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Abstract 35. Introduction

An implementation of Language Model (LM) objects Type and quality of the Language Model (LM) can be
for the construction of regular stochastic grammars iscrucial to performance of the speech recognition system
presented based on Bigrams and Ngrams for both wordghrough a variety of factors. Representation of a priori
in a training text and for phones in phonetic seriesknowledge in the input domain, required to estimate the
equivalents for those words. An externally producedexistential probability of a given input sequence, is
word-to-phone dictionary compliant with the Worldbet imbedded in the LM alone. Constraints of the model
symbol set is recommended as a supporting resource. fyocabulary, processing speed, etc.) define the search
method of deriving Ngrams as the joint product of space volume relative to that domain and, to a fair
weighted Bigrams is defined and investigated. degree, the functionality of the resulting recognition
) ) . system. Accuracy of the model in calculation of
The implementation of grammar construction andprobabilities defines the maximum rate of convergence
polling objects targets a Continuous Speech Recognitiofoward a desirable solution in that search space [1,2].
(CSR) system’s search engine as the principle user; the
objects are to provide query response services forhijs design assumes an intended use with a Hidden
probabilities of current and proposed states in the searcfarkov Model (HMM) Continuous Speech Recognition
engine’s domain as well as sequences of hypothesize@cSR) system and is therefore most directly applicable
next-states. The model serves primarily to assist ing such an application; the primary goal is to implement
formation of sentences from hypothesized wordas C++ objects a series of utility modules which in turn
sequences through the implementation of a token-basegil| provide LM services for a specific HMM CSR
grammar and Unigram/Bigram/Ngram generationjimplementation. Of equal importance, however, is the
scheme. Although the current CSR organization doegreation of robust LM objects that can be used in speech
not require phonetic-level support, such support is easilyecognition development and experimentation with
be provided in the token-based model organization. Arpther recognition packages[3,4]. Topics for investigation
inherent secondary goal of the project is the creation otenter on stochastic LM designs which have been well
a set of robust LM objects for use in CSR known for some time [1]. In particular, the plan of attack
experimentation. As such, other models such as Casgenters on Bigram, Trigram, Ngram, and Co-occurrence
Based Grammars will be investigated, but since thisprobability measures, though difficulties with higher
project will be conducted in parallel with projects |ength Ngrams for large vocabularies[2,5] limit feasible
developing other aspects of the target CSR systemapproaches to Trigram implementations. The utilities
priority for model implementation is defined exclusively consume a text corpus, generate an N-gram model of
by the needs of the remaining project teams. that text, and use that model to provide probabilistic
measures for hypothesized next states given a sequence
The LM is tested using input perplexity as a benchmarkof proceeding tokens. Since the recognition system’s
and both alternate Ngram generation methods an@ueries to the LM could eventually require both English
independently produced models providing similartext and phonetic sequence formats, addition of a word-
services as measures of performance. Deliverableghone dictionary for the given input text is also
include object interface and implementation supported. Inclusion of phonetic sequences also prompts
specifications, results of Ngram generationthe definition of delimiters. Word-grammars model a
methodology experimentation, and descriptions of a segollection of sentences as a sequence of tokens --
of C++ coded language model construction and requeshcluding words and sentence break symbols -- such that
servicing objects. possible token series may extend across sentences as
discrete instances of token series bounded by explicit
sentence breaks. Token series may therefore be
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represented in crossing sentence boundaries whil86.2. Functional Requirements

allowing queries to consider those same sequences as

not cross sentence boundaries as required by the globg general, the goal is to supply a HMM search engine
system. Phone-grammars consider words as discretgith probabilities of correctness for a specific next state
phone sequences only; phonetic equivalents to wordgyord) given a specific series of previous states; the
are modeled in isolation, i.e., with context independentsearch engine can then maximize the probab|||ty that a

phone symbols. hypothesized text sequence is the correct equivalent for
a speech input sequence. This, in turn, maximizes
36. Problem Overview performance of the CSR in terms of correct decoding of

a speech input into text output. The LM must therefore
rovidea priori contextual knowledge for the linguistic
omain of the speech input through access to a body of
ext representative of the domain of expected speech[6].

