z
with which the basic model applies to the speech k=1
waveform.[3]

The predictor error, represented by e(n), is
12.1. Fundamental Principals
In the discrete-time model for producing speech, the e(n) = s(n)—s(n)
complex spectrum effects of radiation, vocal tract, and p
glottal excitation are represented by a time varying = s(n) - Z a,s(n-K
digital filter whose steady state system function can be
shown to be in the form of k=1

H(z) = % which shows that the predictor error sequence is the
output of a system whose transfer function is
G
- P ) P
1- Z az A(2 = 1- Z akz_k
k=1 k=1

This system is excited by an impulse train for voiced|f the speech signal obeys the equation for s(n), arif

speech, or by a random noise sequence for unvoiced A, then e(n) = Gu(n). Thus, the predictor error filter
speech. Therefore, the parameters of the model are;

e . . )
voiced/unvoiced classification, pitch period for voiced A(z) will be the inverse filter for the system H(z).[2]

speech, the gain parameter (G), and the coefficient . . o ,
{0y} of the digital filter.[2] Fhe basic problem of linear prediction is to find a set of

predictor coefficientsr directly from the speech signal
I the order (P) is high enough, the all-pole model as to obtain a good estimate of the spectral properties of

provides a good representation for almost all the soundIshe speech signal through

of speech. The major advantage of this model is that the

gain parameter and the filter coefficients can be

estimated in a very straight forward and computationally G
adept fashion by linear prediction.[2] H(z) = m

The speech samples, represented by s(n), are related to
the excitation, represented by u(n), by the differenc

equation ®Because of the time-varying nature of the speech signal,

the predictor coefficients must be estimated from short
segments of the speech signal. The fundamental
p approach is to discover a set of predictor coefficients
s(n) = z Aks( n— K + Gu(n) that will minimize the mean-squared predictor error
Kol over a short segment of speech. The resulting
- parameters are then assumed to be the parameters of the

) ) ) ) o ) system function H(z) in the model for speech
A linear predictor with predictor coefficients, is a  production.[2]

system that has the following output
The short-time average predictor error is defined as

p
5n) = Y as(n-K Ey = 3 (5,(m) ~5(m)°
k=1 m
Th functi f h order li di i i 2
e system function of a pth order linear predictor Is -
= Z 05, Om- Z a s, [ — kI
m k=1
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By setting

we can find the values ady that minimize K. This
results in

S S(m—i)s,(m)

ékz s,(m—1i)s,(m-K)
k=1 m

1<i<p

where ak are the values aj, that minimize E. If we
define

@,(,k) = ZSn(m—i)sn(m—k)

then

p
> (i k) = ¢,(i, 0)
k=1

=212 ..,p

This set ofp equations inp unknowns can be
mathematically solved efficiently for the unknown
predictor coefficientsx,. These coefficients are the

ones that minimize the average squared predictor error

for the segment,gm). The minimum mean-squared
predictor error can then be written as

p

2

2
E, = an(m)—
m k=1

8y Sn(m)s,(m=K

In order to solve for the optimum predictor coefficients,
we have to first calculatey(i,k) for i on the range of

[1,p] andk on the range of [0,p]. Once this operation is
performed, only the equation
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p
Z ak(pn(i’k) = (pn(l’o)
k=1

I =12..,p

has to be solved for ttg’s.[2]
12.2. The Autocorrelation Method

One of the methods used to find linear prediction
coefficients is to use the autocorrelation method. One
way to find the limits on

E, = Y en(m)

is to assume that the part of the waveformyns), is
identically zero outside [0,N-1]. This can be written as

Sp(m) = s(m+ w(m)
where w(m) is a finite length window (i.e, a Hamming
window) that is identically zero outside [0,N-1].

