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Abstract

An implementation of Language Model (LM) objects
for the construction of regular stochastic grammars is
presented based on Bigrams and Ngrams for both words
in a training text and for phones in phonetic series
equivalents for those words. An externally produced
word-to-phone dictionary compliant with the Worldbet
symbol set is recommended as a supporting resource. A
method of deriving Ngrams as the joint product of
weighted Bigrams is defined and investigated.

The implementation of grammar construction and
polling objects targets a Continuous Speech Recognition
(CSR) system’s search engine as the principle user; the
objects are to provide query response services for
probabilities of current and proposed states in the search
engine’s domain as well as sequences of hypothesized
next-states. The model serves primarily to assist in
formation of sentences from hypothesized word
sequences through the implementation of a token-based
grammar and Unigram/Bigram/Ngram generation
scheme. Although the current CSR organization does
not require phonetic-level support, such support is easily
be provided in the token-based model organization. An
inherent secondary goal of the project is the creation of
a se t o f robus t LM ob jec ts fo r use in CSR
experimentation. As such, other models such as Case
Based Grammars will be investigated, but since this
project will be conducted in parallel with projects
developing other aspects of the target CSR system,
priority for model implementation is defined exclusively
by the needs of the remaining project teams.

The LM is tested using input perplexity as a benchmark
and both alternate Ngram generation methods and
independently produced models providing similar
services as measures of performance. Deliverables
inc lude object in ter face and implementat ion
spec i fi ca t ions , resu l t s o f Ngram genera t ion
methodology experimentation, and descriptions of a set
of C++ coded language model construction and request
servicing objects.

35. Introduction

Type and quality of the Language Model (LM) can b
crucial to performance of the speech recognition syste
through a variety of factors. Representation of a prio
knowledge in the input domain, required to estimate th
existential probability of a given input sequence, i
imbedded in the LM alone. Constraints of the mode
(vocabulary, processing speed, etc.) define the sea
space volume relative to that domain and, to a fa
degree, the functionality of the resulting recognitio
system. Accuracy of the model in calculation o
probabilities defines the maximum rate of convergen
toward a desirable solution in that search space [1,2].

This design assumes an intended use with a Hidd
Markov Model (HMM) Continuous Speech Recognition
(CSR) system and is therefore most directly applicab
to such an application; the primary goal is to impleme
as C++ objects a series of utility modules which in tur
will provide LM services for a specific HMM CSR
implementation. Of equal importance, however, is th
creation of robust LM objects that can be used in spee
recognition development and experimentation wit
other recognition packages[3,4]. Topics for investigatio
center on stochastic LM designs which have been w
known for some time [1]. In particular, the plan of attac
centers on Bigram, Trigram, Ngram, and Co-occurren
probability measures, though difficulties with highe
length Ngrams for large vocabularies[2,5] limit feasibl
approaches to Trigram implementations. The utilitie
consume a text corpus, generate an N-gram model
that text, and use that model to provide probabilist
measures for hypothesized next states given a seque
of proceeding tokens. Since the recognition system
queries to the LM could eventually require both Englis
text and phonetic sequence formats, addition of a wor
phone dictionary for the given input text is also
supported. Inclusion of phonetic sequences also prom
the definition of delimiters. Word-grammars model
collection of sentences as a sequence of tokens
including words and sentence break symbols -- such t
possible token series may extend across sentence
discrete instances of token series bounded by expli
sentence breaks. Token series may therefore
Miss State CSR Conference Spring 96
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represented in crossing sentence boundaries while
allowing queries to consider those same sequences as
not cross sentence boundaries as required by the global
system. Phone-grammars consider words as discrete
phone sequences only; phonetic equivalents to words
are modeled in isolation, i.e., with context independent
phone symbols.

36. Problem Overview

The basic purpose of the language model is the
prediction of patterns in series of input tokens -- for the
CSR, spoken English -- much in the same way as the
acoustic models employed by the CSR’s HMM predict
features in the input signal waveform.

