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ABSTRACT

Implementation of various Statistical Modeling
Techniques is necessary for the building of a Speech
Recognizer. Statistical Modeling is done to learn the
nature of the multi-variate random process generating
the signal parameters. In this direction, pre-whitening
transformations were performed on the parameters to
eliminate redundancy and to make the analysis easier.

The transformations were performed on the input
feature vector to produce an uncorrelated Gaussian
random vector, containing only “information-bearing”
parameters. For some algorithmically complex
computations such as the computation of the eigen
values and eigen vectors, existing software was used.

Channel adaptation techniques were implemented so as
to make the parameters robust to changes in the
acoust ical environment. For this purpose, two
particularly simple, but effective algorithms, Cepstral
Mean Normalization/Subtraction and RASTA were
chosen.

17. INTRODUCTION

Statistical modeling:

The primary aim of statistical modeling is to learn the
nature of the multi-variate random process, assumed to
be generating the signal parameters. A further insight
into statistical modeling can be gained by looking at
some issues like variance-weighting.

Very frequently, we will be interested in knowing the
distance between two feature vectors. If we use a simple
distance measure, such as the Euclidean metric, to make
this comparison, the result wil l be most l ikely
erroneous. This is due to the fact that if use of such a
simple distance measure is made, the lower amplitude
terms contribute much less, if not negligible, to the
outcome compared to the larger-amplitude terms, even
though the true information may lie in the smaller
amplitude terms. For example, feature vectors normally
include such measurements as the cepstral coefficients,

derivatives of the cepstral coefficients and energ
measures. Since the variances of the time-derivatives
the cepstral coefficients are larger than the cepst
coefficients, a direct distance measure between tw
feature vectors will be dominated by the derivatives
the cepstral coeffic ients even though the tru
information may lie in the cepstral coefficients [1]. So
we need to normalize the features so that all of the
contribute equally in any comparison.

Another issue to be considered, is the presence
correlation between the features which makes t
analysis complex. If two features are correlated in su
a way that if one increases, the other decreases, then
result of the feature vector comparison could turn out
be erroneous as the two frames may not be as differ
as the outcome may indicate [2]. So, correlation has
be eliminated from our features to make the analys
easier. Also, correlation implies redundancy and w
might be able to achieve some level of reduction b
choosing a subset of the features, thus reducing t
complexity of the problem to some extent. As we wi
see, this can be achieved by performing prewhiteni
transformations on the feature vectors.

First, the various steps involved in the prewhitenin
transformation will be discussed and then featu
selection will be introduced.

Channel Adaptation:

The need for speech recognition systems to be mo
robust with respect to their acoustic environment h
become more widely appreciated in recent years [3
Performance of many automatic speech recogniti
machines, designed to be speaker-independent, has b
found to be deteriorating if a different acoustica
environment is used to test them [4,5]. Chann
adaptation is an algorithm designed to make the syst
more robust to the changes in the acoust ic
environment. Use of channel adaptation techniques h
proven to be very effective in the upgradation of th
performances of speech recognizers. For examp
Acero demonstrated that a large vocabulary spee
recognition system with a base-line performance of 85
word accuracy in a matched transducer condition cou
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Fig. 1. Two methods to generate feature vectors
only achieve less than 19% word accuracy when
different microphone was used during testing [4].

Almost all the techniques that are currently being use
make use of the fact that the variations of noise a
relatively slower than the variations in speech. There a
many techniques currently in use to achieve chann
adaptation or robust recognition. We will discuss som
of them briefly and then discuss the two techniques us
by us, cepstral mean normalization (CMN) an
RelAtive SpecTrAl processing (RASTA) in more detail

2. A SIMPLE OVERVIEW OF THE
FRONT END

This section aims at giving a simple overview of th
front-end which is essentially the signal processin
section of the speech recognition system. The prima
objective of the front-end is to produce a feature vect
that will be utilized to develop the acoustic models.

The pre-processing of the 16Khz sampled speech dat
done by:

taking data on a frame-basis (typically of length 2
 ms),

debiasing the data,

 preemphasizing the data (with a filter ),

and windowing the data (a typical window used is
 hamming window of 30 ms duration).