The basic purpose of the language model is th(ﬁ
prediction of patterns in series of input tokens -- for the;
CSR, spoken English -- much in the same way as the
acoustic models employed by the CSR's HMM predictyhg search engine, in locating the best path, creates
features in the input signal waveform. several additional requirements for the LM

) functionality; since the recognition system is
36.1. Global Architecture continuous, the search engine must incrementally

decode speech to text across all input for a given

In general, the target architecture consists of threexecution. This incremental best-path search will
primary task-defined areas: the front-end, the searchequire measures of fitness incremental across the input
engine, and the language model. The front end modulgpeech sequence, which will require the LM to supply
transforms the input signal of digitized spoken Englishmeasures of fitness for possible next-states given
audio into a stream of feature vector packets. The searcfelatively short sequences of previous states. The search
engine finds the hypothesized utterance sequence moshgine can also be expected to justify the pruning of
likely to match a given sequence in the feature vectolower quality paths by testing the fitness of relatively
stream by evaluating hypotheses for utterances withong sequences, which will require the LM to supply
acoustic models for those utterances. The languagmeasures given longer previous-state sequences. Last,
model predicts the likelihood of a given hypothesis of the search engine will, as a rule, deal with both words as
utterance given the likelihood of that utterance in a texttext and words as phones; the LM services can be
body representative of the domain of the system’sexpected to operate with both formats. These four
spoken input, thereby decreasing the number ofequirements -- context, short sequence fitness, long
hypotheses the search engine must evaluate angequence fitness, and word/phone support -- form the
increasing the probability that the hypothesiscore of functional requirements for LM implementation.
corresponding to the current feature vector alignment is
evaluated before other hypotheses (which in turnin terms of tasks performed for the CSR, the functional
increases the speed of the global system). requirements of the LM can be expressed as the
generation of both linguistic and phonetic grammars and

Digitized Spoken English

the calculation, on a single token and token series basis,
Py of existential probabilities; stochastic grammars will
assist in the hypothesis of probable words while
linguistic grammars will assist in the hypothesis of

probable sentences. In terms of services rendered to the
HMM search engine, functional requirements are
* limited to the ability to predict near-future events in the

" input given a current known state. This translates to the
Language Mode A tic Model - . . .
“""" ( coustic Viode ) generation of existential probabilities for a given
sequence, and as an extension of the same, the

* neration of a list of n-best ible next events given
k Search Engine |/‘ generation of a list of n-best possible next events given a

series of previous events.

+ It is important to note that the purpose of providing
measures of probability is to guide the HMM search
engine in selection of next-states given current and past

states; this does not necessarily require probabilities, but
a means otonsistent ranking relative to probability
Figure 1: Global Architecture of the Target System The CSR system definition operates in real time; in
general, the faster we can process tasks -- without

Text Transcript
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appreciable loss in global performance -- the better oustochastic grammar modeisnsitionsbetween tokens

resulting system. and defines probabilities of the existence of those
transitions in the language domain. The inclusion of a
37. The Deterministic Approach measure of probability for the transition of a given

production rule set is termedsdochastic grammaand

is the focus of this project for the functional
The formal definition of a deterministic model includes requirements outlined, particularly in the ability to
avocabularyV, or set of unique tokens from which the predict the certainty with which a given sequence will
language is constructed, a setmrbduction rulesP  occur given a previous sequence since the probability of

governing the manner in which tokens are combined transition can indicate an existential likelihood for the
into series, and a specialized tokBulenoting the start produced sequence.

of a valid token sequence. The resulting model is known
as the grammar G of the language: 3g1. Basic Units and Methods

G=(Vp Ve P9 Generation of a stochastic grammar for a given text
consists of construction of a Lexicon, i.e., an extended
Word Frequency List (WFL) combining the symbols,
existential probabilities, and phonetic equivalents of
The vocabulary is divided intterminalsandnon-  tokens encountered in the training text, and a Matrix of

terminals terminal tokens are symbols that comprise €Xistential probabilities for two-token sequences, or
the language, such as English words or phones, whil®igrams. The combination of the Lexicon, Matrix,

non-terminals are symbols that are expanded via th&/ord-phone dictionary -- and external resource from
production rules into series containing at least oneVhich phone equivalents to encountered words may be
terminal. Repeated selection and application ofcollected -- and creation/management objects and
production rules to the starting symbol S will then Methods therefore comprises the bulk of the language

produce a series of terminals, or a valid sequence of thBodel. The Lexicon’s representation schema is token
language for which the grammar G has been defined. based; words and sentence terminator symbols comprise
the token alphabet for linguistic grammars while phones