36.1. Global Architecture

In general, the target architecture consists of three
primary task-defined areas: the front-end, the search
engine, and the language model. The front end module
transforms the input signal of digitized spoken English
audio into a stream of feature vector packets. The search
engine finds the hypothesized utterance sequence most
likely to match a given sequence in the feature vector
stream by evaluating hypotheses for utterances with
acoustic models for those utterances. The language
model predicts the likelihood of a given hypothesis of
utterance given the likelihood of that utterance in a text
body representative of the domain of the system’s
spoken input, thereby decreasing the number of
hypotheses the search engine must evaluate and
increasing the probabi l i ty that the hypothesis
corresponding to the current feature vector alignment is
evaluated before other hypotheses (which in turn
increases the speed of the global system).

36.2. Functional Requirements

In general, the goal is to supply a HMM search engin
with probabilities of correctness for a specific next sta
(word) given a specific series of previous states; th
search engine can then maximize the probability tha
hypothesized text sequence is the correct equivalent
a speech input sequence. This, in turn, maximiz
performance of the CSR in terms of correct decoding
a speech input into text output. The LM must therefo
providea priori contextual knowledge for the linguistic
domain of the speech input through access to a body
text representative of the domain of expected speech[

The search engine, in locating the best path, crea
severa l add i t i ona l requ i rements fo r the LM
funct ional i ty; s ince the recognit ion system is
continuous, the search engine must incrementa
decode speech to text across all input for a give
execution. This incremental best-path search w
require measures of fitness incremental across the in
speech sequence, which will require the LM to supp
measures of fitness for possible next-states giv
relatively short sequences of previous states. The sea
engine can also be expected to justify the pruning
lower quality paths by testing the fitness of relativel
long sequences, which will require the LM to suppl
measures given longer previous-state sequences. L
the search engine will, as a rule, deal with both words
text and words as phones; the LM services can
expected to operate with both formats. These fo
requirements -- context, short sequence fitness, lo
sequence fitness, and word/phone support -- form t
core of functional requirements for LM implementation

In terms of tasks performed for the CSR, the function
requirements of the LM can be expressed as t
generation of both linguistic and phonetic grammars a
the calculation, on a single token and token series ba
of existential probabilities; stochastic grammars wi
assist in the hypothesis of probable words whil
linguistic grammars will assist in the hypothesis o
probable sentences. In terms of services rendered to
HMM search engine, functional requirements ar
limited to the ability to predict near-future events in th
input given a current known state. This translates to t
generation of existential probabilities for a given
sequence, and as an extension of the same,
generation of a list of n-best possible next events given
series of previous events.

It is important to note that the purpose of providin
measures of probability is to guide the HMM searc
engine in selection of next-states given current and p
states; this does not necessarily require probabilities,
a means ofconsistent ranking relative to probability.
The CSR system definition operates in real time;
general, the faster we can process tasks -- witho

Language Model

Search Engine

Front End

Acoustic Model

Digitized Spoken English

Text Transcript

Figure 1: Global Architecture of the Target System
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appreciable loss in global performance -- the better our
resulting system.

37. The Deterministic Approach

The formal definition of a deterministic model includes
a vocabularyV, or set of unique tokens from which the
language is constructed, a set ofproduction rulesP
governing the manner in which tokens are combined
into series, and a specialized tokenS denoting the start
of a valid token sequence. The resulting model is known
as the grammar G of the language :

.

The vocabulary is divided intoterminalsand non-
terminals; terminal tokens are symbols that comprise
the language, such as English words or phones, while
non-terminals are symbols that are expanded via the
production rules into series containing at least one
terminal. Repeated selection and application of
production rules to the starting symbol S will then
produce a series of terminals, or a valid sequence of the
language for which the grammar G has been defined.