The speech signal is preemphasized to compensate
the attenuation caused by the radiation from the lip
[25]. The overlap of the window over the frame helps i
smoothing the spectral estimate of the input spee
signal and also to give a longer analysis window. The
exist a number of methods to generate the feature vec
at this stage. A simple block diagram showing two o
these that have been used to generate feature vecto
shown in Fig. 1. Studies have shown that the mo
reliable LP-derived feature set for speaker recognition
the cepstral coefficients [6,7]. Cepstral features a
found to yield excel lent performance for text
independent speaker identification when training an
testing speech signals are collected under relative
clean and stationary environments [8].

A feature vector of 61 components is developed whic
consists of twenty mel-cepstral coefficients, first an
second order time derivatives and first and second ord
regression features. The mel-frequency cepstr
coefficients (MFCC’s) are being widely used in curren
speech recognition systems due to their ability
ach ieve be t te r per fo rmances [26 ] by be t te
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approximating the human hearing perception, whic
follows a log scale rather than a linear scale. The m
scale is often approximated as a linear scale from 0
1000 Hz, and then a logarithmic scale beyond 1000 H
[1]. The derivatives and regression features for the m
frequency cepstral coefficients were computed using
fixed length of three frames.

The prewhitening transformations and the princip
component analysis are performed on these featu
vectors to generate a decorrelated and normaliz
feature vector. We assume that the random proce
generating the signal parameters is a multi-varia
Gaussian random process, but generally, to get bet
performances, a weighted sum (mixtures) of Gaussi
distributions is used. A weighted sum would be able
model the input data better than a single distribution, b
the associated computational complexity increas
manifold.

These decorrelated and normalized feature vectors w
be used to generate acoustic models of the da
Maximum likelihood classification can be used t
achieve this [2]. Suppose, we have a set of classes wh
might be representing, say the words in a vocabula
The probabilities for the word model given the featur
vectors are calculated and then the class that has
maximum conditional probability for a given feature
vector is chosen. Generally, the bigger the unit chose
the better should be the performance of the system sin
a bigger unit would be able to capture the long-ter
context better than a smaller unit. But, when viewed in
large vocabulary recognition standpoint, this solutio
Spring’96
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Fig. 2. A simple block diagram showing the front end
 and acoustic modeling
becomes impractical. Current systems are employi
either phones, phonemes, bi-phones or tri-phones as
modeling unit. Context-dependent phonemes are a
becoming popular with researchers. A number o
distance measures exist which can be used to comp
the class separations such as the Bhattacharya dista
the log-likelihood measure and the Euclidean metric.

A block diagram indicating this whole process is show
in Fig.2.

3. PRINCIPAL COMPONENT ANALYSIS

In this section, we will discuss the prewhitening
transformations, which are done to decorrelate a
normalize the signal parameters, and then discu
feature selection which is performed to obtain a reduc
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set of features. The approach will be to impose a mod
on the data, train this model and measure the quality
this approximation [1]. A block diagram of the various
steps involved in the prewhitening transformations
given in Fig. 3.

Prewhitening Transformations [9]:

The process generating the signal parameters will
assumed to be a multi-variate Gaussian process
Gaussian probability distribution can be defined as

We will assume that our parameters obey this type
statistical model. A linear transformation is to b
computed that will simultaneously normalize an
decorrelate the signal parameters, thus allowing us
compare the feature vectors directly and also
eliminate redundancy. Let us define the transforme
vector  as

where denotes the input parameter vector, and

denotes the mean value of the input parameter vect
We define as a prewhitening transformation [10, 9
This linear operation applied to the feature vectors
called a prewhitening transformation, since it produc
feature vectors whose components are uncorrelated
normalized [2].

This transformation matrix is given by

where is a diagonal matrix of the eigen values, and
is the matrix of the eigen vectors of the covarianc
matrix of . The computation of the eigen values an
eigen vectors is algorithmically highly complex [11] ha
an excellent discussion on this problem. So, a cann
routine, which has generally provided satisfactor
performance, was used to compute these [11].

