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ABSTRACT

The front-end of a speech recognition system is the
signal processing component of the whole system. Its
function is to take a block of the speech signal at a time
and from each, derive a smooth spectral estimate. This
can be accomplished through various means (linear
prediction, fourier analysis, filter banks); however, this
paper focuses on linear prediction based measurements.
Time derivatives and regression features of these
measurements will also be investigated.

The output of the front-end is a set of feature vectors
that represents the signal. Linear prediction provides an
efficient and simple means of computing these feature
vec tors . Th is paper descr ibes four d i f fe ren t
measurements: linear prediction, linear cepstral, mel
cepstral, and perceptual linear prediction analysis.

1. INTRODUCTION

The front-end of a speech recognition system converts
the speech signal into a sequence of feature or acoustic
vectors. These vectors represent the frequency spectrum
of the speech waveform over a time period of typically
10ms. Recognition of input sounds is achieved by
computing a distance measure between input parameter
vectors and corresponding reference vectors of the
vocabulary words[2]. Therefore, using parameterization
techniques that represent the speech signal as accurately
as possible have a big impact on recognition rate. The
techniques that may be employed to generate acoustic
vectors include linear prediction, Fourier transforms,
digital filter banks, and various transformations.

This paper focuses on l inear predict ion based
measurements (linear prediction, linear cepstral, mel
cepstral, and perceptual linear prediction analysis).
Time derivatives and regression features of the above
techniques will also be investigated. Both are used to
represent the dynamic changes within the signal’s
frequency spectrum.

The implementation of the front-end resulted in a
system that generates an arbitrary number of linear

prediction and linear cepstral coefficients and twen
mel cepstral coefficients with its first and second tim
derivatives. The first and second order regressio
features of the mel cepstral coefficients computed ov
three frames were also generated. The differe
measurements w i l l be re la ted to the sys te
implementation as they are discussed.

2. LINEAR PREDICTION

Linear prediction provides an efficient and simpl
means of calculating the static coefficients of the featu
vector. Its computation is based on an all-pole model
speech. This model can be derived from a concatenat
of lossless acoustic tubes to represent the human vo
tract. Each tube has a different cross-sectional ar
pertaining to the varying cross-sectional area of th
vocal tract. However, in the study of modeling speec
production, one can find compelling arguments for th
inclusion of zeros in the speech production model [8].
is well known that the spectrum of phonemes, especia
vowels, have format frequencies that are approximate
modeled by all-pole structures. On the other hand, voc
tract characteristics such as the glottal pulse wavefo
and lip radiation and articulations involving nasals an
fricatives introduce zeros into the system function. Thu
a zero-pole system would seem to be the better choic

The all-pole model of speech production is a minimu
phase representation of the speech signal. Because
information within speech is contained solely in th
signal’s magnitude, the absence of phase does not hin
the perception of the human ear nor does it hinder t
recognizer. A linear prediction representation of th
speech model is not only simple but works well.

Linear prediction tries to predict a signal,s(n), by a
linear combination of its past values. This linea
combination includes weights,a(i)’s, which form the
predictor equation coefficients. Thus, the termlinear
perediciton is used.

Consider the predicted values of the signal defined by

(1)ŝ n( ) s n( ) as n 1–( )–=
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The error between the signal and its predicted value
based on its previous value is given by:

(2)

The total squared error is defined by:

(3)

The er ror is min imized wi th respect toa by
differentiatingE and setting the result equal to zero

(4)

A more general form which includes multiple pass
values:

(5)

or

(6)

This equat ion gives the covariance method of
calculating thea’s or predictor coefficients.

(7)

Inversion of the covariance matrix is needed to solve for
the predictor coefficients:

(8)

By l imit ing the data to within each frame, the
autocorrelation method can be used to compute the
predictor coefficients:

(9)

This method, of course, requires the inversion of the
autocorrelation matrix. A simple and efficient algorithm
that circumvents the need for matrix inversion is the
Levinson-Durbin algorithm.

2.1. Levinson-Durbin Recursion

for i = 1, 2,.,p

for j = 1, 2,...,i-1

The autocorrelation values are used to compu
intermediate values ( ‘s) called reflector coefficients

These values in turn are used to compute the predic
coefficients. The error denoted byE decreases within
the iterative process. Thepth value ofE which is the
difference between the signal and the predicted signa
used for gain matching. The gain

(10)

is multiplied by the model spectrum to match th
magnitude of the signal spectrum.