Since the bulk of the model’s ability to represent a
language is incorporated in the production rules, it
becomes fairly straightforward to classify the grammar;
there are four widely accepted types have been defined
by Chomskey [9]: type 0,unrestricted; type 1,context
sensitive; type 2,context free; type 3,regular. Type 0 or
unrestricted grammars have essentially only one
production rule; any series A can be transformed into
any other series B: . Type 1 or context sensitive
grammars bring co-occurrence into focus; sequence A
can be transformed into sequence B only in the presence
of specific neighboring sequences w1 and w2 (which
may also be of zero length), A being a subset of the non-
terminals and B of the combined terminals and non-
terminals: . Type 2 or context free
grammars retain the requirements of type 1 grammars in
that A must be a subset of non-terminals and B a subset
of the complete vocabulary, but do not impose the
constraint of context: . Type 3 or regular
grammars require the inclusion of a terminal a or b in
the result of transforming non-terminals A and B:

38. The Stochastic Approach

In contrast to the deterministic formal grammar, which
models language as set oftransformations, the

stochastic grammar modelstransitionsbetween tokens
and defines probabilities of the existence of thos
transitions in the language domain. The inclusion of
measure of probability for the transition of a give
production rule set is termed astochastic grammarand
is the focus of th is project for the funct iona
requirements outlined, particularly in the ability to
predict the certainty with which a given sequence wi
occur given a previous sequence since the probability
a transition can indicate an existential likelihood for th
produced sequence.

38.1. Basic Units and Methods

Generation of a stochastic grammar for a given te
consists of construction of a Lexicon, i.e., an extende
Word Frequency List (WFL) combining the symbols
existential probabilities, and phonetic equivalents o
tokens encountered in the training text, and a Matrix
existential probabilities for two-token sequences, o
Bigrams. The combination of the Lexicon, Matrix
word-phone dictionary -- and external resource fro
which phone equivalents to encountered words may
collected -- and creation/management objects a
methods therefore comprises the bulk of the langua
model. The Lexicon’s representation schema is tok
based; words and sentence terminator symbols comp
the token alphabet for linguistic grammars while phon
comprise the phonetic grammar alphabet. Although t
CSR search engine employes the Viterbi Beam Sea
algorithm [8] with word-based acoustic models and
not presently expected to require linguistic mode
coverage of token sequences across sentences
phonetic model coverage across words, this LM proje
will implicitly supply the capability by representing
sentence breaks as special-case<s> tokens; run-time
configuration for or against such support can easily
added to the project definition if the need arises.

The generation of Unigrams -- measures of probabili
for the existence of single tokens -- is arguably th
simplest of tasks. Given a training text, the probabilit
of existence for a given token can be expresse
statistically as the number of instances, or frequency,
that token over the number of instances of all tokensn in
the text:

The task is further simplified by the existence of th
WFL, which is used to collect frequencies of occurrenc
for each unique token in the training text during th
process of constructing the Lexicon. The countin

G Vn Vt P S, , ,( )=

A B⇒

w1Aw2 w1Bw2⇒

A B⇒

A b⇒ or A aB⇒

P ti( )
F ti( )

F tn( )
n

∑
-------------------------=
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function then becomes a division of the sum of all WFL
entry frequencies by the frequency of the target entry:

Unigram queries can be construed to fall into the Ngram
query category since an Ngram query can be defined to
support token sequences of one. Queries for single
tokens, two-token series, three-token series, and n-token
series are, in theory, separate entities, queries to the LM
will exist only in the form of a query for a P(ti,j) for a
specific token seriesi,j .

38.2. Bigrams, Trigrams, and Ngrams

The generation of Bigrams and Trigrams -- existential
probabilities for a two-token series -- is similar to that of
Unigram generation in that the basic task still reduces to
a counting problem, though in this case the counting
problem begins to look familiar to anyone acquainted
with the fundamental equation of speech recognition
and Bayes rule[5,7]. The measure can be statistically
expressed as the frequency of the series in the training
text -- similar to the calculation of Unigrams, though we
cannot use the WFL to reduce the task further reduce the
counting task -- by considering the proposed Bigram
itself as a token.