If sp(m) is nonzero only for [0,N-1] then the predictor
error, represented ag(en), for apth order predictor is
nonzero on [0,N-1+p]. So,

N+p-1

Y en(m)

m=0

n

In
e(n) = s(n)—=s(n) ,

it can be seen that the predictor error is likely to be very
large at the onset of the interval [0,p-1] because we are
trying to predict the signal from samples that have been
set equal to zero. It can also be seen that the error can be
large at the end of the interval [N,N+p-1] because we
are trying to predict zero from nonzero samples.
Because of this, a window which tapers the segment,
Sp(mM), to zero is normally used for w(m). But, since

s,(m) is identically zero outside the interval [0,N-1]

N+p-1

z s,(m—i)s,(m-K)

m=0

@i, k) =

Spring 96



The Speech Processing Group Page 20

can be represented as

R,(0)  R(1) R(2) .. R (P-1)||q1 Rn(®)
N—-1-(i—k) R(1  R(0) R (1) ..R(P=2)|42 B R,(2)

oK) = Y s(m)sy(m+i=K) RO R RO R0 oy T g o) 12
R(P-1) R (P-2) ... .. R (0) ap R.(9)

Moreover, it can be shown thai,(i,k) is equal to the
short-time autocorrelation function &) which is

represented by the following equation 12.3. The Covariance Method
N-1-k This method imposes a fixed interval over which the
Z x(m+ nw (m)x(n+ m+ Rw(m) mean-squared error is computed. In other words,
m=0
evaluated for (i-k). That isp(i,k)=R(i-K) where N-1
E, = z e,(m)
m=0
N-1-k
R“(k) = Z S“(m)sn(m+ K) so it follows that
m=0
N-1
Sln_ce R,(k) is an even function, then |t_ follows that (pn(i' k) = z sn(m_ i)sn(m_ K)
@n(i,k) can also be shown to be equivalent to the m=0
following equation .
1<i<p
@i, k) = Ry(li—k) O<ks<p
i=12..,p
k=201..p If the index of summation is changed
Therefore,
p N—-i—-1
Ry(i) = Y aRy(li =k O(i,k) = S sy(m=i)s(m—K
k=1 m = —i
1<i<p 1<i<p
O<ksp
and

To evaluateap,(i,k) overi we have to use the values of

p
En — Rn(O) _ Z akRn(k) tsgl(m) in the range of [-p,N-1]. It does not make sensg to
per the segment of speech to zero at the ends as in the

k=1 autocorrelation method because the needed values for
the covariance method are available outside the interval
[0,N-1]. This method also leads to a function which is
the cross-correlation between two very similar finite
length segments of the speech waveform. Evaluating

When shown in matrix form, we get
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p
e(n) = s(n)— Z a.s(n—K
k=1

It can therefore be seen that whep=20, e(n)=Gu(n).

p
z ., (i, k) = @,(i, 0) A more reasonable assumption is
k=1

i=12..,p

for the covariance, supplies the following matrix

A, O [N,
G Elnz u (m)%): [ Z en(m)}
=0

m=0

= E

n

Simply stated, the energy in the error signal is equal to

the energy in the excitation input.

@n1, 1) Gr(1,2 P, 3) ... Pz, p) atl @10
02 1) Gr2.2 Gr23) ... Pa(2p)||a2 Pn2.0
@31 On32 Gr3.3) ... Gr3 p)||a3 @30
(Pr(p. 1) Gr(p2) . Qrpp| @R [ P(p,0))

Now, assumptions about u(n) must be made in order to
relate G to the known quantities. Remember, the known
quantities are the’s and the correlation coefficients.
For voiced speech, u(nd¢n). Also, p has to be large
enough to account for the vocal tract and the glottal
effects. For unvoiced speech, we assume that u(n) is a
Zero mean, unity variance, static, Gaussian process. For

voiced speech, &n) is the input and

In the autocorrelation method, the signal is windowed
by an N-point window, andp,(i,k) quantities are
obtained using short-time autocorrelation function. In
the covariance method, the signal is assumed to b
known for the set of values on the range of [-p,N-1].
Outside the interval, no assumptions can be made abo
the information in the signal, because these are the onl
values needed in the computation process.[2]