Let us make a few comments about the reflecto
coefficients. The reflector coefficients in the algorithm
above have an absolute value of less than one. Absol
values of one implies a harmonic process (poles on t
unit circle), and absolute values greater than one impl
an instability (poles outside the unit circle). Now, w
have insight on how to determine the LP order durin
the calculations. As the reflector coefficients approac
one, we approach our LP order. The reflecto
coefficients are orthogonal in that thepth order model
contains thep coefficients for thep+1 order model.

The linear prediction process can be viewed as a filter
taking the z-transform of the error:

(11)

(12)

where

e n( ) s n( ) ŝ n( )– s n( ) as n 1–( )–= =

E e2 n( )
n
∑ s n( ) as n 1–( )–{ }2

n
∑= =

s2 n( ) 2as n( )s n 1–( )– a2s2 n 1–( )+( )
n
∑=

a∂
∂E 0 2s n( )s n 1–( )– 2as2 n 1–( )+

n
∑= =

s n( )s n 1–( )
n
∑= a s2 n 1–( )

n
∑=

a∂
∂E

s n( )s n l–( )
n
∑ ak s n k–( )s n l–( )

n
∑= =

c l 0,( ) akc k l,( )
k 1=

p

∑=

c Ca=

a
C 1–

c
---------=

a R 1– r=

E0 r 0( )=

ki r i( ) ai 1– j( )r i j–( )
i 1=

i 1–

∑–
 
 
 

Ei 1–⁄=

ai i( ) ki=

ai j( ) ai 1– j( ) kiai 1– i j–( )–=

Ei 1 k
2

–( )Ei 1–=

ki

gain 10 Elog⋅=

e n( ) s n( ) aks n k–( )
k 1=

p

∑–=

E z( ) S z( )A z( )=
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and 1/A(z) is our all-pole model.

3. CEPSTRAL ANALYSIS

Cepstral analysis is designed for problems centered
around “voiced” speech. Speech is composed of a
glottal excitation sequence convolved with the impulse
response of the vocal tract. Glottal excitation is a unique
characteristic of each individual. Eliminating this
characteristic from the speech model facilitates better
speaker- independent recognit ion. Because the
individual parts are not l inearly combined, the
customary linear techniques (e.g. Fourier analysis)
provide no help. Cepstral analysis, on the other hand,
provides a means for separating convolved signals. It’s
cepstrum (like the spectrum) represents a transformation
on the speech signal with two properties[7,4]:

1. The representation of the component signals will be
separated in the cepstrum.

2. The representation of the component signals will be
linearly combined in the cepstrum.

In talking about the cepstrum, one can refer to what is
called the “real cepstrum” (RC) and the “complex
cepstrum” (CC). The RC is equivalent to the even part
of the CC; it discards the phase information of the
signal.

One of the most important applications of cepstral
analysis in contemporary speech processing is the
representation of an LP model by cepstral parameters
[8]. On that note, we shall only concern ourselves with
the “real cepstrum.”

The computation of the RC is shown in block diagram
in Figure 1.

Figure 1. Computation of the RC.

The first two operations, the DFT and the log function,
transforms the signal so that its convolved parts are
resolved into additive components in the new domain
(quefrency domain).

(14)

 - cepstral magnitude spectrum

 - signal magnitude spectrum

 - glottal excitation magnitude spectrum

 - vocal tract magnitude spectrum

As with the spectrum, the slow varying signal,
and the fast varying signal, , manifest themselv
at the low and high end of the quefrency domai
respectively. The glottal excitation can be removed fro
the signal by performing a “low-time liftering” (a play
on filtering) process. This process devoids the voc
t ract component , log , of any exc i ta t ion
component. This, in essence, results in a cepst
smoothing of the vocal tract spectrum.

LP analys is does not reso lve the voca l - t rac
characteristics from the glottal dynamics. The glott
excitation is a laryngeal characteristic that varies fro
person to person. Hence, LP parameters convey so
information that can degrade performance, especia
for speaker-independent systems.

To derive cepstral parameters from LP analysis, t
transfer function,A(z), from Equation 13 is utilized by
expanding the logarithmic transfer function,lnA(z), into

a power series of . If all the poles ofA(z)are inside
the unit circle,lnA(z) can be expressed as [3]

(15)

Wherez = exp(jwt), w = frequency in radians,T =
sampling interval, and is the amplitude at thenth

sampling instant,t = nT, of the inverse Fourier transform
of C(z). C(z)is considered as a function of the frequenc
variablew.

