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ABSTRACT prediction and linear cepstral coefficients and twenty
mel cepstral coefficients with its first and second time
dlerivatives. The first and second order regression

signal processing component of the whole system. itdeatures of the mel cepstral coefficients computed over

function is to take a block of the speech signal at a timghree frames Were.also generated. The different
and from each, derive a smooth spectral estimate. Thifléasurements will be related to the system
can be accomplished through various means (lineafMPlementation as they are discussed.

prediction, fourier analysis, filter banks); however, this

paper focuses on linear prediction based measurements. 2. LINEAR PREDICTION

Time derivatives and regression features of these

measurements will also be investigated.

The front-end of a speech recognition system is th

Linear prediction provides an efficient and simple

The outout of the front-end is a set of feature vectors"€aNS of calculating the static coefficients of the feature
P Svector. Its computation is based on an all-pole model of

that represents the signal. Linear predqction provides agpeech. This model can be derived from a concatenation

Sfeﬁg't%nrtsan_?_ r?ilrsnplz m:?r:jsegfcci(i)l;nep:t;r;gutrh3?%feeraetlrirt%f lossless acoustic tubes to represent the human vocal

' ) pap o ; ract. Each tube has a different cross-sectional area
measurements: linear prediction, linear cepstral, me}, .1 -ining to the varying cross-sectional area of the
cepstral, and perceptual inear prediction analysis. vocal tract. However, in the study of modeling speech
production, one can find compelling arguments for the
1. INTRODUCTION inclusion of zeros in the speech production model [8]. It

is well known that the spectrum of phonemes, especially

The front-end of a speech recognition system convert¥owels, have format frequencies that are approximately

the speech signal into a sequence of feature or acoust/g°deled by all-pole structures. On the other hand, vocal
ct characteristics such as the glottal pulse waveform

vectors. These vectors represent the frequency spectrulff

of the speech waveform over a time period of typically and lip radiation and articulations involving nasals and
fricatives introduce zeros into the system function. Thus

10ms. Recognition of input sounds is achieved by | | h hoi
computing a distance measure between input parametérZ€ro-pole system would seem to be the better choice.

vectors and corresponding reference vectors of th%’h ll-00l del of h production i .
vocabulary words[2]. Therefore, using parameterization' '€ ll-pole model of speech production Is a minimum

techniques that represent the speech signal as accuraté]r?ase representation of the speech signal. Because all
as possible have a big impact on recognition rate. Thallformation within speech is contained solely in the

techniques that may be employed to generate <'acousti§gnal’S magnitude, the absence of phase dqes not hinder
vectors include linear prediction, Fourier transforms, "€ Perception of the human ear nor does it hinder the

digital filter banks, and various transformations. recognizer. A linear prediction representation of the
speech model is not only simple but works well.

This paper focuses on linear prediction based
measurements (linear prediction, linear cepstral, me'r
cepstral, and perceptual linear prediction analysis):'
Time derivatives and regression features of the abov
techniques will also be investigated. Both are used td =
represent the dynamic changes within the signal’d°€redicitonis used.
frequency spectrum.

inear prediction tries to predict a signai(n), by a
near combination of its past values. This linear
gombination includes weightsyi)'s, which form the
redictor equation coefficients. Thus, the telimear

Consider the predicted values of the signal defined by

The implementation of the front-end resulted ina
system that generates an arbitrary number of linear 3(n) = s(n)—as(n-1) (1)
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The error between the signal and its predicted value€.1. Levinson-Durbin Recursion
based on its previous value is given by:

e(n) = s(n) —3n) = s(r)—as(n—1) ©) Fo =10
The total squared error is defined by: fori=1,2..p
E= Zez(n) = ;{S(n)—aS(n—l)}2 @ k= Er(i)—:glai_l(j)r(i—j)EyEi_l
= 5 (s%(n) - 2ag(ns(n-1) + a?s*(n - 1)) a(i) = k
” forj=1,2,..-1

The error is minimized with respect ta by
differentiatingE and setting the result equal to zero . . o

g g a ai(i) = a_1())—kiay_ (i)
0E

Fri 0= Z—Zs(n)s(n—1)+ 2as?(n—1) 4)