12.4. Gain
Another feasible relation when discussing linear
prediction is to relate the gain constant, represented b

G, to the excitation signal and the error in the prediction.
The excitation signal, represented by Gu(n), is

p
Gu(n) = s(n) - z As(n-K
k=1

and the predictor error signal, represented by e(n), is  Also

MS State Speech Conference

p
h(n) = y ah(n—K +Gd(n)

)is

R(m) = $ h(mh(n+m)
h=o

and satisfies

~ p ~
Rm) = 3 aR(m-K)
k=1

m=1212..0p

p
R(O) = ¥ aR(K) +G?
k=1

R(m) = R,(m)

l1<m<p
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Because
R(0) = R(0)
we get

P
= R,(0) - Z a R (k) = E, [2]
k=1

N

12.5. Levinson-Durbin Recursion

The Levinson-Durbin recursion process for the

Page 22

delete [] rCoeff;

delete [] tCoeff;
return (10 * log10 (energy[order]));
Y end Levinson-Durbin recursion[5]

Levinson first published his algorithm for solvidgx=b
whereA is Toeplitz, symmetric and positive definite,
andb is arbitrary back in 1947. It should be noted that
autocorrelation equations are exactly of this form. In
1960, Durbin came along and published a slightly more
efficient algorithm. Hence, the name Levinson-Durbin
recursion. Levinson-Durbin recursion is a recursive-in-
model-order solution for the autocorrelation
equations.[5]

autocorrelation method is shown below. The code is;2 6. Lattice Formulations

written in the C programming language.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <math/integral/integral.h>

float_4 levdur(float_4 *pCoeff, int_4 order, float_4 *rn,
float_4 *energy)

int_ 4 M = order + 1,
float_4 *rCoeff = new float_4[M];
float_4 *tCoeff = new float_4[M];

/I rn = autocorrelation
energy[0] = rn[O0];

/l recursionfori=1, 2, ..., M
for (int1=1; [ < M; I++)

/linitialize 1 =0
rCoeff[l] = 0;
/I compute the ith reflection coefficient
for (intj=1;j<I; j++)
rCoeff[l] -= tCoeff[j] * r[l - ];
}
rCoeff[l] += rn[l];
rCoeff[l] = rCoeff[l]/energy[l-1];
/I compute the Ip parameters
pCoeff[l] = rCoeff[l];
for (intj=1;j<I; j++)
pCoeff[j] -= (rCoeff[l] * tCoeffl - j]);
energy[l] = energy[l-1] * (1 - pow(rCoeff[l],2));
for (intj=0;j<=1; j++)
tCoeff[j] = pCoeff{j];

}
} /I end for
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Lattice formulations have sort of combined the matrix
correlation values with linear equations to form a
recursive algorithm for finding the linear predictor
parameters. Remember that for tiik stage of this

procedure, the set of coefficientsh j = 1, 2,..., i} are

the coefficients of thath order linear predictor.
Therefore,

i
A(I)(Z) =1 z a(kl)z—k
k=1

is the system function of thieh order inverse filter. If
the input is

Sy(m) = s(m+ w(m)

then the output it the predictor error
. i .
(i) — ()
e’(m)= s(m) - Z o' ’ks(m- K
k=1

and

") = AY2s(2

If we make a simple substitution, we obtain
A@) = Al V) —kz AP

and

E'(2)= (A" P@)s(2 -kz A" (7Y s(2)
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If we define
B'(2) = 7 'A(Z )2

then, the inverse transform can be shown to be

i
b'(m) = s(m-— i) — )3 as(m+ k=
k=1
This equation implies that we are trying to predict s(m-i)
form thei samples of the input that follow s(m-i). Thus,

bi(m) is called the backward predictor error sequence
Thei samples involved in the prediction are the same
ones that are used in the prediction of s(m) in termis of

past samples. The errd(re) can then be expressed as
e(m) = " Pm)-kb" " P(m-1)

Again, making a simple substitution, we get
B'2= (z'8" Y(2-kE1Y(2)

Thus, thath stage backward predictor error is
b'(m) = b' P (m-1)-ke P (m)

Therefore, the forward and backward predictor error
sequences for aith order linear predictor in terms of
the corresponding predictor errors of ariljth order
predictor, which use aerah order predictor, is equal to
using no predictor at all. This implies

0 0
e’(m) = b’ (m) = s(m)
Finally, the lattice structure is defined.[2]
12.7. The Prediction Error Signal

A by product of linear prediction analysis is the
generation of the error signal

e(n) = Gu(n)

p
= s(n)— z as(n-§K
k=1

e(n) is a good approximation of the excitation source. It
is expected that the prediction error will be somewhat
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large for voiced speech.[2] Figure 4 shows the linear
predictor error waveform for a sample speech file.

