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ABSTRACT

Communication is a key factor in life. In order to be a
productive communicator, speech must be generated
and comprehended, by fully understanding the speech
signal. Information theory states that speech can be
represented in terms of its message content. Another
way of describing speech is in terms of an acoustic
waveform, the signal relaying the message content. A
typical speech recognizer is composed of three main
elements: the front-end or acoustic model, search, and
language modeling. In this project, the first element of
a speech recognizer, the front-end model will be
discussed with special emphasis given to the fast
Fourier transform (FFT) based measurements, linear
prediction coefficient (LPC) transformations, and
feature selection. The over-all purpose of this project is
to design and implement the specific aspects of the
acoustic model mentioned above with the final goal of
incorporating them into a speech recognition system.

9. INTRODUCTION

“Then you should say what you mean,” the March Hare
went on.

“I do,” Alice hastily replied: “At least - at least I mean
what I say - that’s the same thing, you know.”

“Not the same thing a bit!” said the Hatter. “Why, you
might just as well say that ‘I see what I eat’ is the same
thing as ‘I eat what I see’!”

-Lewis Carroll, Alice’s Adventures in Wonderland.[40]

Speech serves as a person’s primary means of
communication.[6] Just like the fictitious Alice in
Alice’s Adventure’s in Wonderland, people often find
themselves saying things that do not express what they
truly mean. What we say and what we mean sometimes
may be totally unrelated vocalizations. If the human
neural system has a difficult time deciphering a fellow
human’s vocalizations, imagine the difficulty a speech
recognizer must have. Afterall, we humans are the ones
developing the recognizer.

Speech processing depends heavily on basic researc
the hearing science as well as research in the spe
science.[5] Both of these sciences have been stud
extensively over the past century and will continue to b
studied well into the next century. One must understa
basic concepts from those sciences to effectively diss
and model a speech waveform.

In order to physically communicate, a speaker has
produce a vocalization or speech signal. This spee
signal travels a path from the speaker’s mouth to th
listener’s ear in the form of a sound pressure wave,
more accurately stated, as an acoustic waveform. T
acoustic waveform is also generated from the throa
nasal cavity, and cheeks of the speaker. The ordering
these sounds stems from various rules relative to
language. Linguistics, the study of language and t
way relative rules re used in the communication proce
and phonetics, the study of the traits or characteristics
sound production, comprise a large part of spee
recognition. Phonetics will be the main theme of thi
paper as this paper’s primary focus is on the front-en
model of a speech signal.[5]

The conversion of an acoustic waveform into a writte
equivalent of the information transmitted is terme
speech recognition. Speech recognition is high
sensitive to the various constraints placed on a speak
the speaking environment, and the context of th
information being spoken. Future applications fo
speech recognition systems continue to be unlimited.
From directory assistance in telephone communicatio
to voice communication with man-made machines, th
need for reliable, robust speech recognition systems
unmistakable.[35]

One of the initial steps in speech recognition is th
parameterization of a speech signal. Meaningf
parameters which simulate the human auditory a
perceptual systems aid algorithms that model the ve
complicated speech signal. The ultimate goal of the
algorithms is to maximize the speech recognizer
performance. For this reason, the process of sign
modeling can best be described as the methods thro
which sequences of speech signals are adapted
vectors to depict specific events in a probabilit
MS State Speech Conference Spring ’96
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space.[1]

Four basic components of signal modeling beneficial
speech research are spectral shaping, spectral analy
parameter transformation, and statistical modelin
Spectral shaping comprises itself of analog-to-digit
(A/D) conversion (from a sound pressure wave to
digital signal) and digital filtering (focusing on the key
frequency components of the speech signal). Spect
analysis, the principal theme of this paper, is forme
form six major components:

● digital filter bank

● the Fourier transform filter bank

● cepstral coefficients

● linear prediction coefficients

● linear prediction-derived filter bank amplitudes

● linear prediction-derived cepstral coefficients.

Today, both the Fourier transform and linear predictio
components play highly instrumental roles in variou
applications of speech processing. The third compone
of signal modeling, parameter transformation, i
p rocessed in two ways : d i f fe ren t ia t ion an
concatenation. A parameter vector that contains t
minimal estimates of the signal forms the output of th
stage. By minimal, we mean that the smallest number
vectors needed to reconstruct the speech signal are
output. The final aspect of signal modeling, th
statistical modeling of the signal parameters, involve
forcing a model of some sort on the data, training th
model, and measuring the quality of the approximatio
Because of its fundamental function to a speec
recognition system, extremely knowledgeable mode
are implemented.[1]

10. THE FRONT END

A speech recognition system can be broken up into thr
main components: the front-end, search, and langua
modeling. The focus of this paper will be on particula
aspects of the front end. Figure 1 displays the three k
components of a speech recognizer. Al l thre
components are individual players in the game of spee
recognition, but they must all work together in som
fashion in order to have a fully working speec
recognizer.

The special features of the front-end that are of prima
concern in this project are: fast Fourier transform (FFT
analysis with cepstral coefficients, linear prediction(LP
transformations, and feature selection. Figure 2 depi
how these measurements can be taken from the spe
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Figure 2. The Front-End Features.

10.1. The Speech Signal

The speech signal or waveform is a time versus
amplitude depiction of the vocalizations formed by the
speaker. Each speaker ’s voca l t rac t shape is
characterized by a set of resonant frequencies. From the
system modeling point of view, the articulators (vocal
cords, velum, tongue, teeth, and lips) are the key
elements which determine the properties of the speech
system filter. Because these resonances tend to “form”
the overall spectrum, they are often referred to as
“formants”. It should also be noted that typical human
speech is limited to a bandwidth that typically ranges
from 7 kHz to 8 kHz. Figure 3 shows a speech
utterance.[5]

10.2. Acoustic Theory of Production

Much of modern signal processing notions related
speech stem from extensive engineering research
performed on the analog acoustic modeling of speech
production. A great deal of this research was performed
in the mid-twentieth century. The primary motivation
for understanding the means of speech production
comes from the fact that speech is a human being’s main
means of communication. Because of the developments
in acoustic theory, more and more aspects of human
voice production are now understood by researchers.
The continued quest of basic speech analysis has
provided new and more realistic means of performing
speech synthesis, coding, and recognition. It should also
be noted that the mathematical representations of human

speech production provide a sound foundation f
applications in the process of speech recognition.[5]

11. SIGNAL MODELING

11.1. Parameter Selection

The parameters that were selected for the testing of
acoustic model are as follows:

● Sample Frequency = 16 kHz

● Pre-Emphasis Factor = 0.95

● Frame Duration = 20 msec

● Window Duration = 30 msec

● A Hamming Window

The pre-emphasis factor was selected to be 0.95 beca
typical values range between 0.4 and 1.0. The values
0.95 was finally chosen because it can be implement
in hardware easier than other values, and it amplifies t
area of the spectrum above 1 kHz, where hearing h
been found to be more sensitive. The pre-empha
factor also improves the efficiency of the analysis. Th
frame and window duration were selected as a pa
These values are based on the rate of change of the vo
tract shape. The sample frequency of 16 kHz wa
chosen because 16 kHz offers better time and frequen
resolution than a lower sample frequency would.
should be noted that if working in a telecommunication
environment, a lower sample frequency, i.e, 8 kH
should be chosen. Finally, the Hamming window wa
chosen to help form a smoothed spectral estimate of
power in the regions where the power changes rapid
Other windows could have been chosen, but mo
speech recognition systems today utilize the Hammi
window.[1]