To obtain the relationship between cepstral an
predictor coefficients, Equation 15 is substituted int
Equation 15. The derivative of both sides is taken wi

respect to :

(16)

A z( ) 1 akz
k–

k 1=

p

∑–=
Cs ω( ) S ω( )log=

E ω( )Θ ω( )log=

E ω( )log Θ ω( )log+=

Cs ω( )

S ω( )

E ω( )

Θ ω( )

Θ ω( )
E ω( )

Θ ω( )

z
1–

A z( )ln C z( ) cnz
n–

n 1=

∞

∑= =

cn

z
1–

z
1–

d

d 1 1 akz
k–

k 1=

p

∑–
 
 
 

⁄ln=
z

1–
d

d
cnz

n–

n 1=

∞

∑=

DFT log|.| IDFT

log|S(w)|=Cs(w)

signal cn
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which simplifies to

(17)

and rewritten as

(18)

By equating the constant terms and the various powers

of on both sides of Equation 18, we obtain the
relationship between the cepstral and predictor
coefficients [4]:

(19)

(20)

Equations 19 and 20were used to compute the LP based
linear cepstral coefficients.

4. MEL CEPSTRAL ANALYSIS

In the 1980’s, the cepstrum began to supplant the direct
use of the LP parameters as the premiere feature in the
important “hidden Markov modeling” strategy because
of two enhancements that were found to improve speech
recognition [8,9]. The first has already been mentioned--
cepstral smoothing of the LP-based spectrum. The
second enhancement is due to the “mel cepstrum.”

A “mel” is a unit of measure ofperceived pitchor
frequencyof a tone. Work done by Stevens and Volkman
showed that the frequency resolution of the human ear is
approximately linear below 1 kHz and logarithmic
above 1 kHz. A mapping of pitch (mel) versus actual
frequency gives us the mel scale. Researchers began
investigating the benefits of using a warped frequency
axis to correspond to the mel scale[17].

In using the DFT to compute the real cepstrum, the
signal may be over sampled to obtain frequencies as
close as possible to the desired frequencies. The LP-
based mel cepsral parameters were computed by mel-
frequency warping the log magnitude spectrum of the
LP parameters. Samples were taken linearly below 1
kHz and logarithmically above 1 kHz. The values are

shown in Table 1.

It has been found that the perception of particula
frequencies are influenced by energy within a critica
band found around the frequencies. Some research
suggest using thetotal log energyfound within the
critical bands around each frequency rather than ju
using the log magnitude. This results in applying
sequence of critical band filters to the log magnitud
spectrum of the signal. The width of the filters ar
constant below 1 kHz and increases logarithmical
above 1 kHz. These critical-band filters give us
sequence of weighted total energy:

kakz
k– 1+

k 1=

p

∑
 
 
 

1 akz
k–

k 1=

p

∑–
 
 
 

ncnz
n– 1+

n 1=

∞

∑= =

kakz
k– 1+

k 1=

p

∑ 1 akz
k–∑–

 
 
 

ncnz
n– 1–

n 1=

∞

∑⋅=

z
1–

c1 a1=

cn 1 k n⁄–( )akcn k– an 1 n p< <,+
k 1=

n 1–

∑=

Table 1: Frequency Components; 16kHz
data, 2048-point DFT

“Desired”
Frequency

(Hz)

“Quantized”
DFT

frequency
(Hz)

“k”
value
DFT

100 101 13

200 203 26

300 304 39

400 406 52

500 507 65

600 609 78

700 710 91

800 812 104

900 914 117

1000 1015 130

1148 1148 147

1318 1320 169

1514 1515 194

1737 1734 222

1995 1992 255

2291 2289 293

2630 2632 337

3020 3023 387

3467 3468 444

4000 4000 512
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where the summation is over a small range ofk’s around
 (normalized center frequency).

 - ith critical-band filter.

- weighted log terms within theith critical-
band filter.

The sequence is then inverse transformed to give the mel
cepstral coefficients.

5. PERCEPTUAL LINEAR PREDICTION

One of the main disadvantages of the LP all-pole model
is that it approximates the speech signal equally well
over all frequencies within the analysis band [5]. LP
analysis does not preserve and discard spectral details
according to their auditory prominence.