2
. E, = (1-K)E_;
- Zs(n)s(n—l) - aZs2(n—1) The autpcorrelation values are used to compute
o 0 intermediate valuesk( ‘s) called reflector coefficients.

o ] These values in turn are used to compute the predictor

A more general form which includes multiple pass coefficients. The error denoted Iydecreases within

values: the iterative process. Thath value ofE which is the
difference between the signal and the predicted signal is

0E _ N B 3 used for gain matching. The gain
35 - Zs(n)s(n ) = ak;s(n Ks(n-1) (5)
gain = 100og|E| (10)
or
is multiplied by the model spectrum to match the
P magnitude of the signal spectrum.
c(l,0) = ac(k 1) 6
kZl “ © Let us make a few comments about the reflector

coefficients. The reflector coefficients in the algorithm
This equation gives the covariance method ofabove have an absolute value of less than one. Absolute

calculating thea’s or predictor coefficients. values of one implies a harmonic process (poles on the
unit circle), and absolute values greater than one implies
c=cCa (7) @an instability (poles outside the unit circle). Now, we

have insight on how to determine the LP order during

Inversion of the covariance matrix is needed to solve forthe calculations. As the reflector coefficients approach

the predictor coefficients: one, we approach our ITP order. The reflector
' coefficients are orthogonal in that tipth order model

5 contains the coefficients for the+1 order model.

@]

®)

&1
1
|\

o

The linear prediction process can be viewed as a filter by

taking the z-transform of the error:
By limiting the data to within each frame, the

autocorrelation method can be used to compute the P
predictor coefficients: e(n) = s(n-— Z a;s(n—-K (11)
k=1

a= R 9)
E(2 = S(2A(2 (12)
This method, of course, requires the inversion of the
autocorrelation matrix. A simple and efficient algorithm where
that circumvents the need for matrix inversion is the
Levinson-Durbin algorithm.
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P Cy(w) = log|S(w)| (14)
A2 = 1- Z az (13)
k=1

log|E(0)©(w)|
and 1A(z)is our all-pole model.

log|E(w)| + log|©(w)|

3. CEPSTRAL ANALYSIS C (w) - cepstral magnitude spectrum

Cepstral analysis is designed for problems centere o :

around “voiced” speech. Speech is composed of SS(m) signal magnitude spectrum
glottal excitation sequence convolved with the impulse
response of the vocal tract. Glottal excitation is a uniqueE(‘*’)
characteristic of each individual. Eliminating this )
characteristic from the speech model facilitates better®(w) - vocal tract magnitude spectrum
speaker-independent recognition. Because the

individual parts are not linearly combined, the As with the spectrum, the slow varying signa(w)
customary linear techniques (e.g. Fourier analysishnd the fast varying signak () . manifest themselve
provide no help. Cepstral analysis, on the other handy; {6 |ow and high end of the quefrency domain
provides a means for separating convolved signals. It$egpeciively. The glottal excitation can be removed from
cepstrum (like th_e specFrum) represents a transformatiog}, o signal by performing a “low-time liftering” (a play
on the speech signal with two properties[7,4]: on filtering) process. This process devoids the vocal
1. The representation of the component signals will bet:roan?:)gr?e??o'lpheigt,ir:Oe%é(g)ncé c;];saunlils ?:(;tc?tat;)c;?ral
separated in the cepstrum. smoothing of the vocal tract spectrum.

- glottal excitation magnitude spectrum

2. The representation of the component signals will b

linearly combined in the cepstrum. °p analysis does not resolve the vocal-tract

characteristics from the glottal dynamics. The glottal
excitation is a laryngeal characteristic that varies from

In talking about the cepstrum, one can refer to what is

called the “real cepstrum” (RC) and the “complex person to person. Hence, LP parameters convey some

cepstrum” (CC). The RC is equivalent to the even partJnformation_that can degrade performance, especially
of the CC; it discards the phase information of thefor speaker-independent systems.

signal. To derive cepstral parameters from LP analysis, the

One of the most important applications of Cepstraltransfer functionA(z),from Equation 13 is utilized by

analysis in contemporary speech processing is thgxpanding the logarithmic transfer functidnA(z), into
representation of an LP model by cepstral parameters power series of ~ . If all the poles 8{(z) are inside
[8]. On that note, we shall only concern ourselves withthe unit circle]nA(z) can be expressed as [3]

the “real cepstrum.”