11.2. Frame Analysis

The continuous-time Fourier transform is a particular
beneficial tool in the analysis of a speech signal. In i
fundamental definition, however, the Fourier transfor
requires our knowledge of the signal for all time, an
whatever feature we wish to discover by use of th
Fourier transform (i.e., a spectrum) must remain tim
invariant during the duration of the signal. An
underlying assumption in most speech processi
schemes is that the properties of a speech signal cha
relatively slowly with time.[2]] Most signals fail to
remain “stationary” with respect to the desire
measurement for the signal duration. This is very tru

0.0 5.0 10.0 15.0
-10.0
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0.0
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100

Figure 3. A speech waveform.
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when you refer to the speech signal. Therefore, we must
analyze the signal on a “short-term” basis. One short-
term tool for signal analysis is the discrete Fourier
transform (DFT). The DFT focuses on “static” analysis
in which a single frame of a signal is operated on. We
cannot be content however to analyze speech on a short-
term basis in a single frame. Therefore, we must analyze
a sequence of frames of the speech signal as those
frames move through time and attempt to capture the
transient features of the signal. A frame of speech can be
defined as a product of a shifted window with the speech
sequence.

s(n) represents the speech sequence and is a power
signal. w(n) is a window function which will be
explained later. Practically, a frame is a “segment” of
speech which has been tapered by a window. Formally,
it is a new sequence onn which is zero outside the
frame. A frame of speech may not necessarily be a
periodic signal.[5] Frames can be repeated periodically
as often as desired and compose a sequence of
samples.[2]

11.3. Window Analysis

A window in the time domain, is a real, finite length
sequence that is used to select a specific frame of the
original signal by a simple multiplication process. Some
commonly used windows are the rectangular window,
the Kaiser window, the Hamming window, the Hanning
window, and the Blackman window. It is usually
assumed that windows are causal sequences beginning
at time n=0 when speaking of w(n) and are linear phase.
The duration of a window is normally denoted by N.
The most commonly used window in speech recognition
is the Hamming window. The Hamming window gives
greater attenuation outside the passband, and attenuation
is independent of window duration.[2] The following
equation shows the formula for the Hamming window
and other relevant information.[31]

When sampling at this rate, no information is lost, so it
is highly possible to exactly fabricate the sequence. The
Hamming window operates as a smoother to distort the
temporal waveform on the range of N points, but with
less abrupt truncations at the boundaries.[2] In other
words, the Hamming window aids in aliasing. Aliasing
is when a high frequency takes on the identity of a lower
frequency. It is avoided if the Fourier transform is
bandlimited and the sampling frequency is (1/T) >

2Fn.[3] The window slides along the signal in time
selecting portions of the signal in the process. A long
window requires a longer period to cross transition
boundaries in the signal. Also, events from differen
regions of the signal will probably be blurred togethe
more frequently than if a shorter window had bee
selected. Therefore, a trade-off in window selection
encountered in the choice of window length. A longe
window tends to produce a better spectral picture of t
signal, but only while the window lies in a stationary
region of the signal. A shorter window tends to resolv
events in the signal better in time, often referred to
spectral-temporal resolution trade-off.[5]

11.4. Sampling

To use digital signal processing (DSP) methods o
speech, it is necessary to represent the signal a
sequence of numbers. This operation is performed
sampling the analog signal, Xa(t), periodically to
produce the sequence.

Typically, values for the frequency range from 8 kHz t
16 kHz, where T=1/frequency.[3]

Speech signals are not necessarily bandlimited, althou
the spectrum does tend to fall off at rapidly high
frequencies. To accurately represent all speech sound
sampling rate greater than 20 kHz would be require
because for voiced sounds, the high frequencies a
more than 40 dB below the peak of the spectrum for a
frequencies above 4 kHz. For unvoiced sounds, t
spectrum has not fallen off noticeably even above 8 kH
But, in most applications, a 20 kHz sampling rate is n
needed. For example, if the speech is filtered by a sha
cut-off analog filter prior to sampling, to force the
Nyquist rate to 4 kHz, then a sampling rate of 8 kHz
highly possible.[5]

The conditions under which the sequence of samples
valid can be shown as follows: If a signal, Xa(t), has a
bandlimited Fourier transform, Xa(jω), such that Xa(jω)
= 0 for ω >= πFn, then Xa(t) can ultimately undergo a
unique reconstruction from equally spaced sampl
Xa(nT) if 1/T=2Fn and Fn = Nyquist frequency. This is
known as the Sampling Theorem. When given samp
of a bandlimited analog signal, it is possible t
reconstruct the original signal if the sampling rate is
least 2Fn by the following equation[3]

f s n m,( ) s n( )w m n–( )=

w n( ) 0.54 0.46 2π n
N 1–
------------- 

 cos–=

n 0 1 … N 1–, , ,=

x n( ) Xa nT( )=

∞– n ∞< <
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Practical D/A (digital-to-analog) strive to approximate
the above equations. An important factor which is often
overlooked when sampling is that although the signal
waveform may have a bandlimited spectrum, the signal
may be constructed by wideband random noise prior to
A/D conversion. For these cases, the signal plus noise
combination should be filtered with an analog low pass
fi l ter which cuts off sharply above the Nyquist
frequency so that replications of the high frequency
noise are not aliased into the baseband.[2]

Sampling is practical in many speech processing
algorithms that try to estimate basic parameters of
speech product ion, such as pi tch and formant
frequencies. In such cases, an analog function is not
available to be sampled directly, as in the case of
sampling the speech waveform itself. However, such
parameters change very slowly with respect to time and
can be estimated or sampled at rates on the order of 100
samples/second. When given samples of a speech
parameter, a bandlimited analog function for that
parameter can be constructed. Sometimes, the term
decimation is used when talking about the sampling
process. Decimation is a process of sampling rate
reduct ion. One important considerat ion when
implementing decimators is in the choice of the low pass
filter (LPF). A noticeable amount of computational
efficiency over other alternative filter types can be
obtained by using a finite impulse response filter (FIR)
in a standard direct form implementation. In the
decimation process, only one of each output samples
needs to be calculated.[2]

12. LP TRANSFORMATIONS

One of the most powerful tools for speech analysis is the
method of linear predictive analysis. This method has
become the leading technique for estimating the basic
speech parameters, such as pitch, formants, spectrum,
and vocal tract area functions, to describe a signal or the
system that generated the signal. Linear prediction is
also beneficial for representing speech for low bit rate
transmission or storage. It provides extremely accurate
estimates of the speech parameters and is highly
efficient in computational matters.[2]

Linear prediction is widely used in speech processing to
model the speech source. Apth order all pole filter is
found, such that when excited by impulses, its output
has a power spectrum that matches the spectrum of a
given speech signal. Normally, it is required that the

autocorrelation of the output signal be equivalent to th
autocorrelation of the original speech signal. If th
modeled system is truly apth order all-pole system
excited by one impulse, the model derived during th
linear prediction process will be the same as the origin
system. However, voiced speech is represented b
periodic signal exciting the system and interferenc
between successive periods can cause a deviation fr
the desired response.[18]

The fundamental idea behind linear prediction is that
speech sample can be approximated as a line
combination of past speech samples. By minimizing th
sum of the squared differences between the actu
speech samples and the linearly predicted ones
unique, distinct set of predictor coefficients can b
determined. The predictor coefficients are the weightin
coefficients used in the linear combinations. Linea
prediction provides a robust, reliable, and accura
method for estimating the parameters that character
the linear, time-varying system of speech.[5]

The common set of linear prediction analysis techniqu
is usually referred to as linear predictive coding or LPC
These techniques and methods of linear prediction ha
been available in engineering for many decades.[2]
the usual applications of LPC to the analysis of speec
the same parameter is used in both the voiced a
unvoiced cases.[25]

