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ABSTRACT

An essential element of any speech recognition
system is the language model. A language
model attempts to identify and make use of the
regularities in natural language to better define
language syntax for easier recognition. One
major obstacle in speech recognition is
variability and uncertainty of message content.
This, coupled with inherent noise, distortion
and losses that occur in speech, emphasize the
need for a good language model[1].

Several different types of language modeling
techniques exist. This project will concern
itself mainly with statistical language
modeling. Statistical language modeling uses
large amounts of text to automatically compute
the model’s parameters. This is called training.
Language models can be compared using
standard measures such as perplexity and
recognition or word error rate. This project
will use perplexity as a benchmark.

A good language model will providea priori
probabilities for all possible queries that the
search algorithm may request pertaining to the
learned vocabulary. Hence, the complexity of
the model is directly related to the size of the
corpus upon which it is trained.

46. INTRODUCTION

Building a language model for a continuous
speech recognition system is a formidable

task. The type of language model to be used
one of the first things that must be considere
and this choice has a marked effect on th
speech recognition system’s performanc
Statistical language models have been heav
favored for some time in much of the speec
research community because of their savin
in complexity. Statistical language model
derive their parameters directly from th
training corpus[11]. A language model mus
properly model the training corpus and it mus
also utilize a method for handling
outliers(words or phrases that occu
infrequently, possibly never, in the training
data). Methods that adjust the mode
parameters to account for outliers by shapin
distributions are called smoothing.

The speech recognition problem is of majo
importance in the development of mor
“human” like computers. It is desirable for the
computer to understand and act upon voc
commands. This desire is derived from the fa
that oral communication is the most commo
type of communication among humans an
therefore most are highly skilled a
communicating ideas through speech[5]. Sin
the majority of end users of computers are n
fluent in any computer language the drive is
make the computer fluent in human languag
If this push toward more “user-friendly”
computing resources is successful, th
applications are only a function of ones abilit
to imagine. Speech recognition has many are
of commercial applications such as: dictatio
personal computers, automated telepho
Speech Processing Spring ‘96
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services, and special purpose industry
applications[5].

Current dictation systems are designed to
operate in office settings with head-mounted
noise cancellation microphones. They are also
speaker dependent as it is expected that one
speaker will be using the system for an
extended length of time. The two types of
dictation systems are “unrestricted”, which are
used for letter writing or newspaper articles,
and structured systems which are used for
things such as report generation where the
vocabulary is restricted to a certain type of
report(medical, insurance, etc.). Current
vocabulary sizes for dictation systems are
about 40,000 words[5].

More people are exposed to computers now
than ever and the trend toward silicon is ever
increasing. To this end the goals of speech
recognition are not only to make computers
more easy for new users but also to make them
more efficient for old pros. The ideas of
changing font in mid-keystroke or opening a
file by spoken command appeal to people who
are on computers for the majority of every
day[5]. Some people even suggest that with the

trend toward smaller packages, the keyboa
may be the limiting factor in size. This schoo
of thought has visions of a totally speec
driven interface.

Telephone-based recognition has potential
the areas of banking, credit card applicatio
and validation, shopping by catalog, an
various customer service avenues. The ma
problem with this type of system is the
uncertainty of conditions of use such a
handset and microphone differences, chann
noise, and low signal bandwidth[5].

Some other applications for speech recognitio
are industrial automation and providing
necessary interfaces for people wit
disabilities. The main reason for success
industry is the marked increase in productivit
in applications in which recognition system
help or replace human workers[5].

Table 1 shows the progression of spee
recognition over approximately two
decades[5]. Some helpful acronyms are: S
speaker independent, SD-speaker depende
CSR-continuous speech recognition, an
IWR-independent word recognition.
Speech Processing Spring ‘96

Table 1: Progress in speech recognition, as expressed by word error rate.

Task Late 70’s Mid 80‘s Early 90‘s

SI IWR Alphabet 30% 10% 4%

SI CSR Digits 10% 6% 0.4%

SD CSR Query, 1,000 word
(perplexity 6)

2% 0.1% ----

SI CSR Query, 1,000 word
(perplexity 60)

---- 60% 3%

SD IWR Dictation, 5,000 word ---- 10% 2%

SI CSR Dictation, 5,000 word ---- ---- 5%

SI CSR Dictation, 20,000 word ---- ---- 13%
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47. The Statistical Language Model

Natural language can be viewed as a stochastic
process with each unit of speech(in our case
words) being a random variable with some
probability density distribution[1]. Given some
speech signal, S, we would like to form some
hypothesis as to what gave rise to that
particular signal. The front end operates
directly on the signal and maps it to some
acoustic vector, Y. Providing a measure of the
probability of the acoustic vector given some
word sequence is the job of the acoustic
model.