To conceptualize the construction of the Bigram list,
consider it’s information content. Since the Bigram list
is relatively small (compared to a trigrams list or the
training text) and scanning the training text prior to
grammar generation is already required to generate the
WFL and Unigram lists, pointers can be considered as
additional tags on entries in the WFL indicating the
following token and weighted with the frequency of that
[current token, following token] pair found in the
training text. The probability for a given Bigram or the
measure of the existence of tokenb given a proceeding
token a can then be statistically expressed as the
frequency of that token pairβ i over the sum of
frequencies of all token pairsn:

The Bigrams list can easily be generated by first
producing an extension of the WFL in the form of ann
by n matrix for n tokens, a word frequency matrix

(WFM) with each position containing the frequency o
the x-y indexes’ sequence in the text. The probability fo
any given token pair, given a strictly applied orde
(P(x,y), for instance) is then the indicated frequenc
over the sum for the matrix:

Although simple to generate, however, this method
certain to introduce zeros into the matrix for xy pair
non-existent in the training text, for which steps must b
taken to insulate the search engine from obtaining su
an absolute measurement (see Smoothing Functions

Two factors prohibit the calculation of Trigrams and
Ngrams in similar fashion -- processing time an
storage space. Such calculations require furth
scanning of the training text, which adds disk I/O tim
to our operational speed, or requires us to store t
entire training text in memory, usually impossible give
hardware constraints. Furthermore, calculation for ann-
order series of tokens would require frequency measu
for all n-ary combinations of members of the vocabular
occurring in the training text; the processing and stora
requirements to generate the list of possible series alo
approaches the prohibitive, though for texts of lowe
perplexity, generation of a Trigrams list is often
possible[4].

Rather than dedicate to the explicit calculation o
Trigrams, however, we can note that Ngrams may
calculated as the joint probability of intersecting
Ngrams of lower order existing in the target sequenc
we can therefore recursively define all Ngrams of ord
greater than two (Trigrams included) as a sequence
overlapping Bigrams. This method does require th
existence of a transitive property across probabilities f
lower order token series that does not necessarily ex
but current sources of stochastic LM development[1,
indicate satisfactory results:

Experimentation shows that weighting is not actual
required, though the inclusion of a scaling constant do
allow for a greater range of flexibility and control in the
general function, which allows us, in turn, the ability to
tune our Ngram generator for longer and short
sequences, in particular to emphasize sequences ba
on length since longer sequences produce probabil
measures so small as to be prohibitive in terms of da
structure value bounds. In addition, there are oth
methods for countering such problems, as are discus
below in the Implementation and Evaluation sections
this document.

P ti( ) WFL i F,[ ]

WFL n F,[ ]
n

∑
--------------------------------------=

P βi( )
F βi( )

F βn( )
n

∑
-------------------------- βi a b,{ }=,=

Fxy WFM x y[ , ]=

P a d( , ) P a b,( ) P b c,( ) P c d,( ) K⋅ ⋅ ⋅=
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39. Word-Phone Productions

The unigram and bigram construction scheme together
with the structural representation satisfy the bulk of
functional requirements as outlined thus far. One service
that remains, however, is the additional (though
currently unused) support for phonetic equivalencies of
model tokens, or words. Addition of such support is
defined through the use of an external, off-line phonetic
dictionary and the inclusion of phonetic sequences from
that dictionary in the Lexicon where Lexicon symbol
and dictionary symbol match. This organization, in
addition to being eradicable to a single instance of off-
line linear search, introduces the ability to change the
phonetic symbol set employed by the global system
merely by changing the external file containing the
phonetic dictionary.

40. Tokens, Objects, and Methods

Given the conceptually fixed set of resources, we must
now turn our attention to implementation, which
dictates a further subdivision of functional requirements
into two groups. Prediction of future language domain
events is the pr imary goal , encompassing the
representative of state space for a specific language and
usage domain and the evaluation and ordering of
possible solutions based on probability of correctness.
Operation in conjunction with a real-time system is the
secondary goal, including the requirement of efficient
data structures extensible for alternate or variant models
and a resource management schema tunable for size and
speed considerations.