Since the bulk of the model’s ability to represent a omprise the phonetic grammar alphabet. Although the
language is incorporated in the production rules, itCSR search engine employes the Viterbi Beam Search
becomes fairly straightforward to classify the grammar;algorithm [8] with word-based acoustic models and is
there are four widely accepted types have been defineB0t presently expected to require linguistic model
by Chomskey [9]: type Ounrestricted type 1,context Coverage of token sequences across sentences or
sensitivetype 2,context freetype 3,regular. Type 0 or  Phonetic model coverage across words, this LM project
unrestricted grammars have essentially only ondVill implicitly supply the capability by representing
production rule; any series A can be transformed intoS€ntence breaks as special-case tokens; run-time

any other series BA[] B . Type 1 or context sensitiveConfiguration for or against such support can easily be

grammars bring co-occurrence into focus; sequence ,&‘dded to the project definition if the need arises.

c?n be t_rfansfo.rrrrl]%d into sequence B Onlé in the rﬁ).rehsenc?he generation of Unigrams -- measures of probability
of specific neighboring sequenceg and w; (whic for the existence of single tokens -- is arguably the

may also be of zero length), A being a subset of the non; ; - .
terminals and B of the combined terminals and non_S|mplest of tasks. Given a training text, the probability

: of existence for a given token can be expressed
terminals:wlAw2 O wiBw2 . Type 2 or context free statistically as the number of instances, or frequency, of
grammars retain the requirements of type 1 grammars ithat token over the number of instances of all tokeirs
that A must be a subset of non-terminalsldha subset the text:

of the complete vocabulary, but do not impose the

constraint of contextAD B . Type 3 or regular

grammars require the inclusion of a terminal a or b in P(t I:(ti)
the result of transforming non-terminals A and B: ( i) -
F(t,)
AO b or ADO aB =
38. The Stochastic Approach The task is further simplified by the existence of the

WEFL, which is used to collect frequencies of occurrence
for each unique token in the training text during the

In contrast to the deterministic formal grammar, which ; . .
process of constructing the Lexicon. The counting

models language as set tfansformations the
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function then becomes a division of the sum of all WFL (WFM) with each position containing the frequency of
entry frequencies by the frequency of the target entry: the x-y indexes’ sequence in the text. The probability for
) any given token pair, given a strictly applied order
P(t) = _WFL[iF] (P(x,y), for instance) is then the indicated frequency
' over the sum for the matrix:
WFL[n F

n Fyy = WFMIx Y

Unigram queries can be construed to fall into the Ngrama|though simple to generate, however, this method is
query category since an Ngram query can be defined t@ertain to introduce zeros into the matrix for xy pairs

support token sequences of one. Queries for singleon-existent in the training text, for which steps must be
tokens, two-token series, three-token series, and n-tokefaken to insulate the search engine from obtaining such

series are, in theory, separate entities, queries to the LMn absolute measurement (see Smoothing Functions).
will exist only in the form of a query for a () for a

specific token seridg. Two factors prohibit the calculation of Trigrams and
Ngrams in similar fashion -- processing time and
38.2. Bigrams, Trigrams, and Ngrams storage space. Such calculations require further

scanning of the training text, which adds disk I/O time

The generation of Bigrams and Trigrams -- existentialto our operational speed, or requires us to store the
probabilities for a two-token series -- is similar to that of €ntire training text in memory, usually impossible given
Unigram generation in that the basic task still reduces td)ardware constraints. Furthermore, calculation fonan

a counting problem, though in this case the countingorder series of tolgen; would require frequency measures
problem begins to look familiar to anyone acquaintedfor all n-ary combm_ayons of members of Fhe vocabulary
with the fundamental equation of speech recognitiondccurring in the training text; the processing and storage
and Bayes rule[5,7]. The measure can be statisticallyeéduirements to generate the list of possible series alone
expressed as the frequency of the series in the trainingPProaches the prohibitive, though for texts of lower
text -- similar to the calculation of Unigrams, though we P€rplexity, generation of a Trigrams list is often
cannot use the WFL to reduce the task further reduce thBOSSible[4].

