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ABSTRACT derivatives of the cepstral coefficients and energy
measures. Since the variances of the time-derivatives of
the cepstral coefficients are larger than the cepstral
Techniques is necessary for the building of a Speec??oeff'c'ems' a direct distance measure between two
Recognizer. Statistical Modeling is done to learn thef€ature vectors will be dominated by the derivatives of
nature of the multi-variate random process generating€ cepstral coefficients even though the true
the signal parameters. In this direction, pre-whiteninginformation may lie in the cepstral coefficients [1]. So,
transformations were performed on the parameters /¢ Neéed to normalize the features so that all of them
eliminate redundancy and to make the analysis easier. cONtribute equally in any comparison.

Implementation of various Statistical Modeling

The transformations were performed on the inputAnother issue to be considered, is the presence of

feature vector to produce an uncorrelated Gaussiafiofrelation between the features which makes the
random vector, containing only “information-bearing” analysis complex. If two features are correlated in such
parameters. For some algorithmically complex@ W&y that if one increases, the other decreases, then the
computationé such as the computation of the eige esult of the feature vector comparison could turn out to
values and eigen vectors, existing software was used. P€ €rroneous as the two frames may not be as different
as the outcome may indicate [2]. So, correlation has to
Channel adaptation techniques were implemented so £ €liminated from our features to make the analysis
to make the parameters robust to changes in th&2Sier- Also, correlation implies redundancy and we
acoustical environment. For this purpose twoMight be able to achieve some level of reduction by
particularly simple, but effective algorithms, Cepstral €h00Sing a subset of the features, thus reducing the

Mean Normalization/Subtraction and RASTA were COMPIexity of the problem to some extent. As we will
see, this can be achieved by performing prewhitening

chosen. .
transformations on the feature vectors.
17. INTRODUCTION First, the various steps involved in the prewhitening
transformation will be discussed and then feature
Statistical modeling: selection will be introduced.

The primary aim of statistical modeling is to learn the Channel Adaptation:
nature of the multi-variate random process, assumed to
be generating the signal parameters. A further insightr he need for speech recognition systems to be more
into statistical modeling can be gained by looking atrobust with respect to their acoustic environment has
some issues like variance-weighting. become more widely appreciated in recent years [3].
Performance of many automatic speech recognition
Very frequently, we will be interested in knowing the machines, designed to be speaker-independent, has been
distance between two feature vectors. If we use a simpléound to be deteriorating if a different acoustical
distance measure, such as the Euclidean metric, to mal@hvironment is used to test them [4,5]. Channel
this comparison, the result will be most likely adaptation is an algorithm designed to make the system
erroneous. This is due to the fact that if use of such anore robust to the changes in the acoustical
Simp|e distance measure is made, the lower ampmud@nvironment. Use of channel adaptation techniques has
terms contribute much less, if not negligible, to the proven to be very effective in the upgradation of the
outcome compared to the larger-amplitude terms, eveferformances of speech recognizers. For example,
though the true information may lie in the smaller Acero demonstrated that a large vocabulary speech
amplitude terms. For example, feature vectors normallyecognition system with a base-line performance of 85%
include such measurements as the cepstral coefficienté/ord accuracy in a matched transducer condition could
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only achieve less than 19% word accuracy when &
different microphone was used during testing [4].

Speech
Almost all the techniques that are currently being used
make use of the fact that the variations of noise are
relatively slower than the variations in speech. There are

many techniques currently in use to achieve channe
adaptation or robust recognition. We will discuss some
of them briefly and then discuss the two techniques use
by us, cepstral mean normalization (CMN) and
RelAtive SpecTrAl processing (RASTA) in more detail.

Fourier
Transform

2. A SIMPLE OVERVIEW OF THE

This section aims at giving a simple overview of the
front-end which is essentially the signal processing , . .
section of the speech recognition system. The priman ~ Fourier Transform Linear Prediction
objective of the front-end is to produce a feature vector dC%ré\]ﬁﬁgie%?SStral dC%ré\]ﬁﬁgie%?SStral
that will be utilized to develop the acoustic models.