The computation of the RC is shown in block diagram InA(2) = C(2) = Z an—n (15)
in Figure 1. n=1
: Wherez = exp(jwt) w = frequency in radiansT =
signal
g > DFT}’ logl.| »| PFT n - sampling interval, anct, is the amplitude at thté
sampling instant, = nT, of the inverse Fourier transform
of C(z2). C(z)is considered as a function of the frequency
log|S(W)|=Cs(w) variablew.
To obtain the relationship between cepstral and

predictor coefficients, Equation 15 is substituted into
Equation 15. The derivative of both sides is taken with

. . . -1
The first two operations, the DFT and the log function, respect ta
transforms the signal so that its convolved parts are
resolved into additive components in the new domain q

p [oe]
(quefrency domain). —= Ir{l/gl— > akz—ﬂ = i_l Sz (16)
0 =1 O dz 5=

Figure 1. Computation of the RC.

dz~
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which simplifies to shown in Table 1.

17) Table 1: Frequency Components; 16kHz
data, 2048-point DFT

ol k+10 O P kd - n+1
DZ kaz " O=l- Z az 0= Z nc,z u . "
04, oo & 0 .4 “Desired” ngr;t?ed "
- Frequency value
and rewritten as frequenc
(H2) quency DFT
(Hz)
i ka7 K1 = g —kDD - —n-1 18
kzl az " = d-az Lh) noz (18) 100 101 13
= n=1
200 203 26
By equating the constant terms and the various powers
1 . . . 300 304 39
of z~ on both sides of Equation 18, we obtain the
relationship between the cepstral and predicto 400 406 52
coefficients [4]:
500 507 65
=% (19) 600 609 78
n-1 700 710 91
c, = z (1-k/n)ac,_+a,l<n<p (20) 800 812 104
k=1
, 900 914 117
Equations 19 and 20were used to compute the LP based
linear cepstral coefficients. 1000 1015 130
1148 1148 147
4. MEL CEPSTRAL ANALYSIS
1318 1320 169
In the 1980’s, the cepstrum began to supplant the diregt 1514 1515 194
use of the LP parameters as the premiere feature in the
important “hidden Markov modeling” strategy because 1737 1734 222
of two enhancements that were found to improve speechk
recognition [8,9]. The first has already been mentioned-} 1995 1992 255
cepstral smoothing of the LP-based spectrum. The¢
second enhancement is due to the “mel cepstrum.” 2291 2289 293
_ _ _ _ 2630 2632 337
A “mel” is a unit of measure operceived pitchor
frequencyof a tone. Work done by Stevens and Volkman 3020 3023 387
showed that the frequency resolution of the human ear i
approximately linear below 1 kHz and logarithmic 3467 3468 444
above 1 kHz. A mapping of pitch (mel) versus actual 4000 4000 512
frequency gives us the mel scale. Researchers began

investigating the benefits of using a warped frequency ) )
axis to correspond to the mel scale[17]. It has been found that the perception of particular

frequencies are influenced by energy within a critical
In using the DFT to compute the real cepstrum, theband found around the frequencies. Some researchers
signal may be over sampled to obtain frequencies asuggest using theotal log energyfound within the
close as possible to the desired frequencies. The LFcritical bands around each frequency rather than just
based mel cepsral parameters were computed by meWsing the log magnitude. This results in applying a
frequency warping the log magnitude spectrum of thesequence of critical band filters to the log magnitude
LP parameters. Samples were taken linearly below spectrum of the signal. The width of the filters are

kHz and logarithmically above 1 kHz. The values areconstant below 1 kHz and increases logarithmically
above 1 kHz. These critical-band filters give us a

sequence of weighted total energy:

SPEECH PROCESSING SPRING 1996



EE 8993 COURSE PROJECT Page 5

/2 gLo@-05)