counting task -- by considering the proposed Bigram i . ,
itself as a token. Rather than dedicate to the explicit calculation of

Trigrams, however, we can note that Ngrams may be

To conceptualize the construction of the Bigram list, calculated as the joint probability of intersecting
consider it's information content. Since the Bigram list Ngrams of lower order existing in the target sequence;
is relatively small (compared to a trigrams list or the We can therefore requrswely define all Ngrams of order
training text) and scanning the training text prior to greater than two (Trigrams included) as a sequence of
grammar generation is already required to generate th@veriapping Bigrams. This method does require the
WFL and Unigram lists, pointers can be considered agXistence of a transitive property across probabll!tles fpr
additional tags on entries in the WFL indicating the lower order token series that does not necessarily exist,
following token and weighted with the frequency of that Put current sources of stochastic LM development[1,3]
[current token, following token] pair found in the indicate satisfactory results:

training text. The probability for a given Bigram or the

measure of the existence of tokbmjiven a proceeding P(a,d) = P(a, b) (P(b, ¢) [P(c, d) (K

tokena can then be statistically expressed as the

frequency of that token pai; over the sum of

frequencies of all token pairs Experimentation shows that weighting is not actually

required, though the inclusion of a scaling constant does

F(B.) allow for a greater range of flexibility and control in the
P(B,) = ! , B. ={a, b} general function, which allows us, in turn, the ability to
I I tune our Ngram generator for longer and shorter
F(Bn) sequences, in particular to emphasize sequences based
n on length since longer sequences produce probability

measures so small as to be prohibitive in terms of data
structure value bounds. In addition, there are other
methods for countering such problems, as are discussed
below in the Implementation and Evaluation sections of
this document.

The Bigrams list can easily be generated by first
producing an extension of the WFL in the form of an
by n matrix for n tokens, a word frequency matrix
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39. Word-Phone Productions by dividing each frequency by the sum of all frequencies
with a simplistic two-pass binary executable coded to

. : . sum on the first pass and divide on the second as the
The unigram and bigram construction scheme togethe{OIIOWing pseudo-code illustrates:

with the structural representation satisfy the bulk of

functional requirements as outlined thus far. One service begin

that remains, however, is the additional (though sum=0

currently unused) support for phonetic equivalencies of seek file record 0

model tokens, or words. Addition of such support is while not end-of-file
defined through the use of an external, off-line phonetic sum = sum + frequency

seek next record

dictionary and the inclusion of phonetic sequences from seek file record 0

that dl_ctl_onary in the Lexicon Where Lequn symbc_)l while not end-of-file

and dictionary symbol match. This organization, in frequency = frequency / sum
addition to being eradicable to a single instance of off- seek next record

line linear search, introduces the ability to change the end

phonetic symbol set employed by the global system
merely by changing the external file containing the Figure 2: Pseudo-Code for Unigram Generation
phonetic dictionary.

In like manner, the produced list is extended to include
40. Tokens, Objects, and Methods optional phonetic equivalencies to the contained words
by traversing the resulting list and, for each entry,
_ guerying an external phonetic dictionary file for the
Given the conceptual!y ﬁxed_set of resources, we musbppropriate sequence. In this way, the list (a WFL)
now turn our attention to implementation, which pecomes the Lexicon, and construction performance is
dictates a further subdivision of functional requirementsyq,nded by two traversals of the vocabularynafords
into two groups. Prediction of future language domainy s one traversal ah words in the training text. Since
events is the primary goal, encompassing th&pe nymber of unique words in a text must be equal to or
representative of state space for a specific language andss than the total number of words, the performance
usage domain and the evaluation and ordering 0hqynd for creation of the Lexicon is on the order of the
possible solutions based on probability of correctnessiey; |ength, or Of), assuming all text in the training file
Operation in conjunction with a real-time system is thejs consumed for this purpose. The resulting file is of text
secondary goal, including the requirement of efficienttqrmat, and retains this format for simplicity of testing
data structures extensible for alternate or variant modelg g verification. For final implementation, however, the

and a resource management schema tunable for size apdyicon is converted to binary format with fixed-length