The pre-processing of the 16Khz sampled speech data
done by:

) ) ) Fig. 1. Two methods to generate feature vectors
taking data on a frame-basis (typically of length 20

ms), approximating the human hearing perception, which
follows a log scale rather than a linear scale. The mel
debiasing the data, scale is often approximated as a linear scale from 0 to

1000 Hz, and then a logarithmic scale beyond 1000 Hz
preemphasizing the data (with a filter 095 ), [1]. The derivatives and regression features for the'mel-
frequency cepstral coefficients were computed using a

and windowing the data (a typical window used is af'xed length of three frames.

hamming window of 30 ms duration). The prewhitening transformations and the principal

component analysis are performed on these feature
vectors to generate a decorrelated and normalized
feature vector. We assume that the random process
Igenerating the signal parameters is a multi-variate
Gaussian random process, but generally, to get better
performances, a weighted sum (mixtures) of Gaussian
distributions is used. A weighted sum would be able to

model the input data better than a single distribution, but
the associated computational complexity increases
manifold.

The speech signal is preemphasized to compensate fi
the attenuation caused by the radiation from the lips
[25]. The overlap of the window over the frame helps in
smoothing the spectral estimate of the input speec
signal and also to give a longer analysis window. There
exist a number of methods to generate the feature vectc
at this stage. A simple block diagram showing two of
these that have been used to generate feature vectors
shown in Fig. 1. Studies have shown that the mosi
reliable LP-derived feature set for speaker recognition is
152?1 r? gptsotr;lil eclzegl(cclirl]lt:r}? g (]e'rfcéﬁpr)nsgr?(l: ;e?ct)l:rteesx?_rEThese decorrelated and normalized feature vectors will
independent speaker identification when training ancbe used to generate acoustic models of the data.

testing speech signals are collected under reIativelygﬂci)i(é\r?eutmsl'[kz?Igs:pdogéaivth%%g%nsg?gf EIZsusséi?Nthoich
clean and stationary environments [8]. ' '

might be representing, say the words in a vocabulary.
The probabilities for the word model given the feature
vectors are calculated and then the class that has the
maximum conditional probability for a given feature
vector is chosen. Generally, the bigger the unit chosen,
the better should be the performance of the system since
a bigger unit would be able to capture the long-term
context better than a smaller unit. But, when viewed in a
large vocabulary recognition standpoint, this solution

A feature vector of 61 components is developed which
consists of twenty mel-cepstral coefficients, first and
second order time derivatives and first and second orde
regression features. The mel-frequency cepstra
coefficients (MFCC's) are being widely used in current
speech recognition systems due to their ability to
achieve better performances [26] by better
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set of features. The approach will be to impose a model
on the data, train this model and measure the quality of
this approximation [1]. A block diagram of the various
steps involved in the prewhitening transformations is
given in Fig. 3.

Prewhitening Transformations [9]:
Frame-based

analysis

The process generating the signal parameters will be
assumed to be a multi-variate Gaussian process. A
Gaussian probability distribution can be defined as

p(v) = O[V, W, C]

FFT Linear Predictio

We will assume that our parameters obey this type of
statistical model. A linear transformation is to be
computed that will simultaneously normalize and
decorrelate the signal parameters, thus allowing us to
compare the feature vectors directly and also to
Feature vecto eliminate redundancy. Let us define the transformed
vectory as

y = LP(V— ﬁv)

Principal
component

| wherev denotes the input parameter vector, apd
analysis

denotes the mean value of the input parameter vector.
We definew as a prewhitening transformation [10, 9].
This linear operation applied to the feature vectors is
called a prewhitening transformation, since it produces
feature vectors whose components are uncorrelated and
normalized [2].

Euclidean
distance

Log
Likelihood

This transformation matrix is given by

Observation vectors and Probability

Y = AV

whereA is a diagonal matrix of the eigen values, and
Fig. 2. A simple block diagram showing the front end is the matrix of the eigen vectors of the covariance
and acoustic modeling matrix of v . The computation of the eigen values and
. . _eigen vectors is algorithmically highly complex [11] has
becomes impractical. Current systems are employingn excellent discussion on this problem. So, a canned
either phones, phonemes, bi-phones or tri-phones as thygytine, which has generally provided satisfactory
modeling unit. Context-dependent phonemes are alsperformance, was used to compute these [11].
becoming popular with researchers. A number of
distance measures exist which can be used to compuThe eigen values and eigen vectors can be shown to
the class separations such as the Bhattacharya distaniagisfy the following relation:
the log-likelihood measure and the Euclidean metric. -
C, = ®AD
A block diagram indicating this whole process is shown
in Fig.2. Eigen values, essentially, try to model the system and
hence the eigen vectors can be understood to be
3. PRINCIPAL COMPONENT ANALYSIS modeling the input data. Each eigen vector attempts to
model a different aspect of the speech spectrum. The
first few eigen vectors of the transformation matrix

In this section, we will discuss the prewhitening s4empt to model the gross spectral characteristics of the
transformations, which are done to decorrelate anpannel [1].