When used in speech processing, linear prediction ref
to a variety of equivalent formulations of the difficult
problem of modeling the speech waveform. The ke
differences among the various formulations are usua
those of the way in which the problem is viewed, o
even in the details of the computations used to obtain t
predictor coefficients. The various, sometimes equa
formulations of linear prediction include:

● covariance method

● autocorrelation formulation

● lattice method

● inverse filter formulation

● spectral estimation

● maximum likelihood formulation

● inner product formulation

Only the first three of these methods really need to b
studied, because the remainder of the formulations a
equivalent in some way to one of the first three.[2] In th
conventional LP, the linear prediction coefficientsαk’s
are found by either the autocorrelation method or th

Xa t( ) Xa nT( )
π t nT–( )

T
------------------- 

 sin

π t nT–( )
T

-------------------
-------------------------------------

n ∞–=

∞

∑=
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covariance method.[3]

The importance of linear prediction lies in the accuracy
with which the basic model applies to the speech
waveform.[3]

12.1. Fundamental Principals

In the discrete-time model for producing speech, the
complex spectrum effects of radiation, vocal tract, and
glottal excitation are represented by a time varying
digital filter whose steady state system function can be
shown to be in the form of

This system is excited by an impulse train for voiced
speech, or by a random noise sequence for unvoiced
speech. Therefore, the parameters of the model are:
voiced/unvoiced classification, pitch period for voiced
speech, the gain parameter (G), and the coefficients
{ αk} of the digital filter.[2]

If the order (P) is high enough, the all-pole model
provides a good representation for almost all the sounds
of speech. The major advantage of this model is that the
gain parameter and the filter coefficients can be
estimated in a very straight forward and computationally
adept fashion by linear prediction.[2]

The speech samples, represented by s(n), are related to
the excitation, represented by u(n), by the difference
equation

A linear predictor with predictor coefficientsαk is a
system that has the following output

The system function of a pth order linear predictor is

The predictor error, represented by e(n), is

which shows that the predictor error sequence is t
output of a system whose transfer function is

If the speech signal obeys the equation for s(n), an ifαk
= Ak, then e(n) = Gu(n). Thus, the predictor error filte
A(z) will be the inverse filter for the system H(z).[2]

The basic problem of linear prediction is to find a set o
predictor coefficientsαk directly from the speech signal
as to obtain a good estimate of the spectral properties
the speech signal through

Because of the time-varying nature of the speech sign
the predictor coefficients must be estimated from sho
segments of the speech signal. The fundamen
approach is to discover a set of predictor coefficien
that will minimize the mean-squared predictor erro
over a short segment of speech. The result in
parameters are then assumed to be the parameters o
system funct ion H(z) in the model for speec
production.[2]

The short-time average predictor error is defined as

H z( ) S z( )
U z( )
------------=

G

1 akz
k–

k 1=

p

∑–

--------------------------------=

s n( ) Aks n k–( ) Gu n( )+
k 1=

p

∑=

s̃ n( ) aks n k–( )
k 1=

p

∑=

P z( ) akz
k–

k 1=

p

∑=

e n( ) s n( ) s̃ n( )–=

s n( ) aks n k–( )
k 1=

p

∑–=

A z( ) 1 akz
k–

k 1=

p

∑–=

H z( ) G
U z( )
------------=

En sn m( ) s̃n m( )–( )2

m
∑=

sn m〈 〉 aksn m k–〈 〉
k 1=

p

∑–〈 〉
2

m
∑=
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we can find the values ofαk that minimize En. This
results in

where ak are the values ofαk that minimize En. If we
define

then

This set of p equat ions inp unknowns can be
mathematically solved efficiently for the unknown
predictor coefficientsαk. These coefficients are the
ones that minimize the average squared predictor error
for the segment sn(m). The minimum mean-squared
predictor error can then be written as

In order to solve for the optimum predictor coefficients,
we have to first calculateφn(i,k) for i on the range of
[1,p] andk on the range of [0,p]. Once this operation is
performed, only the equation

has to be solved for theαk’s.[2]

12.2. The Autocorrelation Method

One of the methods used to find linear predictio
coefficients is to use the autocorrelation method. O
way to find the limits on

is to assume that the part of the waveform, sn(m), is
identically zero outside [0,N-1]. This can be written as

where w(m) is a finite length window (i.e, a Hamming
window) that is identically zero outside [0,N-1].

If sn(m) is nonzero only for [0,N-1] then the predicto
error, represented as en(m), for apth order predictor is
nonzero on [0,N-1+p]. So,

In

,

it can be seen that the predictor error is likely to be ve
large at the onset of the interval [0,p-1] because we a
trying to predict the signal from samples that have be
set equal to zero. It can also be seen that the error can
large at the end of the interval [N,N+p-1] because w
are trying to predict zero from nonzero sample
Because of this, a window which tapers the segme
sn(m), to zero is normally used for w(m). But, since
sn(m) is identically zero outside the interval [0,N-1]

ai∂
∂En 0= i 1 2 … p, , ,=

sn m i–( )sn m( )
m
∑

âk sn m i–( )sn m k–( )
m
∑

k 1=

p

∑=

1 i p≤ ≤

φn i k,( ) sn m i–( )sn m k–( )
m
∑=

akφn i k,( )
k 1=

p

∑ φn i 0,( )=

i 1 2 … p, , ,=

En sn
2

m( ) ak sn m( )sn m k–( )
m
∑

k 1=

p

∑–
m
∑=

akφn i k,( )
k 1=

p

∑ φn i 0,( )=

i 1 2 … p, , ,=

En en
2

m( )
m
∑=

sn m( ) s m n+( )w m( )=

En en
2

m( )
m 0=

N p 1–+

∑=

e n( ) s n( ) s̃ n( )–=

φn i k,( ) sn m i–( )sn m k–( )
m 0=

N p 1–+

∑=
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can be represented as

Moreover, it can be shown thatφn(i,k) is equal to the
short-time autocorrelation function Rn(k) which is
represented by the following equation

evaluated for (i-k). That is,φn(i,k)=Rn(i-k) where

Since Rn(k) is an even function, then it follows that
φn(i,k) can also be shown to be equivalent to the
following equation

Therefore,

and

When shown in matrix form, we get

[2]

12.3. The Covariance Method

This method imposes a fixed interval over which th
mean-squared error is computed. In other words,

so it follows that

If the index of summation is changed

To evaluateφn(i,k) over i we have to use the values o
sn(m) in the range of [-p,N-1]. It does not make sense
taper the segment of speech to zero at the ends as in
autocorrelation method because the needed values
the covariance method are available outside the inter
[0,N-1]. This method also leads to a function which i
the cross-correlation between two very similar finit
length segments of the speech waveform. Evaluating

φn i k,( ) sn m( )sn m i k–+( )
m 0=

N 1– i k–( )–

∑=

x m n+( )w' m( )x n m k+ +( )w' m( )
m 0=

N 1– k–

∑

Rn k( ) sn m( )sn m k+( )
m 0=

N 1– k–

∑=

φn i k,( ) Rn i k–( )=

i 1 2 … p, , ,=

k 0 1 … p, , ,=

Rn i( ) akRn i k–( )
k 1=

p

∑=

1 i p≤ ≤

En Rn 0( ) akRn k( )
k 1=

p

∑–=

Rn 0( ) Rn 1( ) Rn 2( ) … Rn p 1–( )

Rn 1( ) Rn 0( ) Rn 1( ) … Rn p 2–( )

Rn 2( ) Rn 1( ) Rn 0( ) … Rn p 3–( )

… … … … …
Rn p 1–( ) Rn p 2–( ) … … Rn 0( )

α1

α2

α3

…

αp

Rn 1( )

Rn 2( )

Rn 3( )

…
Rn p( )