speed considerations. strings used to create a constant sized data structure; this
i representation is wasteful of on-disk space but in trade is
40.1. External Resources -- File Structures much faster to access and supportive of random access

implicitly indexed by the entry count minus one (as with
Goals regarding continuous real-time performanceC’ arrays).
require the stringent use of processing time; to that end,
model construction methods can be employed off-line of T
the global system. In addition, the bulk of construction 0 Tp Tc Ty LY
can be performed with scripts and landmark UNIX To
utilities, “tr”, “sort”, “uniq”, and “awk” in particular.
The lexicon, for example, requires an intermittent WFL
which can be constructed as follows: first, the training Ta Pab
text is piped through “tr” to transform or remove
unwanted characters or character sequences, and to
isolate the resulting words, one word per line of text. T, Pcd
Second, the resulting list of isolated words is piped
through “sort” to arrange the words in alphabetic order
and, as a result, group identical words on adjacent lines.
Third, the sorted grouped list is piped through “uniq -c”
which removes duplicates and adds an integer indicating
the number of instances of each unique word. Fourth TN
and last, “awk” formats the list of unique words and
their frequencies into an output format of <word> Figure 3: Bigram Matrix showing elements
<frequency>. As an optional additional operation, the ¢ P(a,b,c,d)
frequencies can be normalized to Bayesian probabilities
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Construction of the Matrix of bigrams is conducted by model for the probability measure for a given token
first counting the number of elemenbxn in the  sequence, the controlling model object locates the first
Lexicon and creating a template binary Matrix file of token of the sequence, locates the second token in the
nxn zero values. The training text is then traversed on aurrent token’s list of neighbors, and traverses the
word-by-word basis; at each step, the current andndicated edge to the new node. The traversal continues
following word are considered as a pair and theas the controlling object collects transition probability
corresponding Lexicon entries located. Using themeasures from the edges traversed; if a node in the
Lexicon indexes, the Matrix is accessed at positionsequence is not found in the network, a smoothed “zero”
(current-word index x) + next word index, and the is substituted or, if traversal has led to the edge of the
value increased by one; the frequencies of all word pairdoad level's neighborhood for the primary root, the
in the text are thereby counted. As before, these valueraversal state is saved while the network is replaced,
can optionally be normalized through division by the updating with the current node as the new root.

frequencies’ sum.
The resulting Matrix can then be accessed in similar
fashion to the Lexicon, as a two-dimensional zero- ‘4—_»‘

biased array, using indexes from Lexicon entries ‘ /
corresponding to the desired first and second symbols in ‘
a two-token bigram pair. Furthermore, the Matrix can \

also be used to produce Ngrams -- at the cost of
extended disk access speed -- by sliding a two-token - ‘
window along the sequence of the Ngram’s token series, [

moving the window one token at a time until the end ‘
token - 1 is reached. /
The quick brown fox jumped over the lazy dog &
¢ VY8' lazy, dog

W7 the, lazy Figure 5: The internal model network, load level 2, primary
W6 over, the root shaded
5: jumped, over
w4: fox, jumped

w3: brown, fox This method introduces several interesting capabilities:
w2: quick, brown first, given a sufficient series of queries the average
w1 the, quick query length and thus the average number of serviced
- - — queries can be predicted between required re-loading of
Figure 4: Bigrams via Linear Traversal the network; second, given a load levellpthe model
can guarantee a minimum btotal traversals through
40.2. Internal Resources -- Data Structures the network before a reload will be required. Together,

these two capabilities supply all information needed for
Internal representation of the model consists of afuture methods in the controlling object dedicated to

network of objects, one object per token, linked via©ptimizing use of memory given current available
weighted directed edges. The network -- perhaps mor&emory and system performance.