The eigen values and eigen vectors can be shown
satisfy the following relation:

Eigen values, essentially, try to model the system a
hence the eigen vectors can be understood to
modeling the input data. Each eigen vector attempts
model a different aspect of the speech spectrum. T
first few eigen vectors of the transformation matri
attempt to model the gross spectral characteristics of
channel [1].

p v( ) ℵ v µv Cv, ,[ ]=

y

y Ψ v µv–( )=

v µv

Ψ

Ψ Λ 1 2/– Φ=

Λ Φ

v

Cv ΦΛΦT
=
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 Covariance matrix

 Transformation matrix

 Eigen values, eigen vectors

Decorrelated and normalized vector

Feature vector, mean

Vector transformation

Fig. 3. Various steps in Prewhitening transformation
The covariance matrix is computed using the followin
equation:

Simplifications of the prewhitening procedure ar
sometimes employed to avoid the computation
expense of using the full covariance matrix [2]. Th
most common simplification is to assume that th
features are mutually uncorrelated, but inappropriate
scaled relative to one another. In this case, th
covariance matrix reduces to a diagonal matrix and t
transformation matrix simplifies to a diagonal matri
whose off-diagonal elements are all zero and th

diagonal elements will be where is the

standard deviation of theith component of the paramete
vector . We can see from the transformation matr
that all the parameters are being normalized by the
standard deviations which is essentially making ea
parameter count equally in the calculation. As we reca
this is known as variance-weighting and these varianc
weighted cepstral coefficients are very popular in spee
recognition systems. Comparisons of feature vectors c
now be made directly as the variances of all th
parameters have been normalized.

There exists a relation between the eigen values and
variance of the process which can be used to discard
least significant features. We can define the amount
the variance accounted for by each eigen value/eig
vector pair as [1]

and the total percentage of the variance accounted for
the first  dimensions as

where is the number o f e igen va lues

,...... . The eigen values are ordered i

decreasing order and the least significant features (
number of which has to be decided based on how mu
information they contribute) are discarded. This resu
in a reduced transformation matrix thereby resulting in
decrease in the computational complexity.

Cv i j,( ) 1
N f
------- vm i( ) µv j( ) ) vm j( ) µv j( ) )–(–(

m 0=

N f 1–

∑=

1
σv i( )
----------- σv i( )

v

ζi

λi

λi
i 0=

Nv 1–

∑
----------------- 100× %=

Ny

ζNy

λ j
j 0=

Ny 1–

∑

λi
j 0=

Nv 1–

∑
------------------ 100%×=

Nv

λ0 λ1, λNv 1–
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4. CHANNEL ADAPTATION

Channel adaptation is gaining prominence in resear
groups as attempts to improve the performance
speech recognition systems are increasing. Mo
channel distortions and many kinds of additive nois
vary slowly compared to the variations naturall
occurring in speech [12]. There are a number o
methods which make use of this fact to improve th
performance of speech recognition systems. Rece
studies have shown that filters which remove slo
variations in the feature vectors used in speec
recognition systems can yield significantly improve
recognition rates [13-17].

There are primarily three adverse conditions a spee
recognition system often encounters, namely, nois
distortion and articulation effects [3]. Acoustic ambien
noise is generally considered additive and it is one of t
primary concerns of a speech recognizer. Distortions a
introduced due to the recording environment whic
includes the recording room’s characteristics whic
affect the spectral characteristics and also the type a
mounting position of the microphone which can
significantly alter the speech spectrum. There are ma
Spring’96



Statistical Modeling and Channel Adaptation Page 36

e
s.
e
ng
or

g

e
ant
ral
ce
ls
l
of
n
P
e
r
of

a
n
s
at
to

in
he

ng

n

as
factors that influence the sound format and rhythmic
stability of the speaker [18].

One way of implementing channel adaptation is to
estimate the spectral characteristics of noise by
analyzing the non-speech portions of the spectrum,
which could be used to introduce some sort of
alleviating measure in the system. However, this
approach requires that we have a noisy data-base to train
the system.