=

En en
2

m( )
m 0=

N 1–

∑=

φn i k,( ) sn m i–( )sn m k–( )
m 0=

N 1–

∑=

1 i p≤ ≤
0 k p≤ ≤

φn i k,( ) sn m i–( )sn m k–( )
m i–=

N i– 1–

∑=

1 i p≤ ≤
0 k p≤ ≤
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for the covariance, supplies the following matrix

In the autocorrelation method, the signal is windowe
by an N-point window, andφn(i,k) quantities are
obtained using short-time autocorrelation function. I
the covariance method, the signal is assumed to
known for the set of values on the range of [-p,N-1
Outside the interval, no assumptions can be made ab
the information in the signal, because these are the o
values needed in the computation process.[2]

12.4. Gain

Another feasible relation when discussing linea
prediction is to relate the gain constant, represented
G, to the excitation signal and the error in the predictio
The excitation signal, represented by Gu(n), is

and the predictor error signal, represented by e(n), is

akφn i k,( )
k 1=

p

∑ φn i 0,( )=

i 1 2 … p, , ,=

φn 1 1,( ) φn 1 2,( ) φn 1 3,( ) … φn 1 p,( )

φn 2 1,( ) φn 2 2,( ) φn 2 3,( ) … φn 2 p,( )

φn 3 1,( ) φn 3 2,( ) φn 3 3,( ) … φn 3 p,( )

… … … … …

φn p 1,( ) φn p 2,( ) … … φn p p,( )
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It can therefore be seen that when Ak = αk, e(n)=Gu(n).

A more reasonable assumption is

Simply stated, the energy in the error signal is equal
the energy in the excitation input.

Now, assumptions about u(n) must be made in order
relate G to the known quantities. Remember, the know
quantities are theαk’s and the correlation coefficients.
For voiced speech, u(n)=δ(n). Also, p has to be large
enough to account for the vocal tract and the glott
effects. For unvoiced speech, we assume that u(n) i
zero mean, unity variance, static, Gaussian process.
voiced speech, Gδ(n) is the input and

We can see that the autocorrelation function of h(n) is

e n( ) s n( ) aks n k–( )
k 1=

p

∑–=

G
2

u
2

m( )
m 0=

N 1–

∑
 
 
 

en
2

m( )
m 0=

N 1–

∑=

En=

h n( ) akh n k–( ) Gδ n( )+
k 1=

p

∑=

and satisfies

R̃ m( ) h n( )h n m+( )
h o=

∞

∑=
r
by
n.

and

Also,

R̃ m( ) akR̃ m k–( )
k 1=

p

∑=

m 1 2 … p, , ,=

R̃ 0( ) akR̃ k( ) G
2

+
k 1=

p

∑=

R̃ m( ) Rn m( )=

1 m p≤ ≤
Spring ’96



The Speech Processing Group Page 22

,
t
n
re
n
-

x
a
r

z))
Because

we get

[2]

12.5. Levinson-Durbin Recursion

The Levinson-Durbin recursion process for the
autocorrelation method is shown below. The code is
written in the C programming language.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <math/integral/integral.h>

float_4 levdur(float_4 *pCoeff, int_4 order, float_4 *rn,
float_4 *energy)

{
  int_4 M = order + 1;
  float_4 *rCoeff = new float_4[M];
  float_4 *tCoeff = new float_4[M];

// rn = autocorrelation
  energy[0] = rn[0];

// recursion for i = 1, 2, ..., M
  for (int l = 1; l < M; l++)
  {
    //initialize l = 0
      rCoeff[l] = 0;
      // compute the ith reflection coefficient
      for (int j = 1; j < l; j++)
      {
          rCoeff[l] -= tCoeff[j] * rn[l - j];
      }
      rCoeff[l] += rn[l];
      rCoeff[l] = rCoeff[l]/energy[l-1];
      // compute the lp parameters
      pCoeff[l] = rCoeff[l];
      for (int j = 1; j < l; j++)
      {
          pCoeff[j] -= (rCoeff[l] * tCoeff[l - j]);
      }
      energy[l] = energy[l-1] * (1 - pow(rCoeff[l],2));

for (int j = 0; j <= l; j++)
      {
tCoeff[j] = pCoeff[j];
      }
  } // end for

  delete [] rCoeff;
  delete [] tCoeff;
return (10 * log10 (energy[order]));
}// end Levinson-Durbin recursion[5]

Levinson first published his algorithm for solvingAx=b
whereA is Toeplitz, symmetric and positive definite
andb is arbitrary back in 1947. It should be noted tha
autocorrelation equations are exactly of this form. I
1960, Durbin came along and published a slightly mo
efficient algorithm. Hence, the name Levinson-Durbi
recursion. Levinson-Durbin recursion is a recursive-in
model -order so lu t ion for the autocorre la t ion
equations.[5]

12.6. Lattice Formulations

Lattice formulations have sort of combined the matri
correlation values with linear equations to form
recursive algorithm for finding the linear predicto
parameters. Remember that for thei th stage of this
procedure, the set of coefficients {aj

(i), j = 1, 2,..., i} are
the coefficients of thei th order linear predictor.
Therefore,

is the system function of theith order inverse filter. If
the input is

then the output it the predictor error

and

If we make a simple substitution, we obtain

and
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then, the inverse transform can be shown to be

This equation implies that we are trying to predict s(m-
form thei samples of the input that follow s(m-i). Thus
bi(m) is called the backward predictor error sequenc
The i samples involved in the prediction are the sam
ones that are used in the prediction of s(m) in terms oi
past samples. The error ei(m) can then be expressed as

Again, making a simple substitution, we get

Thus, theith stage backward predictor error is

Therefore, the forward and backward predictor err
sequences for anith order linear predictor in terms of
the corresponding predictor errors of an (i-1)th order
predictor, which use azeroth order predictor, is equal to
using no predictor at all. This implies

Finally, the lattice structure is defined.[2]

12.7. The Prediction Error Signal

A by product of linear prediction analysis is the
generation of the error signal

e(n) is a good approximation of the excitation source.
is expected that the prediction error will be somewh

b
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large for voiced speech.[2] Figure 4 shows the line
predictor error waveform for a sample speech file.

Figure 4. LP Waveform.

12.8. Parameter Transformations

One desirable feature of linear prediction is to be able
easily transform between parameters without loss
information. For this reason, a pair by the names
Markel and Gray developed a series of FORTRAN cod
that made conversions between parameters relativ
easy. The FORTRAN code developed by Markel an
Gray can be found inLinear Prediction of Speech.
Currently, C compatible code is being developed
performed these conversions. The code is still in th
debugging stage. Once the code has been fu
debugged, it will be a user-friendly menu based syste
that allows you to select which type of parameters yo
wish to “convert to” from a selected “convert from”
parameter.[4]

13. FFT

The Fourier transform is one of the most importan
mathematical applications to signal processing. It h
many widespread applications outside the sign
processing area as well.[feb78,236] A discrete Fouri
transform (DFT) is of the following form

-60.0

-40.0

-20.0

0.0

20.0

40.0

X k( ) x n( )e
j2πk

n
N
----–

n 0=

N 1–

∑
k 0 1 … N 1–, , ,=

=

x n( )
1
N
---- X k( )e

j2πk
n
N
----

k 0=

N 1–

∑
n 0 1 … N 1–, , ,=

=

Spring ’96



The Speech Processing Group Page 24

f
ers

n
t
d
of
al

a
of
m
,

n
ith

d
e

th
d
-

/

ld

to

is

/4

he
The calculation of the DFT is one of the central
operations in digital signal processing (DSP).[26] It is
important to remember that when using a DFT
representation, all sequences behave as if they were
periodic when represented by a DFT. The DFT is widely
used for computing spectrum estimates, correlation
functions, and for implementing digital filters.[book]
The DFT can be implemented as a filter bank in a way
which reduces the number of filter coefficients.[feb78,
56] A digital filter is a discrete-time linear shift-
invariant system that relates the output to the input. y(n)
represents the output, x(n) the input, and h(n) the unit
sample response. h(n) is the convolutoin of x(n) with
y(n). H(ejω) represents the frequency response of the
system (the Fourier transform of the unit impulse
response).[2]