Hermansky studied a class of spectral transform LP
techniques that modify the power spectrum of speech
prior to its approximation by the autoregressive LP
model [5]. The steps involved are as follows:

A. Spectral analysis - DFT the signal and compute the
power spectrum.

(22)

B. Critical-band analysis - warp the power spectrum
along its frequency axis into the Bark frequency.

(23)

Then convolve the warped power spectrum with the
power spectrum of the simulated critical band masking
curve (similar to spectral processing in mel cepstral
analysis).

 = (24)

 0, for

, for

1, for

, for

0, for

This is a rather crude approximation of what is know
about the shape of the auditory filters. The abov
discrete convolution yields samples of the critical-ban
power spectrum:

(25)

This reduces the spectral resolution of in
comparison with the original and allows for the
down-sampling of . The exact value of the
sampling intervals is chosen so that an integral numb
of spectral samples covers the whole analysis ban
Typically, 18 spectral samples of are used t
cover the 0 - 16.9-Bark (0 - 5 kHz) analysis bandwidt
in 0.994-Bark steps.

C. The sampled is preemphasized by th
simulated equal-loudness curve:

(26)

where

is an approximation to the nonequal sensitivity o
the human hearing at different frequencies.

(27)

D. The cubic-root amplitude compression

(28)

simulates the nonlinear relationship between th
intensity of sound and its perceived loudness.

E. In the final operation of PLP analysis, is
approximated by the spectrum of an all-pole mod
using the autocorrelation method of all-pole spectr
modeling.

Y i( ) S k m;( )log
k 0=

N 2⁄

∑ 
 
 

Hi k 2π{ } N⁄( )( )=

ki

Hi ω( )

S k m;( )

P ω( ) Re Sω( )[ ]2
Im S ω( )[ ]2

+=

Ω ω( ) 6 ω 1200π( ) ω 1200π( )⁄( )2
1+[ ]+( )⁄{ }ln=

ψ Ω( )

Ω 1.3–<

10
2.5 Ω 0.5+( )

1.3– Ω 0.5–≤ ≤

0.5– Ω 0.5< <

10
1.0 Ω 0.5–( )–

0.5 Ω 2.5≤ ≤

Ω 2.5>

Θ Ωi( ) P Ω Ωi–( )ψ Ω( )
Ω 1.3–=

2.5

∑=

Θ ω( )
P ω( )

Θ ω( )

Θ Ω ω( )[ ]

Θ Ω ω( )[ ]

Ξ Ω ω( )[ ] E ω( )Θ Ω ω( )( )=

E ω( )

E ω( ) ω2
56.8 10

6×+( )ω4[ ] ω2
6.3 10

6×+( )
2

⁄=

ω2
0.38 10

9×+( )

Φ Ω( ) Ξ Ω( )0.33
=

Φ Ω( )
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6. TIME DERIVATIVES AND REGRES-
SION

The first time derivatives (the dynamic feature) and the
second time derivatives (the acceleration feature) are
used to represent the dynamic changes in the speech
spectrum. Regression is an alternative representation of
time derivatives. The first, second, and higher order
regression features represent the first, second, and
higher numerical derivatives of the feature vector.
Normally, these dynamic and acceleration features are
computed for cepstral coefficients.

Abrupt spectral changes found within the speech
spectrum such as those found in consonant phonemes
can be detected with time derivatives. In doing so,
recognition rates are improved. Another use for time
derivatives is to make recognition systems more robust
to noise. The speech signal can be corrupted by ambient
noise and distortions due to the “Lombard effect.” The
Lombard effect is the distortion of speech due to
speaking louder[10]. One possible approach for
improving recognition rates for noisy speech is to train
the recognizer under conditions to match the test
conditions or predict all conditions under which the
recognizer will be used. However, one can not in general
predict al l the test condit ions under which the
recognizer will be used. A better approach is to find a
more robust representation of the speech which will
support high recognition rates in normal and noisy
speech.

The time derivatives of the cepstral coefficients at time t
are defined as follows[6]:

Static feature

(29)

Dynamic feature

(30)

Acceleration feature

(31)

where

- denotes thek-th cepstral coefficient from a frame of

speech at time “t”.

 - half of the delay between the frames differenced.

- play a similar role as ; interchanging the

values leaves the feature unchanged.