40.0
20.0¢

0.0t
20.0¢
40.0¢
60.0

Figure 4. LP Waveform.
12.8. Parameter Transformations

One desirable feature of linear prediction is to be able to
easily transform between parameters without loss of
information. For this reason, a pair by the names of
Markel and Gray developed a series of FORTRAN code
that made conversions between parameters relatively
easy. The FORTRAN code developed by Markel and
Gray can be found iinear Prediction of Speech.
Currently, C compatible code is being developed to
performed these conversions. The code is still in the
debugging stage. Once the code has been fully
debugged, it will be a user-friendly menu based system
that allows you to select which type of parameters you
wish to “convert to” from a selected “convert from”
parameter.[4]

13. FFT

The Fourier transform is one of the most important
mathematical applications to signal processing. It has
many widespread applications outside the signal
processing area as well.[feb78,236] A discrete Fourier
transform (DFT) is of the following form

N-1 —j2mkd
X(K) = Z x(n)e
n=0
k=01..,N-1
N-1 j2nkﬂ

x(n) = % Z X(kje "
k=0

n=01..,N-1
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The calculation of the DFT is one of the central multiplication in addition to a smaller number of
operations in digital signal processing (DSP).[26] It is mathematical operations to produce the required powers

important to remember that when using a DFT of W, So, the DFT appears to be an Gfprocess. This
representation, all sequences behave as if they werg highly deceiving. The DFT can be computed on
periodic when represented by a DFT. The DFT is widelyo(Nlog,N) operations with an algorithm dubbed the fast

used for computing spectrum estimates, Co”elatior]:ourier transform (FFT).[36] The development and

functions, and for implementing digital filters.[book] ., ;
The DFT can be implemented as a filter bank in a Waymdespread use of the FFT, stimulated by the paper of

; : - Cooley and Tukey, has had a major impact on signal
which reduces the number of filter coefficients.[feb78, : ;
56] A digital filter is a discrete-time linear shift- przo_cess'”g'[_%] The key difference between Ngind
invariant system that relates the output to the input. y(n)\“ is extensive. With Nzl‘a itis the difference between
represents the output, x(n) the input, and h(n) the uniB0 seconds of CPU time and 2 weeks of CPU time on a
sample response. h(n) is the convolutoin of x(n) withmicrosecond cycle time computer. The very existence of
y(n). H(d%) represents the frequency response of the?n FFT became generally known in the mid-1960s, from

; o the work of J.W. Cooley and J.W. Tukey. Looking back,
fgssggrr]r;e()tf[lze] Fourier transform of the unit impulse we now know that efficient ways for computing the DFT

had been independently discovered... even

C oo . implemented... by perhaps a dozen people, starting with
The poles lie inside the unit circle for stability, bounded_Gauss way back in 18051[36]

input bounded output, and the system is causal (h(n) =
0). For a finite impulse response (FIR) filter, no nonzeroOne discovery of the FFT, that of Danielson and

poles exist, only zeros exist. The FIR can be exactly : . U
linear in phase. Being of linear phase is very useful inb@nczos in 1942, provides a clear derivation of the

speech processing applications where precise tim&9071thm. This duo showed that the DFT of length N
alignment is essential. This property of FIR filters also Can be rewritten as the sum of two DFTs, each of length
can greatly simplify the approximation problem since it N/2.' One of the two Is formed from the even-numbered
is only necessary to be concerned with approximating points of the_: original N, t_he other frgm the odd-
desired magnitude response. The drawback, however, gumbered points. The proof is as follows:

that a large impulse response duration is required to
adequately handle sharp cut-off filters. Another type of
filter is the infinite impulse response filter. This filter has
poles as well as zeros and cannot have exact linear