normalize the signal parameters, and then discus
feature selection which is performed to obtain a reducec
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The covariance matrix is computed using the following
equation:
N;-1

Cu(i,j) = Nif > V() =K (D) V(1) — (D))
m=20

Simplifications of the prewhitening procedure are
sometimes employed to avoid the computational
expense of using the full covariance matrix [2]. The
most common simplification is to assume that the
features are mutually uncorrelated, but inappropriately
scaled relative to one another. In this case, the
covariance matrix reduces to a diagonal matrix and the
transformation matrix simplifies to a diagonal matrix
whose off-diagonal elements are all zero and the

diagonal elements will beaL where,;, is the
v(i)

standard deviation of thi¢h component of the parameter
vectorv . We can see from the transformation matrix
that all the parameters are being normalized by thei
standard deviations which is essentially making eact
parameter count equally in the calculation. As we recall,
this is known as variance-weighting and these variance
weighted cepstral coefficients are very popular in speecl
recognition systems. Comparisons of feature vectors ca
now be made directly as the variances of all the
parameters have been normalized.

There exists a relation between the eigen values and tr
variance of the process which can be used to discard th
least significant features. We can define the amount o
the variance accounted for by each eigen value/eige
vector pair as [1]

and the total percentage of the variance accounted for b
the firstNy dimensions as
Ny—l
>N
— i=0
= J—Nv_l x 100%

N

y
i=0

where N, is the number of eigen values
Ay 1 - The eigen values are ordered in
Vv

decreasing order and the least significant features (th
number of which has to be decided based on how mucl
information they contribute) are discarded. This results
in a reduced transformation matrix thereby resulting in a
decrease in the computational complexity.
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Feature vector, mean I

Covariance matrix

Eigen values, eigen vector

Transformation matrix

Vector transformation

¢

Decorrelated and normalized vector

Fig. 3. Various steps in Prewhitening transformation

n

4. CHANNEL ADAPTATION

Channel adaptation is gaining prominence in research
groups as attempts to improve the performance of
speech recognition systems are increasing. Most
channel distortions and many kinds of additive noise
vary slowly compared to the variations naturally
occurring in speech [12]. There are a number of
methods which make use of this fact to improve the
performance of speech recognition systems. Recent
studies have shown that filters which remove slow
variations in the feature vectors used in speech
recognition systems can yield significantly improved
recognition rates [13-17].

There are primarily three adverse conditions a speech
recognition system often encounters, namely, noise,
distortion and articulation effects [3]. Acoustic ambient
noise is generally considered additive and it is one of the
primary concerns of a speech recognizer. Distortions are
introduced due to the recording environment which
includes the recording room’s characteristics which
affect the spectral characteristics and also the type and
mounting position of the microphone which can
significantly alter the speech spectrum. There are many
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factors that influence the sound format and rhythmicThe FCDCN algorithm combines some of the more

stability of the speaker [18]. attractive features of the CDCN and SDCN algorithms.
Like SDCN, the compensation factor equals the

One way of implementing channel adaptation is todifference in cepstra between the training and testing

estimate the spectral characteristics of noise byenvironments, but like CDCN, the compensation factor

analyzing the non-speech portions of the spectrumis different for different VQ codewords as well.

which could be used to introduce some sort of

alleviating measure in the system. However, this4 2. Adaptive Component Weighting

approach requires that we have a noisy data-base to traTACW)

the system.

There are many methods which use simple filteringT he ACW [8] scheme modifies the linear predictive
operations to achieve channel adaptation like RASTASPectral components so as to emphasize the formant
and CMN. They try to alleviate the features that areStructure by attenuating the broad-bandW|dth_ spectral
more susceptible to environmental variations by filteringc@mponents. Such components are found to introduce
operations, thereby reducing the effect of the acoustica¢ndesired variability in the LP spectra of speech signals
environment on the performance of the system. due to environmental factors. The ACW cepstral
coefficients represent an adaptively weighted version of
A few methods currently in use by various systems willthe LP cepstrum. The adaptation results in
be introduced here and then the CMN and RASTAdeemphasizing the irrelevant variations of the LP

methods will be looked into in a more detailed manner. cepstral coefficients on a frame-by-frame basis. The
ACW method has been shown to offer better