The poles lie inside the unit circle for stability, bounded
input bounded output, and the system is causal (h(n) =
0). For a finite impulse response (FIR) filter, no nonzero
poles exist, only zeros exist. The FIR can be exactly
linear in phase. Being of linear phase is very useful in
speech processing applications where precise time
alignment is essential. This property of FIR filters also
can greatly simplify the approximation problem since it
is only necessary to be concerned with approximating a
desired magnitude response. The drawback, however, is
that a large impulse response duration is required to
adequately handle sharp cut-off filters. Another type of
filter is the infinite impulse response filter. This filter has
poles as well as zeros and cannot have exact linear
phase. The orders of magnitude are more efficient in
realizing sharp cut-off filters than in the case of the FIR
filter.[2]

A quest ion st i l l remains about the amount of
computation required in computing the DFT of N
points. For many years, up until the mid-1960’s, the
answer was:

Define W as the complex number .

Then

Stated more clearly, the vector of hk’s is multiplied by a
matrix whose(n,k)th element is the constant W to the
power n*k. The matrix multiplication produces a vector
result whose components are the Hn’s. N2 complex
mul t ip l i ca t ions are requ i red fo r th is mat r i x

multiplication in addition to a smaller number o
mathematical operations to produce the required pow
of W. So, the DFT appears to be an O(N2) process. This
is highly deceiving. The DFT can be computed o
O(Nlog2N) operations with an algorithm dubbed the fas
Fourier transform (FFT).[36] The development an
widespread use of the FFT, stimulated by the paper
Cooley and Tukey, has had a major impact on sign
processing.[26] The key difference between Nlog2N and

N2 is extensive. With N=106, it is the difference between
30 seconds of CPU time and 2 weeks of CPU time on
microsecond cycle time computer. The very existence
an FFT became generally known in the mid-1960s, fro
the work of J.W. Cooley and J.W. Tukey. Looking back
we now know that efficient ways for computing the DFT
had been independent l y d iscovered . . . eve
implemented... by perhaps a dozen people, starting w
Gauss way back in 1805![36]

One discovery of the FFT, that of Danielson an
Lanczos in 1942, provides a clear derivation of th
algorithm. This duo showed that the DFT of length N
can be rewritten as the sum of two DFTs, each of leng
N/2. One of the two is formed from the even-numbere
points of the original N, the other from the odd
numbered points. The proof is as follows:

In the last line, W is a complex constant. Fe
k represents

thekth component of the Fourier transform of length N
2 from the even components of the original fj’s while

Fo
k is formed from the odd components. One shou

also notice thatk varies from 0 to N, not just to N/2. The
transforms Fek and Fok are periodic ink with length N/2
which has the effect of repeating through two cycles
obtain Fk.[36]

The good thing about the Danielson-Lanczos Lemma
that it an be used recursively. Once Fk has been reduced

to computing Fek and Fo
k, we can reduce Fek to

computing the transform of its N/4 even parts and N
odd parts.[36]

Although there are ways of treating other cases, t
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n.
easiest, most useful case is the case in which the original
N is an integer power of 2. It is normally recommended
that the FFT be used only in cases where N is a power of
2. If the length of the signal is not a power of 2, it can be
padded with zeros up to the next power of two so that
the FFT can be used. With this restriction on N, it is
shown that we can keep using the Danielson-Lanczos
Lemma until a transform of length 1 has been found.
The Fourier transform of length one is the identity
operation that copies its one input number into its one
output slot. In other words, for each log2N even and odd
part, there exists a one-point transform that is just one of
the input numbers fn.[36]

The next trick is to decide which value ofn corresponds
to which pattern of even and odd parts. Simply reverse
the even and odd parts and set the even part equal to
zero. You should then set the odd part equal to one. This
provides you with in binary value ofn. This works
because successive subdivisions of the signal into even
and odd parts are test of successive low-order bits ofn.
This idea of “bit reversal” can be exploited in a very
resourceful way which, with the Dnaielson-Lanczos
Lemma, makes the FFT very practical.[36]

Now, we have the structure of the FFT algorithm. It is
composed of two key sections. The first section sorts the
signal into bit-reversed order, taking up no additional
storage or memory because you are simply swapping
elements, so to speak. The second section has an outer
loop that is executed log2N times and computes
transforms of length 2, 4, 8,..., N. Two nested inner
loops that range over the subtransforms already
computed and the elements of each transform,
implementing the Danielson-Lanczos Lemma, compose
each stage of this process. The mathematics is made
more efficient by restr ict ing external cal ls for
trigonometric sines and cosines to the outer loop.[36]

Whenever data is rearranged into a bit-reversed order, it
is referred to as adecimation-in-timeprocess, or
Cooley-Turkey FFT.It is also possible to compute the
FFT algorithm that first sorts through a set of log2N
iterations on the input data and then rearranges the
output values into bit-reversed order. These are called
decimation-in-frequency, or Sande-Turkey FFT. For
some applications, like convolution, a data set is taken
into the Fourier domain, and forced back out again after
a fair amount of manipulation. In these cases, it is
possible to avoid bit reversing. The decimation-in-
frequency algorithm minus the bit reversing can be used
to obtain the “scrambled” Fourier domain, perform you
operations, then use an inverse algorithm minus its bit
reversing to return to the time domain. This procedure
however does not save much computation time because
the bit reversals represent only a small fraction of an
FFT’s mathematical calculations count.[36]

The FFT code to compute the radix-2 FFT is show
This code is written in the C programming language.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <math/integral/integral.h>

void find_fft( int_4 fft_len,float_4* xr,float_4*
xi,float_4* wr, float_4* wi)

{
int_4 m,l,i1,i2;
int_4 n1,n2;
float_4 real_twid,imag_twid;
float_4 tempr, tempi;

m = (int)(log10(fft_len)/log10(2));
n2 = fft_len;

for(int i=1; i<m+1; i++)
  {
    n1 = n2;
    n2 = (int_4)(n2/2);
    i1 = 1;
    i2 = (int_4)((fft_len)/n1);
    for(int j=1; j<n2+1; j++)
      {
real_twid = wr[i1];
imag_twid = wi[i1];

for(int k = j; k <= fft_len; k = k + n1)
  {
    l = k + n2;
    tempr = xr[k] - xr[l];
    xr[k] = xr[k] + xr[l];
    tempi = xi[k] - xi[l];
    xi[k] = xi[k] + xi[l];
    xr[l] = real_twid*tempr + imag_twid*tempi;
    xi[l] = real_twid*tempi - imag_twid*tempr;
  }

i1= i1 + i2;
      }
  }

//procedure for bit reversal
float_4 temp = 0;
int j = 1;

for (int i = 1; i < fft_len; i++)
  {
    if (i < j)
      {
temp = xr[j];
xr[j] = xr[i];
xr[i] = temp;
temp = xi[j];
xi[j] = xi[i];
MS State Speech Conference Spring ’96
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xi[i] = temp;
      }

int_4 k = fft_len/2;

while (k < j)
      {
       j = j - k;
       k = k/2;
      }
    j = j + k;
  }
}//end FFT routine[4]