Ther-th order regression can be written as[7]:

(32)

where

- denotes thek-th cepstral coefficient from a frame

of speech at time t.

T - the time length over which the regression feature
calculated.

 - the step size between speech analysis frames.

L = T/ - (the number of analysis frames in time
lengthT) is odd, so that the central frame at

X = (L+1)/2 is included in the sums.

The weighting function, , is ther-th orthogonal

polynomial of lengthL. The first few orthogonal
polynomials are:

(33)

(34)

(35)

(36)

7. CURRENT SYSTEMS

Current speech recogni t ion systems typical l
incorporate the following elements into their system
LP derived feature vectors for computational efficienc
stat ic features combined with short- term tim
differences to capture the dynamic aspects of t
spectrum, and energy measures (absolute ener
normalized energy, and/or differenced energy)[1]. Mo
common systems like the HTK LVSCR of Cambridg

Sk t( ) ck t( )=

Dk t( ) ck t δD+( ) ck t δD–( )–=

Ak t( ) ck t ∆A δA+ +( ) ck t ∆A δA–+( )–=

ck t ∆A– δA+( )– ck t ∆A– δA–( )+

ck

δD

δA ∆A, δD

Rrk t T ∆T, ,( )

P
2
r X L,( )Ck t X

L 1+
2

------------– 
  ∆T+ 

 

X 1=

L

∑

P
2
r Ẋ L,( )

X 1=

L

∑
---------------------------------------------------------------------------------------------=

Ck

∆T

∆T

Pr X L,( )

P0 X L,( ) 1=

P1 X L,( ) X=

P2 X L,( ) X
2 1

12
------ L

2
1–( )–=

P3 X L,( ) X
3 1

20
------ 3L

2
7–( )X–=
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University incorporates 12 mel cepstral coefficients
along with the first and second differentials. The HTK
LVSCR system includes normalized log energy. It uses a
sample frequency of 16 kHz and a frame duration of
10ms[11].

Cambridge University’s hybrid connectionist-hidden
Markov model large-vocabulary speech recognition
system, ABBOT, has used two sets of acoustic features
in the past. These include a 20 channel mel-scaled filter
bank with three voicing features and 12th order cepstral
coefficients derived using perceptual linear prediction.
The system uses a 32ms window and a 16ms frame
duration[12].

The BBN/BYBLOS speech recognit ion system
incorporates 45 features including 14 cepstral
coefficients, energy, and the first and second derivatives
of both[13].

Like the HTK system, IBM’s large vocabulary
continuous speech recognition system for the ARPA
NAB news Hub-1 test, uses 16 kHz data and a frame
duration of 10ms. The system computes a 24-band mel
cepstra[14].

Dragon’s continuous speech recognizer produces a set
of 44 parameters for each 10ms frame: 1 total log
energy, 7 log spectral energies, 12 Mel-cepstrals, 12
cepst ra l d i f fe rences, and 12 cepst ra l second
differences[15].

The AT&T Speech-To-Text system produces a 39-
dimensional observation vector every 10ms. Twelve
mel-cepstral parameters along with their first and
second time derivatives are produced. The 0th cepstral
parameter is used as an estimate of energy[16].

8. SUMMARY

The implementation of the front-end generates LP-
based measurements. Window duration, frame duration,
and LP-order are user defined. The Levinson-Durbin
algorithm is used to compute the LP coefficients. From
these coefficients, the linear cepstral coefficients of LP-
order are derived. The system uses a fixed number of
critical band filters to generate twenty mel-cepstral
coefficients for 16 kHz data. First and second time
derivatives and first and second order regression features
computed over a fixed length of three frames are
generated for the mel-cepstral coefficients. The twenty
mel-cepstral coefficients, time derivatives, and absolute
energy make up a 61 component feature vector.

The twenty mel-cepstral coefficients were computed
according to the critical band center frequencies found
in Table 1. In order to make the coding simpler,
regression was calculated over a fixed length rather than

an arbitrary length. Also, perceptual linear predictio
was not implemented.

Unfortunately, the different feature vectors were no
compared. Comparison, if time permitted, would hav
been done by producing the parameters for a corpus
several speakers--each speaking the same set of
different phonemes. A scatter plot showing the relativ
tightness of clusters for the same phonemes a
separation for the two different phonemes would ha
been compared for each parameter.
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