40.1. External Resources -- File Structures

Goals regarding continuous real-time performance
require the stringent use of processing time; to that end,
model construction methods can be employed off-line of
the global system. In addition, the bulk of construction
can be performed with scripts and landmark UNIX
utilities, “tr”, “sort”, “uniq”, and “awk” in particular.
The lexicon, for example, requires an intermittent WFL
which can be constructed as follows: first, the training
text is piped through “tr” to transform or remove
unwanted characters or character sequences, and to
isolate the resulting words, one word per line of text.
Second, the resulting list of isolated words is piped
through “sort” to arrange the words in alphabetic order
and, as a result, group identical words on adjacent lines.
Third, the sorted grouped list is piped through “uniq -c”
which removes duplicates and adds an integer indicating
the number of instances of each unique word. Fourth
and last, “awk” formats the list of unique words and
their frequencies into an output format of <word>
<frequency>. As an optional additional operation, the
frequencies can be normalized to Bayesian probabilities

by dividing each frequency by the sum of all frequencie
with a simplistic two-pass binary executable coded
sum on the first pass and divide on the second as
following pseudo-code illustrates:

In like manner, the produced list is extended to includ
optional phonetic equivalencies to the contained wor
by traversing the resulting list and, for each entr
querying an external phonetic dictionary file for th
appropriate sequence. In this way, the list (a WFL
becomes the Lexicon, and construction performance
bounded by two traversals of the vocabulary ofn words
plus one traversal ofm words in the training text. Since
the number of unique words in a text must be equal to
less than the total number of words, the performan
bound for creation of the Lexicon is on the order of th
text length, or O(m), assuming all text in the training file
is consumed for this purpose. The resulting file is of te
format, and retains this format for simplicity of testing
and verification. For final implementation, however, th
Lexicon is converted to binary format with fixed-length
strings used to create a constant sized data structure;
representation is wasteful of on-disk space but in trade
much faster to access and supportive of random acc
implicitly indexed by the entry count minus one (as wit
‘C’ arrays).

begin
sum = 0
seek file record 0
while not end-of-file

sum = sum + frequency
seek next record

seek file record 0
while not end-of-file

frequency = frequency / sum
seek next record

end

Figure 2: Pseudo-Code for Unigram Generation

T0 TN

T0

TN

Tb

Ta Pab

Tb

Tc

Pbc

Tc

Td

Pcd

Figure 3: Bigram Matrix showing elements
of P(a,b,c,d)
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Construction of the Matrix of bigrams is conducted by
first counting the number of elementsnxn in the
Lexicon and creating a template binary Matrix file of
nxn zero values. The training text is then traversed on a
word-by-word basis; at each step, the current and
following word are considered as a pair and the
corresponding Lexicon entries located. Using the
Lexicon indexes, the Matrix is accessed at position
(current-word index xn) + next word index, and the
value increased by one; the frequencies of all word pairs
in the text are thereby counted. As before, these values
can optionally be normalized through division by the
frequencies’ sum.

The resulting Matrix can then be accessed in similar
fashion to the Lexicon, as a two-dimensional zero-
biased array, using indexes from Lexicon entries
corresponding to the desired first and second symbols in
a two-token bigram pair. Furthermore, the Matrix can
also be used to produce Ngrams -- at the cost of
extended disk access speed -- by sliding a two-token
window along the sequence of the Ngram’s token series,
moving the window one token at a time until the end
token - 1 is reached.