13.1. Cepstral Analysis

“Cepstral” analysis is primarily motivated by the
problems that focus on voiced speech. Voiced speech
are sounds produced by forcing air through the glottis
with the tension of the vocal cords adjusted so that they
vibrate in a relaxation oscillation thus producing quasi-
periodic pulses of air which excite the vocal tract. Some
examples of voiced sounds are: |u|, |d|, |w|, |i|, and |e|.[5]

The spec t rum of a speech wave fo rm is the
representation of the signal with which we can assess
the “separation” of the component parts. The eventual
derivation of needed information about those specific
components may also result. The cepstrum represents a
transformation on the speech signal where the
representatives of the component signals are separated
in the cepstrum. These representatives are linearly
combined. The cepstrum may also serve to be sufficient
enough to provide the needed information on the
properties of the component signals. Linear filters can
also be used to then remove undesired cepstral
components.[5]

When using a cepstrum, the typical scale used is themel
spaced cepstrum. A mel is a unit of measure of
perceived pitch or frequency of a tone. The mapping of
the mel scale is linear up to 1 kHz and then logarithmic
above 1 kHz. The mel scale does not correspond linearly
to the physical frequency of the tone as the human
auditory system fails to perceive pitch in a linear
manner. Perception of a particular frequency by the
auditory system is influenced by energy in a critical
band of frequencies around that particular frequency.
The bandwidth of the critical band will vary with
frequency, beginning around 100 Hz for frequencies
below 1 kHz and then increasing logarithmically above
1 kHz.

To use the FFT in computing the cepstrum, the
following equations must beIn order to define the
complex cepstrum by the FFT, we have to define the
complex logarithm of the Fourier transform. A
constraint that the complex cepstrum of a real input

sequence is also a real sequence must also be impo
One should recall that the Fourier transform is an ev
func t ion , and tha t the imag inary par t o f the

transform is odd. For the complex cepstrum to be a re
sequence, the log magnitude function has to be an ev
function ofω, and the phase must be an odd function
ω.[5]

The FFT can be used to approximate the cepstru
equations efficiently. Thus, the approach for computin
the complex cepstrum is to replace all of the Fourie
transform operations with the corresponding FF
operations. The following equations show how to fin
the cepstral coefficients based on the FFT analys
approach. c(n) represents the cepstrum.[5]

Because of aliasing that is inherent in the use of the F
in the computation of cepstral coefficients, it is
necessary to use a rather large value of N, the numbe
points of the FFT or stated another way, the high rate
sampling the Fourier transform.[5]

If the original signal is defined to be symmetrical, th
FFT used in cepstral analysis can be replaced by
discrete cosine transform (DCT). This principle i
applied to the evaluation of the real and comple
“pseudocepstrum” of speech signals. In both the re
and the complex cepstrum cases, it is found that the u
of the DCT does not degrade the information contain
in the cepstrum, but it does substantially reducing th
computational complexity.[19]

13.2. LP Cepstrum vs. FFT Cepstrum

Based on studies performed on LP and FFT bas
cepstrum analysis, it has been shown that the spec
envelope derived from the LP cepstrum is slightl
different from the spectral envelope derived from th
FFT cepstrum. Several experiments were perform
using six utterances. The size of the time window wa
fixed to 256 samples to extract the FFT cepstrum. T
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window size for the LP cepstrum measurements was set
to 30 msec. The FFT cepstrum computational time was
almost twice that of the LP computational time. A key
reason for th is di fference is that two Four ier
transformations are included in the FFT based approach.
In terms of distance ratio measures, the FFT and the LP
results were relatively the same, except for the fact that
the FFT results focused on the first-order cepstrum. The
LP cepstrum produces almost the same results in speech
recognition as the conventional FFT cepstrum. LP based
analysis tends to perform poor in noisy enviroments
whereas the FFT performs well.[21]

14. FEATURE SELECTION

The final goal of all speech recognition systems is to
devise an automatic, time-independent, unbiased system
that can duplicate the human ability to perform fast,
accurate, and text-independent speaker recognition. The
task is not a trivial one. Once the acoustic attributes of
speech have been extracted and compared with a
reference set, the attributes will be recognized if there is
a close enough correlation between the two sets. Thus,
the speaker is said to be recognized. In text-dependent
speech recognition in which the test and the reference
features are derived from the same text material,
meaningful comparisons between the two sets can be
made after time aligning the utterances. The same
situation fails for text-independent cases where the test
and reference sets bear no linguistic relationship to one
another. The success of text-independent speech
recognition must therefore depend on the extraction of a
set of acoustic properties that can characterize each
speaker independent of the text.[15]

By time averaging the acoustic attributes of speech ov
different speech text, it was shown that some featur
(pitch, reflection coefficients, gain, etc.) exhibited larg
inter-speaker variability regardless of the contex
Therefore, long-term averaging of acoustic feature
seems suitable for text-independent speech recogniti
Not all acoustic features of speech are useful to spee
recognition. A selection procedure must be composed
keep only those features which give the best results[1

To select the k best features from an entire set N, t
optimal method is to consider all the combinations of
objects taken k at a time and exhaustively search for t
best one. This method requires a tremendous amoun
computation which leads to the implementation o
subopt imal schemes, such as search wi tho
replacement (“knock-out” strategy). These algorithm
start with the evaluation of the N features one at a tim
and “knocks-out” the most effective feature. Thi
feature is then coupled one at a time with the remaini
N-1 attributes in the set. These feature pairs are th
evaluated resulting in the knock-out of the best pair
features. The disadvantage of this approach is that
resulting subset which contains the best features is n
necessarily the optimal subset of features.[15]

In automatic speech recognition, the features used
measured from the speaker’s speech, and ea
measurement of these features can be represented
point in the N-dimensional feature space. Throug
repetition of the measurement process, a cluster
points are generated in the space and they are distribu
according to some N-dimensional probability densit
function (pdf) which characterizes the variance in th
speaker’s voice.[15]
MS State Speech Conference Spring ’96
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Before making a decision about the goodness of some
features, the classifier used to distinguish the speaker
pdf’s has to be established. Once this decision logic has
been formed, the features can be evaluated. For
ident i fy ing unknown speaker ’s, a meaningful
effectiveness measure is the error performance of the
features over some test data. The set of features that
commits the most errors in identifying a group of
speaker’s is said to be the least effective one. An
effectiveness measure of this stature can be determined
exper imenta l ly by using the at t r ibutes in the
identification experiment and summing up the mistakes
made, somet imes termed a scor ing funct ion.
Imp lementa t ion o f th is measure requ i res an
extraordinary amount of computation. Another method
is to exploit the statistical properties of the features and
compute the probability of the error from the speaker’s
pdf. This scheme involves the estimation of the
multidimensional distribution from a set of labeled
training samples. If the distribution happens to be
Gaussian, the probability or the error is found by
integrating over the error range. This calculation is
difficult to perform and is a tedious process.[15]

Figure 4 shows a schematic of feature selection process.