4.1. CDCN. SDCN & FCDCN: performance as compared to other common methods of
. ) . cepstral weighting [8].

Acero [19] proposed the code-word dependent cepstral
normalization algorithm as a pre-processing technique ]
that can eliminate the effects of linear filtering and 4.3. CEPSTRAL MEAN NORMALISATION:
additive noise. CDCN uses EM techniques to compute o )

the Maximum likelihood estimates of the environmental Cepstral mean normalization (CMN) [21] provides a
parameters that characterize the contributions of th&€ry simple way of implementing channel adaptation
contributions of additive noise and linear filtering. TheseMaking use of the fact that noise varies slowly as
environmental parameters are chosen to best match (#ompared to speech. It is a simple scheme that
the MS sense) to match the ensemble of cepstral vecto@mpensates for channel mismatches (due to
of the incoming speech to the ensemble of cepstraMicrophone/speaker variability).

vectors in a universal code-book generated from the o ) o
training corpus. Cepstral mean normalization tries to remove the bias in

the features introduced by the noise component in the

Acero [19,20] also proposed several pre-processindPut signal. This is done by computing the long-term
techniques that compensate for environmentafhean of the input cepstral vectors and then subtracting
mismatches by translating the noisy-testing speech t&is mean value from the cepstral vectors.
the acoustical space of the training environment in an
environment-specific manner. Two of these If ¢(t) is the input cepstral vector, then it's mean can
environment-specific algorithms are the SNR-dependense computed by using the following equation:
cepstral normalization (SDCN) and Fixed codeword- N. 1
dependent cepstral normalization (FCDCN) algorithms. 1 !

M = N. z ¢ (t)
SDCN applies an additive correction in the cepstral fm=0
domain, with the compensation vector depending
exclusively on the instantaneous SNR of the signal. ThevhereN; is the number of frames.
compensation vectors equal the difference of the
average cepstra between simultaneous stereo recordinggen, the mean is subtracted from the cepstral vectors as
of speech signal from both the training and testingjp, the following equation:
environments for each SNR of speech. At high SNRs,
this compensation vector primarily compensates for ci(t) = ¢(t) —u
differences in spectral tilt between the training and the
testing environments, while at low SNRs the
compensation vector provides a form of noise
subtraction.

If we approximate the mean vectqr by, , the
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average value gf;, over the training corpus, we have

ci(t) =c(t) —M; Cep?tral
vectors

To get efficient performance with this technique, the
above steps must be iterated over clean and noisy dat
This method can be used for channel adaptation even

a noisy database is not available. All the above step
have to be iterated over data from different channels, s
that the speech recognizer gets adapted to thos
particular channels.

Bandpass
Liftering

One point to be noted in this context is that cepstral
mean normalization is implemented in the speect
recognition system in the principal component analysis RASTA
stage itself. If we recall carefully, we subtract the mean filtering
from the input vector while doing the prewhitening
transformation which is equivalent to doing cepstral
mean normalization. Though, this technique is built into
the system, a separate module has been developed Fig. 4. A simple RASTA scheme
illustrate the working of this technique.

; . - to low-pass filtering in the frequency domain) in the
4.4. RelAtive SpeCTrAl processmgquefrency domain which is just a variation of the

(RASTA): frequency domain.

| It is known that the higher order cepstral coefficients

have less discriminating power and the lower order
coefficients are more susceptible to environmental
|variations. The bandpass liftering operation

deemphasizes both the higher and lower order
coefficients thereby reducing the susceptibility of the

system to environmental variations.

RASTA [22] is another simple way of achieving channe
adaptation. This method is based on the filtering of the
cepstral coefficients by a RASTA filter which aims to
filter out the slowly varying components of the cepstra
coefficients in order to normalize environmental
variations. Coupled with a bandpass liftering operation,
this technique offers better performance than many

RASTA derived techniques. A simple block diagram ) .
giving the details of this implementation is given in Fig. | n¢ RASTA filter is used to smooth all the cepstral
4 coefficients by a bandpass filtering operation thereby

attempting to remove the effects of the channel and the
transducer. While the bandpass liftering operation offers
a static correction, the RASTA filtering operation offers
a dynamic correction to the cepstral coefficients. Thus,
by combining the static and dynamic techniques, we
obtain the benefits of both techniques. Itis interesting to
note that the combination of these two techniques has
where, h=1L/2k=1,2......L andw(k) = 0 for other k, been proven to give better recognition performance [22]
with L being the number of cepstral coefficients. than when using RASTA alone [24] and certain
variations of RASTA.
Then these cepstral vectors will be processed throug
the following filter: One disadvantage of RASTA is that the performance of
the recognizer degrades if the experiment is conducted
under matched conditions. CMN doesn’t suffer from
this disadvantage.