correctly visualized as a weighted, directed graph -- is

constructed by first creatingraot node to contain the 41. Smoothing Functions

symbol, unigram, and phones of the Lexicon’s single
most fit (highest unigram) token. The Matrix will then

be traversed, starting with the root's token index, to load! "€ general cases are defined from which zeros arise
all tokens into nodes for all bigrams starting with the N @ stochastic language mode. First, the model can
root. The loading sequence will continue, using eachcontain a zero for an unknown token; if a symbol does

node in the previous load sequence as root, until a prenot exist in the training data, it will also be absent from
defined load level is traversed in the Matrix. The netthe vocabulary, and the existential probability (without
effect is to generate a weighted directed graph withsmoothing) is then zero. Second, the model can contain
nodes for tokens and edges for transition [probabilities Z&70 for a contextual sequence that did not exist in the
for all tokens with a pre-defined neighborhood of the iNing data, such as with bigram pairs composed of a
original root. This representation allows a degree of<NOWn token (i.e., found in the training data and thus
control over the volume of the matrix loaded at any onel0cated in the net vocabulary) and an unknown token; a
time, relative to the branching factor of the Matrix, or single zero (unknown token) in the calculatlpn of an
the number of tokens in the Lexicon, To query the Ngram probability will zero the function. Third, the
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model can contain a zero due to constraints imposed bgonnecting the two such that stochastic nodes for a
the search engine and acoustic model; if the searchiven symbol were linked to all class nodes of parts of
engine requires the model to be discontinuous acrosspeech representable by the symbol. The link layer
sentence breaks, for example, the language model willvould then constitute a hybrid between stochastic and
contain zeros for the transitions that exist exclusivelydeterministic grammars and could access the network
across sentence boundaries. layer of least confusion for the current state, i.e., least
variance between transition probabilities to immediate
For Unigrams, probabilities are generated only forneighbors. This ability is especially interesting as a topic
known tokens (sequences of one). Bigrams, howevelfor future research since the implication is toward a
introduce the side effect of including two-token model encompassing multiple symbol sets, from which
sequences that do not exist in the training text andne is selected for each given transition based on the
therefore carry a measure of zero. While accurate irlevel of confusion at the current state.
representation of the training text, the purpose of the
mod_el is not to re-create the.text but to predjct events in 43. Implementation and Experiments
bodies for which the text is representative; a zero
probability will force the HMM search engine to ignore
any possible longer sequences incorporating the Bigrami he language model is implemented in two distinct
in question; zeros must therefore be replaced with anodules: the first, dedicated to off-line services
proxy value greater than zero. Values greater than th@erformed before the instantiating of the running CSR
WFM minimum would be equally misrepresentative, System, is composed of two binary executables
a|igning a Bigram non-existent in the training text with “lexicon.exe”and “matrix.exe”; the second, dedicated to
those that are. Given the extremely small probabilitieson-line services performed during training and normal
resulting from frequency counts of small token Operation once the CSR system begins processing
sequences and large bodies of text, this project employ&igitized audio, is composed of object and method
a smoothing function of a constant replacement of alldefinitions encapsulating the routines required to load,
zeros with the minimum value possible for the update, and respond to queries on the model network.
implantation data type, thus ensuring that the value,
while greater than zero, will be less than the minimum43.1. Off-Line Services
Bigram measure with a positive frequency (or equal, if
the data type is insufficient for the range of actual The two executables “lexicon.exe” and “matrix.exe” are

probabilities). utilities that, respectively, build the Lexicon and Matrix
files from the training text. For purposes of testing and
42. Grouping and Class Grammars experimentation output was directed to text files, but for

incorporation into a global system the file formats are
) , . changed to fixed binary typed. Given the computational
Class grammars, though not incorporated into thissimplistic tasks, three separate approaches were
project, are examined as a grouping tool with interestingaxamined: scripts that call legacy UNIX utilities; single

capabilities given the stochastic network representati_ormes with complex structure; muitiple files with simple
chosen. Since the model is token-based and gains it'sycture.

language tokens from a pre-processed training text body

the symbol set can be exchanged for the language af, approach the task with scripts and legacy utilities is
easily as for the phonetic equivalents of the Ianguagq,y and far the most portable and modifiable as the
(see Word-Phone Productions). The nodes of thecripts make piped calls to such utilities as “tr”, “sort”,
stochastic network literally embody the probability of “uniq”, and “awk”. The following sequence, for
transition between tokens, but can also be interpreted asxample, can be used to create a vocabulary complete