Y0 = 03 ogs(kmzn /) @) for08sas2s
=0

0,forQ>25

where the summation is over a small rang&'sfaround

k (normalized center frequency). This is a rather crude approximation of what is known

about the shape of the auditory filters. The above
discrete convolution yields samples of the critical-band

Hi(w) -ith critical-band filter. power spectrum:

IS(k m| - weighted log terms within théh critical- 25

band filter. o) = PQ-Q)W(Q) (25)
Q=-13

The sequence is then inverse transformed to give the mel ] ]
cepstral coefficients. This reduces the spectral resolution 6fw) in

comparison with the originaP(w) and allows for the

5. PERCEPTUAL LINEAR PREDICTION down-sampling of®(w) . The exact value of the
sampling intervals is chosen so that an integral number

L f tral I the whol lysis band.
One of the main disadvantages of the LP all-pole modefl). spectral samples covers the who'e analysis ban

is that it approximates the speech signal equally well yplcatILy, %)8 slpggtrgl sliir%ple;l?ﬁ[ﬂ(m)]l . at:e udse%ttﬁ

over all frequencies within the analysis band [5]. LP '00\6855946‘8 _k " -Bark (0 - z) analysis bandwi

analysis does not preserve and discard spectral detaild Y-o¥3-BATK SIEPS.

according to their auditory prominence.
g yPp C. The sampledo[Q(w)] is preemphasized by the

Hermansky studied a class of spectral transform LFsimulated equal-loudness curve:

techniques that modify the power spectrum of speech

prior to its approximation by the autoregressive LP  =[Q(w)] = E(w)0(Q(w)) (26)

model [5]. The steps involved are as follows:

where
A. Spectral analysis - DFT the signal and compute the
power spectrum. E(w) is an approximation to the nonequal sensitivity of

the human hearing at different frequencies.

P(w) = R §w)]”+ Im[ )]’ (22) @)
B. Critical-band analysis - warp the power spectrum
along its frequency axis into the Bark frequency. E(w) = [(0 +56.8x 1§)w"]/ (w* + 6.3% 106)2
(23)
(w? +0.38x 10)
Q(w) = 6In{e/((1200m) + [(w/(1200m)° +1])} D. The cubic-root amplitude compression

Then convolve the warped power spectrum with the  ®(Q) = =(Q)** (28)

power spectrum of the simulated critical band masking
curve (similar to spectral processing in mel cepstralsimulates the nonlinear relationship between the

analysis). intensity of sound and its perceived loudness.
P(Q) = (24)  E. In the final operation of PLP analysisp(Q) is
approximated by the spectrum of an all-pole model
0, forQ<-1.3 using the autocorrelation method of all-pole spectral
modeling.

10%592*09) for _13<0<-05

1, for-0.5<Q<0.5
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6. TIME DERIVATIVES AND REGRES- 3, A, - play a similar role ag, ; interchanging the
SION values leaves the feature unchanged.

The first time derivatives (the dynamic feature) and the
second time derivatives (the acceleration feature) ar
used to represent the dynamic changes in the speec
spectrum. Regression is an alternative representation of
time derivatives. The first, second, and higher order
regression features represent the first, second, and
higher numerical derivatives of the feature vector. Lo, L+ 1]
Normally, these dynamic and acceleration features are > Par(X L)CKB + %(_TEMD
computed for cepstral coefficients. Ry (t, T,AT) = X212

er-th order regression can be written as[7]:

(32)

L

5
Abrupt spectral changes found within the speech Z Por(X.L)
spectrum such as those found in consonant phonemes X=1
can be detected with time derivatives. In doing so,
recognition rates are improved. Another use for time
derivatives is to make recognition systems more robust .
to noise. The speech signal can be corrupted by ambierftx - denotes thé-th cepstral coefficient from a frame
noise and distortions due to the “Lombard effect.” Theof speech at time t.
Lombard effect is the distortion of speech due to
speaking louder[10]. One possible approach forT - the time length over which the regression feature is
improving recognition rates for noisy speech is to traincalculated.
the recognizer under conditions to match the test
conditions or predict all conditions under which the AT - the step size between speech analysis frames.
recognizer will be used. However, one can not in general