N

phase. The orders of magnitude are more efficient in élg_l 212k 271 21(2] +1)k+§
realizing sharp cut-off filters than in the case of the FIR 0y e N2tj . Z R N2f(5j +l)H
filter.[2 —

[2] Fp = E{j=0 =0 E
A question still remains about the amount of
computation required in computing the DFT of N = (FE+ WKFE)
points. For many years, up until the mid-1960’s, the
answer was:

In the last line, W is a complex constan€; Fepresents

thekth component of the Fourier transform of length N/
2 from the even components of the origings fwvhile

i
21—
Define W as the complex numbé&f = e

Then FO is formed from the odd components. One should
also notice thak varies from 0 to N, not just to N/2. The
N-1 transforms B and P, are periodic irk with length N/2
H(n) = z Wnkhk whic_h has the effect of repeating through two cycles to
K=o obtain F.[36]

The good thing about the Danielson-Lanczos Lemma is
that it an be used recursively. Oncglias been reduced
Stated more clearly, the vector gfhiis multiplied by a  to computing F, and Py, we can reduce % to

matrix whose(n,k)th element is the constant W to the computing the transform of its N/4 even parts and N/4
power n*k. The matrix multiplication produces a vector odd parts.[36]

result whose components are thg'si N2 complex _
multiplications are required for this matrix Although there are ways of treating other cases, the
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easiest, most useful case is the case in which the origindlhe FFT code to compute the radix-2 FFT is shown.
N is an integer power of 2. It is normally recommended This code is written in the C programming language.
that the FFT be used only in cases where N is a power of
2. If the length of the signal is not a power of 2, it can be#include <stdio.h>
padded with zeros up to the next power of two so that#include <string.h>
the FFT can be used. With this restriction on N, it is #include <math.h>
shown that we can keep using the Danielson-Lanczo#include <math/integral/integral.h>
Lemma until a transform of length 1 has been found.
The Fourier transform of length one is the identity void find_fft(int_4 fft_len,float_4* xr,float_4*
operation that copies its one input number into its onexi,float_4* wr, float_4* wi)
output slot. In other words, for each k¢ even and odd
part, there exists a one-point transform that is just one of o
the input numbers,{36] int_4 m,|,iL,i2;
int_4 nl,n2;
The next trick is to decide which value ofcorresponds ~ f10at_4 real_twid,imag_twid;
to which pattern of even and odd parts. Simply reversd!0at_4 tempr, tempi;
the even and odd parts and set the even part equal to
zero. You should then set the odd part equal to one. Thi§! = (in)(Ilog10(fft_len)/log10(2));
provides you with in binary value af. This works N2 = fit_len;
because successive subdivisions of the signal into evep o .
and odd parts are test of successive low-order bits of Or(INti=1;i<m+1;i++)
This idea of “bit reversal” can be exploited in a very

resourceful way which, with the Dnaielson-Lanczos "1 =n2; _
Lemma, makes the FFT very practical.[36] inlz—_l('mt_4)(n2/ 2);

Now, we have the structure of the FFT algorithm. Itis 12 = (int_4)((fft_len)/n1);
composed of two key sections. The first section sorts the Or(intj=1; j<n2+1; j++)
signal into bit-reversed order, taking up no additional _ .

storage or memory because you are simply swapping;“_tw'o_I = wr[i1];
elements, so to speak. The second section has an outi8ag_twid = wili1];

loop that is executed logN times and computes o o
transforms of length 2, 4, 8,..., N. Two nested innerfor('m k= k<=fft_len; k =k +n1)
loops that range over the subtransforms already |
computed and the elements of each transform,
implementing the Danielson-Lanczos Lemma, compose
each stage of this process. The mathematics is made
more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop.[36]

=k + n2;

tempr = xr[K] - xr[l];

xr[k] = xr[k] + xr[l];

tempi = xi[k] - xi[l];

xi[K] = xi[k] + xi[l];

xr[l] = real_twid*tempr + imag_twid*tempi;