_groups__ of tokens (at the moment, groups of one token

each. Given a network constructed from a training text  at text | tr -s ‘[a-zA-Z0-9]’ ‘[\n*]’ | sort -y |
in which words were replaced with the used part of unique -c > vocab
speech, the token-based model would represent the

transitional probability between word classes, classrhe |abels “text” and “vocab” refer to, respectively, the

being defined by English usage rules. Such a modejaining text body and the vocabulary file. The
would not, however, constitute a class grammar, because

no such transition would insure the production of a state ¢, _g [a-zA-Z0-9]’ ‘\n*]' | sort -y
with at least one terminal symbol. Rather, the class
model would predict the likelihood of transition ¢ommand accepts the streamed training text from “cat”

between parts of speech. To imbed such transformationgng removes all characters not alphanumeric, isolating

the class model could, however, be loaded in parallethe remaining words each as a single word on a line.
with the stochastic model and a link layer defined
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This action results in multiple instances of a word beingconsumed, the list of nodes is written to file in the order
translated into multiple instances of that word alone on aictated by the particular resource file format.

line. The sort utility accepts the data stream from “tr”

and outputs the stream sorted by alphanumeric, resulting3.2. On-Line Services

in multiple instances of a word being grouped together.

The “uniq -c” then removes duplicates of any symbolsThe class definitions for network load, update, and
found, leaving a count of the number of instancesgyery response are fairly simplistic; little computational
initially located for each symbol. The net result is a gnergy is required save for the task of loading the root's
alphanumeric-sorted list of unique words in the trainingneighborhood of bigram data from the off-line matrix.
text along with a frequency count for each. Even in that aspect, the principle concern is the tracking

) .of nodes currently loaded such that a given node’s
It should be noted that although the scripted approach igigram is not duplicated, destroying the integrity of the
highly portable and makes excellent use of the UNIXpetwork. To that end, the update method is used both to
environment to employ multiple parallel pipes, the jpitially load and on request reload.
actual scripting ability is limited to tasks which reduce
entirely to counting functions. A binary executable is gince the update method must therefore already track
still required to move from the Lexicon to the Matrix.  cyrrently loaded nodes, an extension of the network
update method is proposed: since the load level is
f) known before and after a network update, and since the

list used to protect against multiple loads of a bigram
must employ knowledge of the level of the node relative
to the current root, the same list and information can be
used to minimize the number of additional nodes which
must be unloaded or loaded during an update.

Class Link
Target Node (Node Class Reference
Probability of Transition

Next Link (Link Class Reference)

Class Node

Symbolic [word] for this token

Phonetic sequence for this token

List of matrix [transition] neighbors (Link Class Reference)

Class L Model

Lexicon construction method (private)
Matrix construction method (private)
Network load and update method
Fitness-of-series-query method
Lexicon filename (private)

Matrix filename (private)

Network load level

Network root (Node Class Reference)

Figure 7: The Language Model Class Structure Figure 8: A minimal-change update to the model network

The remaining two approaches involve coding binary
executables to parse and count from the training text t
the respective off-line resource files; these approach
differ only in attitude toward the role of complex or
simplistic object definition. The more simple object
design is preferred for the ease with which it can be

Consider the above figure 8; the entirety of the network
ecfies above the horizontal dashed line and a query calls
for a traversal through the white node and across the
network boundary. If current-level information is
employed at each node and assuming a load level of
one, the update method need only unload the black

incorporated into other LM code libraries at later dates. .
The core of the resource file generation programs is aﬂgggz'dz?gu?ﬁeléght grey nodes, and leave the dark grey

simple node object that serves to collect frequency
counts, or “hits”, for a specific symbol encountered in .
the training text and to maintain the location of the 44. Evaluation
“next” node, thus internally maintaining a linked list

structure. The detection of bigrams vs. unigrams isypfortunately, little can be done to benchmark external
decided by the symbol pattern stored as the symbol foperformance of the LM independent of the CSR client;
each node’s token; once the entire training text isparallel implementations [if possible] of the CSR -- one
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with this project’s LM and one with another LM -- can directly through one of three basic approaches: one --
provide some means of performance measure relative tmcrease the bit-size of the containing data type; two --
the two models, but the bulk of meaningful performancemodify the scaling constant in the Ngram probability

benchmarking must occur internally. function to produce a range of values shifted towards
greater magnitudes (the problem areas all lie in close
A (w) 1 proximity to long token sequences and extremely small