There are many methods which use simple filtering
operations to achieve channel adaptation like RASTA
and CMN. They try to alleviate the features that are
more susceptible to environmental variations by filtering
operations, thereby reducing the effect of the acoustical
environment on the performance of the system.

A few methods currently in use by various systems will
be introduced here and then the CMN and RASTA
methods will be looked into in a more detailed manner.

4.1. CDCN, SDCN & FCDCN:

Acero [19] proposed the code-word dependent cepstral
normalization algorithm as a pre-processing technique
that can eliminate the effects of linear filtering and
additive noise. CDCN uses EM techniques to compute
the Maximum likelihood estimates of the environmental
parameters that characterize the contributions of the
contributions of additive noise and linear filtering. These
environmental parameters are chosen to best match (in
the MS sense) to match the ensemble of cepstral vectors
of the incoming speech to the ensemble of cepstral
vectors in a universal code-book generated from the
training corpus.

Acero [19,20] also proposed several pre-processing
techniques that compensate for environmental
mismatches by translating the noisy-testing speech to
the acoustical space of the training environment in an
env i ronment -spec i fi c manner. Two of these
environment-specific algorithms are the SNR-dependent
cepstral normalization (SDCN) and Fixed codeword-
dependent cepstral normalization (FCDCN) algorithms.

SDCN applies an additive correction in the cepstral
domain, with the compensation vector depending
exclusively on the instantaneous SNR of the signal. The
compensation vectors equal the difference of the
average cepstra between simultaneous stereo recordings
of speech signal from both the training and testing
environments for each SNR of speech. At high SNRs,
this compensation vector primarily compensates for
differences in spectral tilt between the training and the
test ing envi ronments, whi le at low SNRs the
compensation vector provides a form of noise
subtraction.

The FCDCN algorithm combines some of the mor
attractive features of the CDCN and SDCN algorithm
Like SDCN, the compensation factor equals th
difference in cepstra between the training and testi
environments, but like CDCN, the compensation fact
is different for different VQ codewords as well.

4.2. Adaptive Component Weightin
(ACW):

The ACW [8] scheme modifies the linear predictiv
spectral components so as to emphasize the form
structure by attenuating the broad-bandwidth spect
components. Such components are found to introdu
undesired variability in the LP spectra of speech signa
due to environmental factors. The ACW cepstra
coefficients represent an adaptively weighted version
the LP ceps t rum. The adapta t ion resu l t s i
deemphasizing the irrelevant variations of the L
cepstral coefficients on a frame-by-frame basis. Th
ACW method has been shown to offer bet te
performance as compared to other common methods
cepstral weighting [8].

4.3. CEPSTRAL MEAN NORMALISATION:

Cepstral mean normalization (CMN) [21] provides
very simple way of implementing channel adaptatio
making use of the fact that noise varies slowly a
compared to speech. It is a simple scheme th
compensates for channel mismatches (due
microphone/speaker variability).

Cepstral mean normalization tries to remove the bias
the features introduced by the noise component in t
input signal. This is done by computing the long-term
mean of the input cepstral vectors and then subtracti
this mean value from the cepstral vectors.

If is the input cepstral vector, then it’s mean ca

be computed by using the following equation:

where  is the number of frames.

Then, the mean is subtracted from the cepstral vectors
in the following equation:

If we approximate the mean vector by , the

ci t( )

µi
1

N f
------- ci t( )

m 0=

N f 1–

∑=

N f

c'i t( ) ci t( ) µi–=

µi Mi
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Fig. 4. A simple RASTA scheme
average value of  over the training corpus, we have

To get efficient performance with this technique, th
above steps must be iterated over clean and noisy d
This method can be used for channel adaptation even
a noisy database is not available. All the above ste
have to be iterated over data from different channels,
that the speech recognizer gets adapted to tho
particular channels.