For example, suppose four lists of sentences were read
by ten different speakers to comprise a database. These
sentences bear no linguistic relationship to one another,
but they are phonetically balanced. Each list is
composed of ten sentences. The first two lists were used
as the training set while the last two lists were used as
the test set. From these lists, a set of 32 features can be
found from the input speech. These features are: pitch
value, log energy, ten PARCOR coefficients (partial
correlation coefficients), ten cepstral coefficients,
normalized absolute prediction error energy, and nine
normalized autocorrelation coefficients. Pitch value, M,
can be determined by using the average magnitude
difference function. The log energy (in decibels) is
computed with the following formula

where Si is the input speech and L is the frame length
(frame duration * sample frequency). The linear
prediction coefficients can be found through the use of a
10th order linear predictive analysis on the Hamming -
windowed speech waveform using the autocorrelation
method. The normalized autocorrelation coefficients Ri
were calculated with

wherep = the order of the linear predictor, and Ro i
given by

The PARCOR coefficients, Ki, and the normalized
absolute prediction error energy, |e|, were determin
using the Levinson-Durbin recursion algorithm. Th
cepstral coefficients, Ci , were derived from the
predictive coefficients.[15]

To allow the feature set to be applicable to the tex
independent speech recognition system, each feat
was averaged over some input test

where xij was theith feature derived from thejth speech
fame. Lv was the number of frames used in th
averaging process. Also of note is the fact that on
voiced frame features were considered because silen
voice and unvoiced speech are assumed to be sam
functions of different random processes.[15]

15. SUMMARY

Because of the vital role that speech plays in th
everyday lives of people, speech recognition is a mu
desired area of research. Whether this research is be
performed simply to make the everyday, routine tasks
life easier for people or whether it’s purpose is to aid th
physically challenged, speech research will be carri
out well into the next century. From voice activate
automatic teller machines to operator assistance
controlling your personal computer with your voice
instead of a mouse, the need for robust spee
recognition systems is evident.

In order for a speech recognition system to be the be
quality, most robust system, strong emphasis must
placed on the signal modeling component of the spee
recognizer. If you do not start off on the right foot so t
speak, how will your end result be the best that it ca
be? For that reason, the front-end of the spee
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s

recognition system must be carefully constructed. Many
useful DSP tools enable the front-end to be duly
constructed to minimize the error in the performance of
the overall recognition system.

Once the front-end of a speech recognizer has been
thoroughly tested, thoroughly meaning exhaustive tests
on extens ive databases, the f ront -end can be
incorporated into a speech recognition system that is
composed of the front-end, search, and language
modeling.

16. ACKNOWLEDGEMENTS

The author is grateful to Dr. Joseph Picone for all the
support he has given towards this project and also
supplying the needed software tools and environment to
perform this project. Additional thanks goes out to the
fellow students in the EE8993 Speech Recognition class
at Mississippi State University. Without the aid and
support of the students in the class, certain aspects of
development and research would not have been
possible.

REFERENCES

18. Picone, J., “Signal Modeling Techniques
in Speech Recognition,” Proceedings of
the IEEE, vol. 81, no. 9, pp. 1215-1246,
Sept. 1993.

19. Rabiner, L.R. and R.W. Schafer,Digital
Processing of Speech Signals,Prentice-
Hall, Inc., 1978.

20. Proakis, J. G. and D. G. Mandakis,
Digital Signal Processing: Principles,
Algorithms, and Applications,
Macmillian Publishing, 1988.

21. Markel, J.D. and A.H. Gray, Jr.,Linear
Prediction of Speech, Springer-Verlag
Publishers, 1982.

22. Deller, J. R., Jr., J. G. Proakis, and J. H.L.
Hansen,Discrete-Time Processing of
Speech Signals, Macmillian Publishing,
1993.

23. Flanagan, J. L. and L.R. Rabiner,Speech
Synthesis, Dowden Hutchinson and Ross,
Inc., 1973.

24. http://www.uninova.pt/~tr/home/
tooldiag.html

25. http://www.speech.su.oz.au/
comp.speech/Section6/Q6.5.html

26. ftp://ftp.cs.cmu.edu/project/fgdata/
speech-compression/LPC/

27. http://www.lhs.com/
28. Pan, R. and C.L. Nikias, “The Complex

Cepstrum of Higher Order Cumulants
and     Nonminimum Phase System
Identification,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing,vol. 36, no. 2, pp. 186-205,
Feb. 1988.

29. Chen, Y., “Cepstral Domain Talker Stres
Compensation for Robust Speech
Recognition,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing,vol. 36, no. 4, pp. 433-439,
Apr. 1988.

30. Lee, C.H., “On Robust Linear Prediction
of Speech,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing,vol. 36, no. 5, pp. 642-650,
May 1988.

31. Furui, S., “Comparison of Speaker
REcognition Methods Using Statistical
Features and Dynamic Features,” IEEE
Transactions on Acoustics, Speech, and
Signal Processing,vol. 29, no. 3, pp.
448-449, June 1981.

32. Cheung, R.S. and B.A. Eisenstein,
“Feature Selection via Dynamic
Programming for Text-Independent
Speaker Identification,” IEEE
Transactions on Acoustics, Speech, and
Signal Processing,vol. 26, no. 5, pp.
397-402, Oct. 1978.

33. Picinbono, B. and J.M. Kerilis, “Some
Properties of Prediction and
Interpolation Errors,”IEEE Transactions
on Acoustics, Speech, and Signal
Processing,vol. 36, no. 4, pp. 525-531,
Apr. 1988.

34. Stoica, P. and A. Nehorai, “On Linear
Prediction Models Constrained to Have
Unit-Modulus Poles and Their Use of
Sinusoidal Frequency Estimation,”IEEE
Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 6, pp.
MS State Speech Conference Spring ’96



The Speech Processing Group Page 30

,

940-941, June 1988.
35. Shichor, E. and H.F. Silverman, “An

Improved LPC Algorithm for VOiced-
Speech Synthesis,” IEEE Transactions
on Acoustics, Speech, and Signal
Processing, vol. 32, no. 1, pp. 180-182,
Feb. 1984.

36. Hassenein, H. and M. Rudko, “On the
Use of Discrete Cosine Transform in
Cepstral Analysis,” IEEE Transactions
on Acoustics, Speech, and Signal
Processing, vol. 32, no. 4, pp. 922-923,
Aug. 1994.

37. Kobzyashi, T. and S. Imai, “Spectral
Analysis Using Generalized Cepstrum,”
IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 6, pp.
1235-1237, Dec. 1984.

38. Furui, S., “Cepstral Analysis Technique
for Automatic Speaker Verification,”
IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 29, no. 2, pp.
254-272, Apr. 1981.

39. Schroeder, M.R., “Direct (Nonrecursive)
Relations Between Cepstrum and
Predictor Coefficients,”IEEE
Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 2, pp.
297-301, Apr. 1981.

40. Jaroslavski, L.P., “Comments on ‘FFT
Algorithm for Both Input and Output
Pruning’,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing,vol. 29, no. 3, pp. 448-449,
June 1981.

41. Barnwell, T.P. III, “Recursive
Windowing for Generating
Autocorrelation Coefficients for LPC
Analysis,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 29, no. 5, pp. 1062-
1066, Oct. 1981.

42. Steiglitz, K. and B. Dickenson, “The Use
of Time-Domain Selection for IMproved
Linear Prediction,”IEEE Transactions
on Acoustics, Speech, and Signal

Processing,vol. 25, no. 1, pp. 34-39,
Feb. 1977.

43. Kolba, D.P. and T.W. Parks, “A Prime-
Factor FFT Algorithm Using High Speed
Convolution,”IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 25, no. 4, pp. 281-294,
Aug. 1977.

44.Carayannis, G., “An Alternative
Formulation for the Recursive Solution
of the Covariance and Autocorrelation
Equations,”IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 25, no. 6, pp. 574-576,
Dec. 1977.

45.Gupta, V.N., J.K. Bryan, and J.N. Gowdy
“A Speaker-Independent Speech
Recognition System Based on Linear
Prediction,”IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol 26, no. 1, pp. 27-33, Feb.
1978.

46. Bruun, G., “Z-Transform DFT Filters
and FFTs,”IEEE Transactions on
Acoustics, Speech, and Signal
Processing,vol. 26, no. 1, pp. 56-63,
Feb. 1978.

47. Agrawal, J.P. and J. Ninan, “Hardware
Modifications in Radix-2 Cascade FFT
Processors,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 26, no. 2, pp. 171-172,
Apr. 1978.