T o L -~ i
Whenever data is rearranged into a bit-reversed order, it Xi[l] = real_twid*tempi - imag_twid*tempr;

is referred to as @ecimation-in-timeprocess, or }
Cooley-Turkey FFTIt is also possible to compute the 1= i1 + i2-
FFT algorithm that first sorts through a set of by ’
iterations on the input data and then rearranges the

output values into bit-reversed order. These are called
decimation-in-frequengyr Sande-Turkey FETFor /lprocedure for bit reversal
some applications, like convolution, a data set is takefypat 4 temp = 0:

into the Fourier domain, and forced back out again afterimj -1 '

a fair amount of manipulation. In these cases, it is '

possible to avoid bit reversing. The decimation-in-éor (inti=1:i<fft_len: i++)
frequency algorithm minus the bit reversing can be use ' -

to obtain the “scrambled” Fourier domain, perform you ¢ (i <j)

operations, then use an inverse algorithm minus its bit

reversing to return to the time domain. This proceduretemp = xr[j];

however does not save much computation time becaug@rm = xr[il; '

the bit reversals represent only a small fraction of any il = tem’p'

FFT’s mathematical calculations count.[36] temp = xi[j];’

xifi] = xifil;
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xi[i] = temp; sequence is also a real sequence must also be imposed.
One should recall that the Fourier transform is an even
function, and that the imaginary part of the

int_4 k = fft_len/2; N-1
jWy —jwn
while (k < ) Xp(e") = > x(ne
{ n=0
j :j - k, < < _
k = ki2: N<k<N-1
Ry ) N-1 —j2mkd
=1+ K _
}J 1T Xp(K = Y x(ne
Mlend FFT routine[4] n=0
13.1. Cepstral Analysis transform is odd. For the complex cepstrum to be a real

sequence, the log magnitude function has to be an even

“Cepstral” analysis is primarily motivated by the function of w, and the phase must be an odd function of

problems that focus on voiced speech. Voiced speecﬁl[S]

are sounds produced by forcing air through the glotti

with the tension of the vocal cords adjusted so that the . - .
equations efficiently. Thus, the approach for computing

vibrate in a relaxation oscillation thus producing quasi-th | ; is t I Il of the Fouri
periodic pulses of air which excite the vocal tract. Some''® COMPIEX CEPSIrUM 1S o répiace all of the Fourier
ansform operations with the corresponding FFT

examples of voiced sounds are: |ul, [d], |w], fil, and |e|'[(B)r]perations. The following equations show how to find

The spectrum of a speech waveform is thethe cepstral coefficients based on the FFT analysis

representation of the signal with which we can asses&PProach. c(n) represents the cepstrum.[S]
the “separation” of the component parts. The eventual
derivation of needed information about those specific 1 N-1 —j2nk£
components may also result. The cepstrum represents a c(n) = N Z (IogIXp( k)|)e

k=0

he FFT can be used to approximate the cepstrum

transformation on the speech signal where the

representatives of the component signals are separated

in the cepstrum. These representatives are linearly 0<n<N-1
combined. The cepstrum may also serve to be sufficient

enough to provide the needed information on thegecase of aliasing that is inherent in the use of the FFT
properties of the component signals. Llngar filters cany, the computation of cepstral coefficients, it is

also be used to then remove undesired cepstralggessary to use a rather large value of N, the number of
components.[5] points of the FFT or stated another way, the high rate of

ling the Fouri form.
When using a cepstrum, the typical scale used isitae sampling the Fourier transform. 5]

spaced cepstrum. A mel is a unit of measure of
perceived pitch or frequency of a tone. The mapping o

the mel scale is linear up to 1 kHz and then |°gari,thmicdiscrete cosine transform (DCT). This principle is
above 1 kHz. The mel scale does not correspond “”ea”)épplied to the evaluation of the real and complex

to the physical frequency of the tone as the human‘pseudocepstrum" of speech signals. In both the real

auditory system_fails to perqeive pitch in a linear 5pq the complex cepstrum cases, it is found that the use
manner. Perception of a particular frequency by the

i i< infl db . o Iof the DCT does not degrade the information contained
ggngoo?/f?gc?ltjzwclise smarlé)ir;%ethatypear;?i(r:%)llalrnf?eaUg(r:\gyin the cepstrum, but it does substantially reducing the
The bandwidth of the critical band will vary with computational complexity.[19]
frequency, beginning around 100 Hz for frequencies
below 1 kHz and then increasing logarithmically above
1 kHz.