One point to be noted in this context is that cepstr
mean normalization is implemented in the speec
recognition system in the principal component analys
stage itself. If we recall carefully, we subtract the mea
from the input vector while doing the prewhitening
transformation which is equivalent to doing cepstra
mean normalization. Though, this technique is built in
the system, a separate module has been develope
illustrate the working of this technique.

4.4. RelAtive SpecTrAl processin
(RASTA):

RASTA [22] is another simple way of achieving channe
adaptation. This method is based on the filtering of th
cepstral coefficients by a RASTA filter which aims to
filter out the slowly varying components of the cepstra
coefficients in order to normalize environmenta
variations. Coupled with a bandpass liftering operatio
this technique offers better performance than ma
RASTA derived techniques. A simple block diagram
giving the details of this implementation is given in Fig
4.

Given the cepstral vectors, we first bandpass lifter [2
them with the following window function:

where, h = L/2, k = 1,2......L and for other k,
with L being the number of cepstral coefficients.

Then these cepstral vectors will be processed throu
the following filter:

with the coefficients chosen to approximate a bandpa
frequency response. This filtering operation is known
the RASTA filtering [24].

Liftering is nothing but “low-time liftering” (analogous

µi

c'i t( ) ci t( ) Mi–≈

w k( ) 1 h π k L⁄( )( )sin+=

w k( ) 0=

a0 a1z
1–

a3z
3–

a4z
4–

+ + +

z
4–

1 b1z
1–

–( )
----------------------------------------------------------------
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to low-pass filtering in the frequency domain) in th
quefrency domain which is just a variation of th
frequency domain.

It is known that the higher order cepstral coefficient
have less discriminating power and the lower ord
coefficients are more susceptible to environment
var ia t ions . The bandpass l i f te r ing operat io
deemphasizes both the higher and lower ord
coefficients thereby reducing the susceptibility of th
system to environmental variations.

The RASTA filter is used to smooth all the cepstra
coefficients by a bandpass filtering operation thereb
attempting to remove the effects of the channel and t
transducer. While the bandpass liftering operation offe
a static correction, the RASTA filtering operation offer
a dynamic correction to the cepstral coefficients. Thu
by combining the static and dynamic techniques, w
obtain the benefits of both techniques. It is interesting
note that the combination of these two techniques h
been proven to give better recognition performance [2
than when using RASTA alone [24] and certai
variations of RASTA.

One disadvantage of RASTA is that the performance
the recognizer degrades if the experiment is conduct
under matched conditions. CMN doesn’t suffer from
this disadvantage.

5. SOFTWARE DETAILS:

Software which can implement all of the previousl
mentioned tasks has been developed. Though, t
objective was to develop software which would be lat
Spring’96
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integrated into the entire speech recognizer system,
there exist separate modules which can be used to
implement specific portions of the afore-mentioned
tasks.

The software has been developed keeping in mind that it
has to be integrated into the system. The software is
essentially data-driven thereby giving the control of the
parameters to the user. It is easy to make any changes to
the existing code so as to suit the specific needs of the
user thereby allowing greater experimentation.

6. SUMMARY AND FUTURE
RESEARCH

The importance of the implementation of statistical
modeling techniques and channel adaptation techniques
towards the building of an efficient speech recognizer
has been discussed. The statistical modeling techniques
discussed here are the typical ones most of the current
speech recognition systems make use of. Though, some
systems make use of more sophisticated statistical
models, these are the basic statistical models that any
system could be using. Much research is going on in the
field of robust speech recognition as there has been
significant improvement in the performance of speech
recognit ion systems using channel adaptat ion
techniques and similar other techniques. The channel
adaptation techniques discussed in this paper are very
basic and very simple to implement. Studies are being
conducted on various modified versions of these
techniques to achieve better recognition performance.

Software that can perform principal component analysis
and channel adaptation techniques exists. Detailed
experimentation will be performed on the code to make
it more generic and to improve the performance of the
code in general. Once the various modules of the speech
recognizer are developed, detailed experimentation will
be performed with real data so as to introduce more
sophisticated models and techniques. A simple web-tool
is planned to be developed to facilitate the users to
experiment with, by making use of the various modules
that have been developed for this project and by adding
a few more.
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