Qw) =2 V= —r— competing probabilities); three -- modify or abandon the

- -~ N normalization of unigrams’ and bigrams’ probability

N PEN:LE measures to the same effect.
45. Conclusions

Aw) = - lim |09|58NN _ WND The Language Model (LM) is shown to play a key role

= N o oo —10 in the performance of the Hidden Markov Model
(HMM) Continuous Speech Recognition (CSR) system;

Figure 6: Perplexity (top) and Entropy (bottom) quality and type of the LM is expressed as a limiting

factor of maximum performance of the CSR. Standard
Input to the LM is a large body text, therefore the approaches and methods in LM design and construction
natural benchmark is perplexity of the model produced@re€ examined, and a stochastic model chosen.
from prospective text corpora; however, perp|exity of aMethOdOIOQy is introduced to streamline prOdUCUOn and
model represented by a complete directed weightedncorporation of the language model and allow for a
graph is less meaningful than isolated factors of entropy¢latively wide freedom movement in modifying the
at and across individual nodes in the network, andnodel mechanics and performance.
neither yields a good measure of the efficiency of off-
line resource production. Testing is therefore performed References
in three stages: first, Ngram generation methodology is )
verified comparing generated Ngram measures; second49Deller, J. R., J. G. Proakis, and J. H. Hansen. 1993.
model bigram and unigram measures are compared with Discrete-Time Processing of Speech Signdscmillan
that of an independent LM; third, production routines ~ Publishing, New York, pp. 677-804
will be compared across series of input characteristics td50Rosenfeld, Ronald. 1995.CMU Statistical Language
detail the order of performance. Modeling Toolkit: Manual Carnegie Mellon University

Internet  WWW  Service, online URL Http:/

Ngram measure generated by multiplying series of  www.cs.cmu.edu/afs/cs//user/roni/WWW/toolkit-SLT95-
bigram measures exactly matched those gained by revised.ps”
searching the training text -- though one should note thajs; rosenfeld, Ronald. 19950Optimizing Lexical and N-
Ngrams (in specific, five-token series) were chosen that  gram Coverage Via Judicious Use of Linguistic Data
were known to exist in relatively high numbers.  camegie Mellon University Internet WWW Service,
Although the CMU Toolkit scripts used to produce  gpline URL  *http://www.cs.cmu.edulafs/cs//user/roni/
Ng(;ams Ifor compallrlscc)jn emr;loyed a}tmdeas%rement range \wwwivocov-eurospeach95-proc.ps”
and scale several orders of magnitude above our own . -
(the CMU scripts do not normalize frequency counts butlSZ;ozeTfelqAR'\cllnngld. 199ESAdapt|Xe Statlsrt:c'aDLLgngﬁagg
use them directly), the order and content of an n-best Co € mg.M ”ax'gu.m r_lttrogy hppro;a; ' t'C.MUeég’
token list given a random current token state is 92T§§|ec eflon nmeﬁsl Y. Ue‘.: n'c.":‘ Iefor : W\_NW_
practically identical between both models. Deviation “Lo0, Lamege Ve (_m niversity interne
exists only where the project's normalized probability Ser‘wce, online pRL"http.//WWW.cs.cmu.edu/afs/cs//user/
measurements approach minimum values for the chosen roni/WWWithesis. ps
data type, a restriction handled automatically for thel53Picone, Joseph. 1990Continuous Speech Recognition
CMU scripts by the operating environment and  Using Hidden Markov Models  IEEE ACASSP
command shell. Comparison of produced Lexicons fora Magazine, July 1990:26-40, IEEE Society Publications
test body of text -- Friedrich WieslerNature of Valuea 1990
100+ word online book on financial and socio-economic154Picone, Joseph. 1994Context-Sensitive Statistical Signal
value standards -- produced deviation between CMU  Processing: Toward User Configurable Speech
and project models identical to that found in Ngram  Recognition. Systems and Information Science
comparison; the obvious conclusion is that the project’s  Laboratory, Texas Instruments, presentation March 22
data type containing the probability measures is poorly 1994
matched with the range, if not domain, of actual155(:homskey. 1959. On certain formal

- 7 roperties of
probability measures. This discrepancy can be overcome P

grammars Information and Control 2:137-16, Dellar
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