f the original signal is defined to be symmetrical, the
FFT used in cepstral analysis can be replaced by a

13.2. LP Cepstrum vs. FFT Cepstrum

Based on studies performed on LP and FFT based
To use the FFT in computing the cepstrum theCepstrum analysis, it has been shown that the spectral
| envelope derived from the LP cepstrum is slightly

following equations must beln order to define the ~. .
complex cepstrum by the FFT, we have to define thedifferent from the spectral envelope derived from the

complex logarithm of the Fourier transform. A FFT cepstrum. Several experiments were performed

constraint that the complex cepstrum of a real inputSing Six utterances. The size of the time window was
fixed to 256 samples to extract the FFT cepstrum. The
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window size for the LP cepstrum measurements was seBy time averaging the acoustic attributes of speech over
to 30 msec. The FFT cepstrum computational time waglifferent speech text, it was shown that some features
almost twice that of the LP computational time. A key (pitch, reflection coefficients, gain, etc.) exhibited large
reason for this difference is that two Fourier inter-speaker variability regardless of the context.
transformations are included in the FFT based approactT herefore, long-term averaging of acoustic features
In terms of distance ratio measures, the FFT and the LBeems suitable for text-independent speech recognition.
results were relatively the same, except for the fact thalNot all acoustic features of speech are useful to speech
the FFT results focused on the first-order cepstrum. Theecognition. A selection procedure must be composed to
LP cepstrum produces almost the same results in speedeep only those features which give the best results[15].
recognition as the conventional FFT cepstrum. LP based

analysis tends to perform poor in noisy enviromentsTo select the k best features from an entire set N, the

whereas the FFT performs well.[21] optimal method is to consider all the combinations of N
objects taken k at a time and exhaustively search for the
14. FEATURE SELECTION best one. This method requires a tremendous amount of

computation which leads to the implementation of

] - ~ suboptimal schemes, such as search without
The final goal of all speech recognition systems is toreplacement (“knock-out” strategy). These algorithms
devise an automatic, time-independent, unbiased systegtart with the evaluation of the N features one at a time
that can duplicate the human ability to perform fast,and “knocks-out” the most effective feature. This
accurate, and text-independent speaker recognition. Thigature is then coupled one at a time with the remaining
task is not a trivial one. Once the acoustic attributes OfN_]_ attributes in the set. These feature pairs are then
speech have been extracted and compared with gvaluated resulting in the knock-out of the best pair of
reference set, the attributes will be recognized if there igeatures. The disadvantage of this approach is that the
a close enough correlation between the two sets. Thugesulting subset which contains the best features is not
the speaker is said to be recognized. In text-dependemfecessarily the optimal subset of features.[15]
speech recognition in which the test and the reference
features are derived from the same text materialin automatic speech recognition, the features used are
meaningful comparisons between the two sets can btheasured from the speaker’'s speech, and each
made after time aligning the utterances. The samgneasurement of these features can be represented by a
situation fails for text-independent cases where the tespoint in the N-dimensional feature space. Through
and reference sets bear no linguistic relationship to ongepetition of the measurement process, a cluster of
another. The success of text-independent speecpoints are generated in the space and they are distributed
recognition must therefore depend on the extraction of &ccording to some N-dimensional probability density

set of acoustic properties that can characterize eacfunction (pdf) which characterizes the variance in the
speaker independent of the text.[15] speaker’s voice.[15]
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Figure 4. Feature Selection Flow Chart.
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Before making a decision about the goodness of some L-i—1
features, the classifier used to distinguish the speaker R = 1