Given the cepstral vectors, we first bandpass lifter [23]
them with the following window function:

w(k) = 1+ hsin(t(k/ L))

-1 -3 -4
agtaz +tagz  +ta,z

74 1-b,z ")

5. SOFTWARE DETAILS:
with the coefficients chosen to approximate a bandpas

frequency response. This filtering operation is known as . . .
the RASTA filtering [24]. Software which can implement all of the previously

mentioned tasks has been developed. Though, the

Liftering is nothing but “low-time liftering” (analogous objective was to develop software which would be later
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integrated into the entire speech recognizer systemRecognition”, inProc. ICASSPvol. 81, no. 9, pp. 1215-

there exist separate modules which can be used t©247, Sep. 1993.

implement specific portions of the afore-mentioned2. J.R. Deller, J.G. Proakis, and J.H.L. HandRiscrete

tasks. Time Processing of Speech signaMew York: Mac-
Millan, 1993.

The software has been developed keeping in mind that i “ T .
has to be integrated into the system. The software isé' B.H. Juang, "Speech Recognition in Adverse Envi

essentially data-driven thereby giving the control of theronments",Computer Speech and Languadel 5, No
parameters to the user. It is easy to make any changes fh PP 275-294, 1991. . i
the existing code so as to suit the specific needs of thd- A. Acero, R.M. Stern, “Environmental robustness in

user thereby allowing greater experimentation. Automatic speech recognitionRroc ICASSPpp 849-
852, Apr 1990.
5. A. Erell, M. Weintraub, “Estimation using Log-spec-
6. SUMMARY AND FUTURE tral-distance criterion for Noise-robust speech recogni-
RESEARCH tion”, Proc ICASSPpp 853-856, Apr 1990.

6. B. Atal. Effectiveness of linear prediction characteris-
The importance of the implementation of statistical tics of the speech wave for automatic speaker identifica-
modeling techniques and channel adaptation technique#on and verificationJournal of the Acoustical Society
towards the building of an efficient speech recognizerof America 55: 1304-1312, Jun 1974.
has been discussed. The statistical modeling techniques S. Furui. Cepstral analysis technique for automatic
discussed here are the typical ones most of the currerfyeaker verificationEEE Trans. Acoustics, Speech and

speech recognition systems make use of. Though, So'ﬁgnal ProcessingASSP-29(4):254-272,Apr 81.

systems make use of more sophisticated statistic K.T. Assaleh. R.J. Mammone. “Robust cepstral fea-
models, these are the basic statistical models that any = . o ’ P

system could be using. Much research is going on in thé)ﬁres for speaker identificationProc ICASSPpp 129-
field of robust speech recognition as there has beert32: Apr 94. . o
significant improvement in the performance of speech®- K._Fukunagalntroductlon to Statistical Pattern Rec-
recognition systems using channel adaptatiorPgnition New York: Academic Press, 1972.
techniques and similar other techniques. The channelO. E.L. Bocchieri and G.R. Doddington, “Frame spe-
adaptation techniques discussed in this paper are verific statistical features for speaker independent speech
basic and very simple to implement. Studies are beingecognition”,IEEE Trans. Acoust., Speech, Signal Pro-
conducted on various modified versions of thesecessingvol. ASSP-34, no.4, pp 755-764, Aug. 1996.
techniques to achieve better recognition performance. 11 \w.H. Press, B.P. Flannery, S. A. Teukolsky, and W.T.
I . Vettering,Numerical Recipes in C: The Art of Scientific
Software that can perform principal component analys'ﬁDrogrammingNew York: Cambridge Univ. Press, 1988.

and channel adaptation techniques exists. Detaile B
experimentation will be performed on the code to makeqz' B. A. Hanson, T.H. Applebaum, “Subband or ceps

it more generic and to improve the performance of thetral domain filtering for recognition of Lombard and

code in general. Once the various modules of the speechhannel-distorted speectProc. ICASSPVol. 2, pp 79-

recognizer are developed, detailed experimentation wilB2, Apr 1993.

be performed with real data so as to introduce morel3. H. Hermansky, N. Morgan, A. Bayya, and P. Kohn,

sophisticated models and techniques. A simple web-todlCompensation for the effect of the communication

is planned to be developed to facilitate the users tachannel in auditory-like analysis of speech (RASTA-

experiment with, by making use of the various modulesp|p)”, Proc EUROSPEECHpp 1367-1370, 1991.

that have been developed for this project and by adding 4. H. G. Hirsch, P.Meyer, H.W. Ruehl, “Improved

a few more. speech recognition using high-pass filtering of subband
envelopes”Proc. EUROSPEECHp 413-416, 1991.
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