40.2. Internal Resources -- Data Structures

Internal representation of the model consists of a
network of objects, one object per token, linked via
weighted directed edges. The network -- perhaps more
correctly visualized as a weighted, directed graph -- is
constructed by first creating aroot node to contain the
symbol, unigram, and phones of the Lexicon’s single
most fit (highest unigram) token. The Matrix will then
be traversed, starting with the root’s token index, to load
all tokens into nodes for all bigrams starting with the
root. The loading sequence will continue, using each
node in the previous load sequence as root, until a pre-
defined load level is traversed in the Matrix. The net
effect is to generate a weighted directed graph with
nodes for tokens and edges for transition [probabilities
for all tokens with a pre-defined neighborhood of the
original root. This representation allows a degree of
control over the volume of the matrix loaded at any one
time, relative to the branching factor of the Matrix, or
the number of tokens in the Lexicon,n. To query the

model for the probability measure for a given toke
sequence, the controlling model object locates the fi
token of the sequence, locates the second token in
current token’s list of neighbors, and traverses th
indicated edge to the new node. The traversal continu
as the controlling object collects transition probabilit
measures from the edges traversed; if a node in t
sequence is not found in the network, a smoothed “zer
is substituted or, if traversal has led to the edge of t
load level’s neighborhood for the primary root, th
traversal state is saved while the network is replace
updating with the current node as the new root.

This method introduces several interesting capabilitie
first, given a sufficient series of queries the averag
query length and thus the average number of servic
queries can be predicted between required re-loading
the network; second, given a load level ofl, the model
can guarantee a minimum ofl total traversals through
the network before a reload will be required. Togethe
these two capabilities supply all information needed f
future methods in the controlling object dedicated t
optimizing use of memory given current availabl
memory and system performance.

41. Smoothing Functions

Three general cases are defined from which zeros ar
in a stochastic language mode. First, the model c
contain a zero for an unknown token; if a symbol doe
not exist in the training data, it will also be absent from
the vocabulary, and the existential probability (withou
smoothing) is then zero. Second, the model can cont
a zero for a contextual sequence that did not exist in t
training data, such as with bigram pairs composed o
known token (i.e., found in the training data and thu
located in the net vocabulary) and an unknown token
single zero (unknown token) in the calculation of a
Ngram probability will zero the function. Third, the

The quick brown fox jumped over the lazy dog

w1: the, quick
w2: quick, brown

w3: brown, fox
w4: fox, jumped

w5: jumped, over
w6: over, the

w7: the, lazy
w8: lazy, dog

Figure 4: Bigrams via Linear Traversal

Figure 5: The internal model network, load level 2, primar
root shaded
Miss State CSR Conference Spring 96
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model can contain a zero due to constraints imposed by
the search engine and acoustic model; if the search
engine requires the model to be discontinuous across
sentence breaks, for example, the language model will
contain zeros for the transitions that exist exclusively
across sentence boundaries.

For Unigrams, probabilities are generated only for
known tokens (sequences of one). Bigrams, however,
introduce the side effect of including two-token
sequences that do not exist in the training text and
therefore carry a measure of zero. While accurate in
representation of the training text, the purpose of the
model is not to re-create the text but to predict events in
bodies for which the text is representative; a zero
probability will force the HMM search engine to ignore
any possible longer sequences incorporating the Bigram
in question; zeros must therefore be replaced with a
proxy value greater than zero. Values greater than the
WFM minimum would be equally misrepresentative,
aligning a Bigram non-existent in the training text with
those that are. Given the extremely small probabilities
resulting from frequency counts of small token
sequences and large bodies of text, this project employs
a smoothing function of a constant replacement of all
zeros with the minimum value possible for the
implantation data type, thus ensuring that the value,
while greater than zero, will be less than the minimum
Bigram measure with a positive frequency (or equal, if
the data type is insufficient for the range of actual
probabilities).

42. Grouping and Class Grammars

Class grammars, though not incorporated into this
project, are examined as a grouping tool with interesting
capabilities given the stochastic network representation
chosen. Since the model is token-based and gains it’s
language tokens from a pre-processed training text body
the symbol set can be exchanged for the language as
easily as for the phonetic equivalents of the language
(see Word-Phone Productions). The nodes of the
stochastic network literally embody the probability of
transition between tokens, but can also be interpreted as
representing the probability of transition between
_groups_ of tokens (at the moment, groups of one token
each. Given a network constructed from a training text
in which words were replaced with the used part of
speech, the token-based model would represent the
transitional probability between word classes, class
being defined by English usage rules. Such a model
would not, however, constitute a class grammar, because
no such transition would insure the production of a state
with at least one terminal symbol. Rather, the class
model would predict the likelihood of transition
between parts of speech. To imbed such transformations
the class model could, however, be loaded in parallel
with the stochastic model and a link layer defined