predict all the test conditions under which the | — 1/a7 - (the number of analysis frames in time
recognizer will be used. A better approach is to find alength'D is odd. so that the central frame at
more robust representation of the speech which will '

support high recognition rates in normal and noisyy _ (L+1)/2 is included in the sums
speech. '

where

The time derivatives of the cepstral coefficients at time tThe welghtmg functionp, (X, L) B is theth orthogonal
are defined as follows[6]: polynomial of lengthL. The first few orthogonal

polynomials are:
Static feature

Po(X,L) =1 (33)
S(t) = ¢ () (29)
Py(X, L) = X (34)
Dynamic feature
D (t) = c(t+3p) - (t—3p) (30) Py(X, L) = XZ—IlQ(LZ—l) (35)
Acceleration feature PL(X, L) = X3‘§15(3'-2‘7)X (36)

A(t) = q(t+Ap+3,)—C(t+A,—5,) (31)

7. CURRENT SYSTEMS
—C(t—DBp+8p) +C(t—Dp—3,)

Current speech recognition systems typically
where incorporate the following elements into their systems:

LP derived feature vectors for computational efficiency,
¢, - denotes thé-th cepstral coefficient from a frame of static features combined with short-term time
speech at time “t". differences to capture the dynamic aspects of the
spectrum, and energy measures (absolute energy,
normalized energy, and/or differenced energy)[1]. Most

dp - half of the delay between the frames differenced. common systems like the HTK LVSCR of Cambridge
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University incorporates 12 mel cepstral coefficientsan arbitrary length. Also, perceptual linear prediction
along with the first and second differentials. The HTK was not implemented.

LVSCR system includes normalized log energy. It uses a

sample frequency of 16 kHz and a frame duration ofUnfortunately, the different feature vectors were not

10ms[11].

compared. Comparison, if time permitted, would have

been done by producing the parameters for a corpus of
Cambridge University’s hybrid connectionist-hidden several speakers--each speaking the same set of two
Markov model large-vocabulary speech recognitiondifferent phonemes. A scatter plot showing the relative
system, ABBOT, has used two sets of acoustic featuresghtness of clusters for the same phonemes and
in the past. These include a 20 channel mel-scaled filteseparation for the two different phonemes would have
bank with three voicing features and 12th order cepstrabeen compared for each parameter.

coefficients derived using perceptual linear prediction.
The system uses a 32ms window and a 16ms frame
duration[12].

The BBN/BYBLOS speech recognition system 1
incorporates 45 features including 14 cepstral
coefficients, energy, and the first and second derivatives
of both[13]. 2

Like the HTK system, IBM’s large vocabulary

continuous speech recognition system for the ARPA
NAB news Hub-1 test, uses 16 kHz data and a frame
duration of 10ms. The system computes a 24-band mel
cepstra[14]. 3

Dragon’s continuous speech recognizer produces a set
of 44 parameters for each 10ms frame: 1 total log
energy, 7 log spectral energies, 12 Mel-cepstrals, 12
cepstral differences, and 12 cepstral second4
differences[15].

The AT&T Speech-To-Text system produces a 39-
dimensional observation vector every 10ms. Twelve
mel-cepstral parameters along with their first andsg
second time derivatives are produced. The Oth cepstral
parameter is used as an estimate of energy[16].

8. SUMMARY

The implementation of the front-end generates LP-
based measurements. Window duration, frame duration,
and LP-order are user defined. The Levinson-Durbin
algorithm is used to compute the LP coefficients. From
these coefficients, the linear cepstral coefficients of LP-
order are derived. The system uses a fixed number of
critical band filters to generate twenty mel-cepstralg
coefficients for 16 kHz data. First and second time
derivatives and first and second order regression features
computed over a fixed length of three frames are
generated for the mel-cepstral coefficients. The twenty9
mel-cepstral coefficients, time derivatives, and absolute
energy make up a 61 component feature vector.

The twenty mel-cepstral coefficients were computed10
according to the critical band center frequencies found
in Table 1. In order to make the coding simpler,
regression was calculated over a fixed length rather than

SPEECH PROCESSING
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