pdf's has to be established. Once this decision logic has i R, z SS
been formed, the features can be evaluated. For t=0
identifying unknown speaker’s, a meaningful i =23..,p

effectiveness measure is the error performance of the

features over some test data. The set of features that _ . . .
commits the most errors in identifying a group of vv_herep = the order of the linear predictor, and Ro is
speaker’s is said to be the least effective one. AndVen by

effectiveness measure of this stature can be determined

experimentally by using the attributes in the L-1

identification experiment and summing up the mistakes R0 = z §

made, sometimes termed a scoring function. t=o

Implementation of this measure requires an

gxtraordlnary amou'nt'of computation. Another rT]emOdThe PARCOR coefficients, K and the normalized
is to exploit the statistical properties of the features and

compute the probability of the error from the speaker,sabsolute prediction error energy, |e|, were determined

pdf. This scheme involves the estimation of the YSing the Levinson-Durbin recursion algorithm. The

multidimensional distribution from a set of labeled C€PStral coefficients, Cwere derived from the

training samples. If the distribution happens to bepredictive coefficients.[15]

Gaussian, the probability or the error is found by )

integrating over the error range. This calculation is T0 allow the feature set to be applicable to the text-

difficult to perform and is a tedious process.[15] independent speech recognition system, each feature
was averaged over some input test

Figure 4 shows a schematic of feature selection process.

by ten different speakers to comprise a database. These

sentences bear no linguistic relationship to one another,

but they are phonetically balanced. Each list is

composed of ten sentences. The first two lists were use¢here ¥ was theith feature derived from thigh speech

as the training set while the last two lists were used asame. L, was the number of frames used in the
the test set. From these “StS, a set of 32 features can tw/eraging process. Also of note is the fact that on|y
found from the input speech. These features are: pitcRoiced frame features were considered because silence,
value, log energy, ten PARCOR coefficients (partial yoice and unvoiced speech are assumed to be sample

correlation coefficients), ten cepstral coefficients, functions of different random processes.[15]
normalized absolute prediction error energy, and nine

normalized autocorrelation coefficients. Pitch value, M,
can be determined by using the average magnitude
difference function. The log energy (in decibels) is
computed with the following formula Because of the vital role that speech plays in the
everyday lives of people, speech recognition is a much

I‘V
' 1
For example, suppose four lists of sentences were read D@ — L_ Z Xij

15. SUMMARY

1 L desired area of research. Whether this research is being

— 4 performed simply to make the everyday, routine tasks of

E 10log L Dz SZD life easier for people or whether it's purpose is to aid the
i=1 physically challenged, speech research will be carried

out well into the next century. From voice activated
where $is the input speech and L is the frame lengthautomatic teller machines to operator assistance to
(frame duration * sample frequency). The linear controlling your personal computer with your voice
prediction coefficients can be found through the use of anstead of a mouse, the need for robust speech
10th order linear predictive analysis on the Hamming -recognition systems is evident.
windowed speech waveform using the autocorrelation
method. The normalized autocorrelation coefficients Riln order for a speech recognition system to be the best
were calculated with quality, most robust system, strong emphasis must be
placed on the signal modeling component of the speech
recognizer. If you do not start off on the right foot so to
speak, how will your end result be the best that it can
be? For that reason, the front-end of the speech

MS State Speech Conference Spring 96



The Speech Processing Group Page 29

recognition system must be carefully constructed. Many 26. ftp://ftp.cs.cmu.edu/project/fgdata/
useful DSP tools enable the front-end to be duly speech-compression/LPC/
constructed to minimize the error in the performance of J

27. http://www.lhs.com/

the overall recognition system. -

28. Pan, R. and C.L. Nikias, “The Complex
Cepstrum of Higher Order Cumulants
and Nonminimum Phase System

Once the front-end of a speech recognizer has been
thoroughly tested, thoroughly meaning exhaustive tests
on extensive databases, the front-end can be

incorporated into a speech recognition system that is
composed of the front-end, search, and language

modeling.
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