48. Webster, R.J., “A Generalized Hamming
Window,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 26, no. 2, pp. 176-177,
Apr. 1978.

49. Webster, R.J., “A Generalized Hamming
Window,” IEEE Transactions on
Acoustics, Speech, and Signal
Processing, vol. 26, no. 3, p. 269, June
1978.

50. Tadakoro, Y. and T. Higuchi, “Discrete
Fourier Transform Computations via the
Walsh Transform,”IEEE Transactions
MS State Speech Conference Spring ’96



The Speech Processing Group Page 31
on Acoustics, Speech, and Signal
Processing,vol. 26, no. 3, pp. 236-239,
June 1978.

51. Jackson, L.B. and S.L. Wood, “Linear
Prediction in Cascade Form,”IEEE
Transactions on Acoustics, Speech, and
Signal Processing, vol. 26, no. 6, pp.
518-528, Dec. 1978.

52. Meisel, W.S. “Commericial Applications
of Speech Recognition,” TMA
Associates, Dec. 1995.

53.Numerical Recipes in C: The Art of
Scientific Computing, Cambridge
University Press, http://world.std.com/
~nr.

54. Picone, J. “Continuos Speech
Recognition Using Hidden Markov
Models,” IEEE ASSP Magazine, pp. 26-
41, July 1990.

55. Reddy, R.N. and C.A. Ziegler,
FORTRAN 77 with Applications for
Scientists and Engineers, West
Publishing Company, 1989.

56. Etter, D.M.,Structured FORTRAN 77 for
Engineers and Scientists, The Benjamin/
Cummings Publishing Co., 1993.

57.The Merriam-Webster Dictionary of
Quotations. Merriam-Webster, INC,
1992.
MS State Speech Conference Spring ’96


	ABSTRACT
	9.�� INTRODUCTION
	10.�� THE FRONT END
	10.1.�� The Speech Signal
	10.2.�� Acoustic Theory of Production

	11.�� SIGNAL MODELING
	11.1.�� Parameter Selection
	11.2.�� Frame Analysis
	11.3.�� Window Analysis
	11.4.�� Sampling

	12.�� LP TRANSFORMATIONS
	12.1.�� Fundamental Principals
	12.2.�� The Autocorrelation Method
	12.3.�� The Covariance Method
	12.4.�� Gain
	12.5.�� Levinson-Durbin Recursion
	12.6.�� Lattice Formulations
	12.7.�� The Prediction Error Signal
	12.8.�� Parameter Transformations

	13.�� FFT
	13.1.�� Cepstral Analysis
	13.2.�� LP Cepstrum vs. FFT Cepstrum

	14.�� FEATURE SELECTION
	15.�� SUMMARY
	16.�� �ACKNOWLEDGEMENTS

	REFERENCES
	18 . Picone, J., “Signal Modeling Techniques in Speech Recognition,” Proceedings of the IEEE, vol...
	19 . Rabiner, L.R. and R.W. Schafer, Digital Processing of Speech Signals, Prentice- Hall, Inc., ...
	20 . Proakis, J. G. and D. G. Mandakis, Digital Signal Processing: Principles, Algorithms, and Ap...
	21 . Markel, J.D. and A.H. Gray, Jr., Linear Prediction of Speech, Springer-Verlag Publishers, 1982.
	22 . Deller, J. R., Jr., J. G. Proakis, and J. H.L. Hansen, Discrete-Time Processing of Speech Si...
	23 . Flanagan, J. L. and L.R. Rabiner, Speech Synthesis, Dowden Hutchinson and Ross, Inc., 1973.
	24 . http://www.uninova.pt/~tr/home/ tooldiag.html
	25 . http://www.speech.su.oz.au/ comp.speech/Section6/Q6.5.html
	26 . ftp://ftp.cs.cmu.edu/project/fgdata/ speech-compression/LPC/
	27 . http://www.lhs.com/
	28 . Pan, R. and C.L. Nikias, “The Complex Cepstrum of Higher Order Cumulants and Nonminimum Phas...
	29 . Chen, Y., “Cepstral Domain Talker Stress Compensation for Robust Speech Recognition,” IEEE T...
	30 . Lee, C.H., “On Robust Linear Prediction of Speech,” IEEE Transactions on Acoustics, Speech, ...
	31 . Furui, S., “Comparison of Speaker REcognition Methods Using Statistical Features and Dynamic...
	32 . Cheung, R.S. and B.A. Eisenstein, “Feature Selection via Dynamic Programming for Text-Indepe...
	33 . Picinbono, B. and J.M. Kerilis, “Some Properties of Prediction and Interpolation Errors,” IE...
	34 . Stoica, P. and A. Nehorai, “On Linear Prediction Models Constrained to Have Unit-Modulus Pol...
	35 . Shichor, E. and H.F. Silverman, “An Improved LPC Algorithm for VOiced- Speech Synthesis,” IE...
	36 . Hassenein, H. and M. Rudko, “On the Use of Discrete Cosine Transform in Cepstral Analysis,” ...
	37 . Kobzyashi, T. and S. Imai, “Spectral Analysis Using Generalized Cepstrum,” IEEE Transactions...
	38 . Furui, S., “Cepstral Analysis Technique for Automatic Speaker Verification,” IEEE Transactio...
	39 . Schroeder, M.R., “Direct (Nonrecursive) Relations Between Cepstrum and Predictor Coefficient...
	40 . Jaroslavski, L.P., “Comments on ‘FFT Algorithm for Both Input and Output Pruning’,” IEEE Tra...
	41 . Barnwell, T.P. III, “Recursive Windowing for Generating Autocorrelation Coefficients for LPC...
	42 . Steiglitz, K. and B. Dickenson, “The Use of Time-Domain Selection for IMproved Linear Predic...
	43 . Kolba, D.P. and T.W. Parks, “A Prime- Factor FFT Algorithm Using High Speed Convolution,” IE...
	44 .Carayannis, G., “An Alternative Formulation for the Recursive Solution of the Covariance and ...
	45 .Gupta, V.N., J.K. Bryan, and J.N. Gowdy, “A Speaker-Independent Speech Recognition System Bas...
	46 . Bruun, G., “Z-Transform DFT Filters and FFTs,” IEEE Transactions on Acoustics, Speech, and S...
	47 . Agrawal, J.P. and J. Ninan, “Hardware Modifications in Radix-2 Cascade FFT Processors,” IEEE...
	48 . Webster, R.J., “A Generalized Hamming Window,” IEEE Transactions on Acoustics, Speech, and S...
	49 . Webster, R.J., “A Generalized Hamming Window,” IEEE Transactions on Acoustics, Speech, and S...
	50 . Tadakoro, Y. and T. Higuchi, “Discrete Fourier Transform Computations via the Walsh Transfor...
	51 . Jackson, L.B. and S.L. Wood, “Linear Prediction in Cascade Form,” IEEE Transactions on Acous...
	52 . Meisel, W.S. “Commericial Applications of Speech Recognition,” TMA Associates, Dec. 1995.
	53 . Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, http://...
	54 . Picone, J. “Continuos Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, pp...
	55 . Reddy, R.N. and C.A. Ziegler, FORTRAN 77 with Applications for Scientists and Engineers, Wes...
	56 . Etter, D.M., Structured FORTRAN 77 for Engineers and Scientists, The Benjamin/ Cummings Publ...
	57 . The Merriam-Webster Dictionary of Quotations. Merriam-Webster, INC, 1992.

	THE POWER OF THREE: THE FRONT-END WITH SPECIAL EMPHASIS ON FFTs, LP TRANSFORMATIONS AND FEATURE S...
	L. A. Webster
	The Speech Processing Group
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762
	webster@isip.msstate.edu