connecting the two such that stochastic nodes for
given symbol were linked to all class nodes of parts
speech representable by the symbol. The link lay
would then constitute a hybrid between stochastic a
deterministic grammars and could access the netwo
layer of least confusion for the current state, i.e., lea
variance between transition probabilities to immedia
neighbors. This ability is especially interesting as a top
for future research since the implication is toward
model encompassing multiple symbol sets, from whic
one is selected for each given transition based on t
level of confusion at the current state.

43. Implementation and Experiments

The language model is implemented in two distinc
modules: the first, dedicated to off-line service
performed before the instantiating of the running CS
system, is composed of two binary executable
“lexicon.exe”and “matrix.exe”; the second, dedicated
on-line services performed during training and norm
operation once the CSR system begins process
digitized audio, is composed of object and metho
definitions encapsulating the routines required to loa
update, and respond to queries on the model network

43.1. Off-Line Services

The two executables “lexicon.exe” and “matrix.exe” ar
utilities that, respectively, build the Lexicon and Matrix
files from the training text. For purposes of testing an
experimentation output was directed to text files, but f
incorporation into a global system the file formats ar
changed to fixed binary typed. Given the computation
simplistic tasks, three separate approaches we
examined: scripts that call legacy UNIX utilities; single
files with complex structure; multiple files with simple
structure.

To approach the task with scripts and legacy utilities
by and far the most portable and modifiable as th
scripts make piped calls to such utilities as “tr”, “sort”
“uniq”, and “awk”. The following sequence, for
example, can be used to create a vocabulary compl
with frequency counts from an arbitrary text:

cat text | tr -s ‘[a-zA-Z0-9]’ ‘[\n*]’ | sort -y |
unique -c > vocab

The labels “text” and “vocab” refer to, respectively, th
training text body and the vocabulary file. The

tr -s ‘[a-zA-Z0-9]’ ‘[\n*]’ | sort -y

command accepts the streamed training text from “ca
and removes all characters not alphanumeric, isolati
the remaining words each as a single word on a lin
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This action results in multiple instances of a word being
translated into multiple instances of that word alone on a
line. The sort utility accepts the data stream from “tr”
and outputs the stream sorted by alphanumeric, resulting
in multiple instances of a word being grouped together.
The “uniq -c” then removes duplicates of any symbols
found, leaving a count of the number of instances
initially located for each symbol. The net result is a
alphanumeric-sorted list of unique words in the training
text along with a frequency count for each.

It should be noted that although the scripted approach is
highly portable and makes excellent use of the UNIX
environment to employ multiple parallel pipes, the
actual scripting ability is limited to tasks which reduce
entirely to counting functions. A binary executable is
still required to move from the Lexicon to the Matrix.

The remaining two approaches involve coding binary
executables to parse and count from the training text to
the respective off-line resource files; these approaches
differ only in attitude toward the role of complex or
simplistic object definition. The more simple object
design is preferred for the ease with which it can be
incorporated into other LM code libraries at later dates.
The core of the resource file generation programs is a
simple node object that serves to collect frequency
counts, or “hits”, for a specific symbol encountered in
the training text and to maintain the location of the
“next” node, thus internally maintaining a linked list
structure. The detection of bigrams vs. unigrams is
decided by the symbol pattern stored as the symbol for
each node’s token; once the entire training text is

consumed, the list of nodes is written to file in the orde
dictated by the particular resource file format.

43.2. On-Line Services

The class definitions for network load, update, an
query response are fairly simplistic; little computationa
energy is required save for the task of loading the roo
neighborhood of bigram data from the off-line matrix
Even in that aspect, the principle concern is the tracki
of nodes currently loaded such that a given node
bigram is not duplicated, destroying the integrity of th
network. To that end, the update method is used both
initially load and on request reload.

Since the update method must therefore already tra
currently loaded nodes, an extension of the netwo
update method is proposed: since the load level
known before and after a network update, and since t
list used to protect against multiple loads of a bigra
must employ knowledge of the level of the node relativ
to the current root, the same list and information can
used to minimize the number of additional nodes whic
must be unloaded or loaded during an update.

Consider the above figure 8; the entirety of the netwo
lies above the horizontal dashed line and a query ca
for a traversal through the white node and across t
network boundary. If current-level information is
employed at each node and assuming a load level
one, the update method need only unload the bla
nodes, load the light grey nodes, and leave the dark g
nodes untouched.

44. Evaluation

Unfortunately, little can be done to benchmark extern
performance of the LM independent of the CSR clien
parallel implementations [if possible] of the CSR -- on

Class Link
Target Node (Node Class Reference)
Probability of Transition
Next Link (Link Class Reference)

Class Node
Symbolic [word] for this token
Phonetic sequence for this token
List of matrix [transition] neighbors (Link Class Reference)

Class LModel
Lexicon construction method (private)
Matrix construction method (private)
Network load and update method

Lexicon filename (private)
Matrix filename (private)
Network load level

Fitness-of-series-query method

Network root (Node Class Reference)

Figure 7: The Language Model Class Structure
Figure 8: A minimal-change update to the model network
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with this project’s LM and one with another LM -- can
provide some means of performance measure relative to
the two models, but the bulk of meaningful performance
benchmarking must occur internally.

Input to the LM is a large body text, therefore the
natural benchmark is perplexity of the model produced
from prospective text corpora; however, perplexity of a
model represented by a complete directed weighted
graph is less meaningful than isolated factors of entropy
at and across individual nodes in the network, and
neither yields a good measure of the efficiency of off-
line resource production. Testing is therefore performed
in three stages: first, Ngram generation methodology is
verified comparing generated Ngram measures; second,
model bigram and unigram measures are compared with
that of an independent LM; third, production routines
will be compared across series of input characteristics to
detail the order of performance.

Ngram measure generated by multiplying series of
bigram measures exactly matched those gained by
searching the training text -- though one should note that
Ngrams (in specific, five-token series) were chosen that
were known to exist in relatively high numbers.
Although the CMU Toolkit scripts used to produce
Ngrams for comparison employed a measurement range
and scale several orders of magnitude above our own
(the CMU scripts do not normalize frequency counts but
use them directly), the order and content of an n-best
token list given a random current token state is
practically identical between both models. Deviation
exists only where the project’s normalized probability
measurements approach minimum values for the chosen
data type, a restriction handled automatically for the
CMU scripts by the operating environment and
command shell. Comparison of produced Lexicons for a
test body of text -- Friedrich Wiesler’sNature of Value, a
100+ word online book on financial and socio-economic
value standards -- produced deviation between CMU
and project models identical to that found in Ngram
comparison; the obvious conclusion is that the project’s
data type containing the probability measures is poorly
matched with the range, if not domain, of actual
probability measures. This discrepancy can be overcome

directly through one of three basic approaches: one
increase the bit-size of the containing data type; two
modify the scaling constant in the Ngram probabilit
function to produce a range of values shifted toward
greater magnitudes (the problem areas all lie in clo
proximity to long token sequences and extremely sm
competing probabilities); three -- modify or abandon th
normalization of unigrams’ and bigrams’ probability
measures to the same effect.

45. Conclusions

The Language Model (LM) is shown to play a key rol
in the performance of the Hidden Markov Mode
(HMM) Continuous Speech Recognition (CSR) system
quality and type of the LM is expressed as a limitin
factor of maximum performance of the CSR. Standa
approaches and methods in LM design and construct
are examined, and a stochast ic model chose
Methodology is introduced to streamline production an
incorporation of the language model and allow for
relatively wide freedom movement in modifying the
model mechanics and performance.
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