So, what we would like to know is, given Y,
what word or word sequence, W, corresponds
to that particular signal. It is the job of the
language model to provide a set of
probabilities that effectively rank the
hypothesis that it is given(figure 1). That is, the
language model will give the probability of
some future word given a history of previous
words that were spoken[3].

This whole idea of ranking a hypothesis can be
viewed from an information theory standpoint
as well. If we think of an information source
emitting messages, W, from a distribution,
p(W), into a noisy channel, we can view this
channel as a transformation of W into

observables, Y, governed by a condition
distribution, p(Y|W)[2].

47.1. N-Gram

The n-gram model uses the previous (n-
words as the only information source t
generate the model parameters. N-grams
easy to implement, easy to interface with, an
good predictors of short term dependencie
and thus have become the model of choi
among statistical language models[1].

We can view n-grams from the approach th
given any state (wk,wk+1), we will proceed to
state (wk+1,wk+2) with probability
P(wk+2|wk+1wk...wk-(n-3))[2]. Let’s view this
approach mathematically. The recogniz
would like to find some word sequence

that satisfies the argument,

W w1 w2 … wN, , ,=

p W Y( )
max

Ŵ
p W Y( )=
Speech Processing Spring ‘96
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SEARCHacoustic vector

hypothesis a priori
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Figure 1: Basic speech recognition system overview with component responsibilities.

speech signal
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or similarly from Baye‘s rule,

where W is any word string and Y is the string
of acoustical observations[17]. The acoustic
model provides the probability p(Y|W). It is
the job of the language model to provide thea
priori information of the training corpus,
p(W), which is given by

47.2. Coverage

There is always a trade-off between reliability
and detail. This is completely dependent on the
size of the training data. The larger the training
data, the more likely a large N will yield
acceptable results. A smaller training corpus
will necessitate a smaller choice in N in order
to be reliably sure that an n-gram will exist. In
cases where reliability becomes a problem a
backoff approach can be used by the search
algorithm.

Assume the search engine queries the langua
model for a certain probability of an n-gram
occurring. If the score that is returned by th
language model is not “good” according to th
search engines criteria, or if the n-gram do
not exist, the search engine can then “back o
from looking for match of length n, to looking
for a suitable match of length n-1. This metho
can be applied until an acceptable score
returned or until unigrams are reached. This
an ARPA standard language model whic
utilizes the format introduced by Doug Pau
The algorithm for using this model can be see
in figure 2.

The search starts looking for a suitabl
trigram. If none exists it searches for th
corresponding bigram. If the bigram exist
then the returned probability will be a produc
of the bigram backoff weight and the
conditional probability associated with word
three and two, and if the bigram does not exis
the aforementioned conditional probability i
returned. It is easy to see that backoff mode
provide an efficient method for increasin
coverage and hence increasing overa
performance of the system.

W
maxarg

W
p W( ) p Y W( )=

p W( ) p wi w1 w2 … wN 1–, , ,( )( )˙

i 1=

N

∏=
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FIND
p(w3 | w1,w2)

p(w3 | w1,w2) = p(w1,w2,w3) FIND BIGRAM
(w1,w2)

FIND
p(w3 | w1,w2)

trigram exists trigram does not exist

p(w3| w1,w2) = p(w3 | w2)p(w3| w1,w2) = bo_wt(w1,w2)*p(w3 | w2)

bigram exists
bigram does not exist

Figure 2: Trigram example of backoff approach.
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47.3. Smoothing

Obtaining reliable estimates of the parameters
of probabilistic language models is always an
issue.Regardless of the size of the training
corpus, it is impossible to cover all possible
words and word sequences that the model will
be queried for ranking. It is, however, desirable
that the outliers that do not occur in the
training data be accounted for in some manner.
There are several methods for dealing with this
apparent contradiction and avoiding the
possibility of assigning zero probability to any
words or word sequences. Setting some type of
floor for ranking is one solution. In this case,
some probability is assigned to the case where
an unknown query is made. The rest of the
model’s distributions are adjusted accordingly.
Another method for resolving this problem is
deleted interpolation.

Deleted interpolation is a method for
supplementing training data that is insufficient
for the speech recognition application for
which it is being used[4]. This method uses
both tied and untied models properly weighted
to lower the number of parameters and thus the
variance of the model’s distributions. It has the
effect of insuring that no zero probabilities are
assigned.

For a more detailed insight into deleted
interpolation, let’s assume that we have a set of
training sequences, . If we divide into two

subsets, and , we can train each model,

tied( ) and untied( ), on the two different

subsets of training data. The next step is to run
recognition experiments on each of the
sequences in , using both and . One

of the models will produce a better likelihood
score for each case. Let be the fraction of

strings in for which the tied HMM

performed better. If and are the state

transition and observation matrices for

and has similar matrices associated wi

it, the matrices for the “hybrid” model that is
given by deleted interpolation can be see
below[4].

As is mentioned in [4], deleted interpolation i
not generally as straightforward as state
above. In practice, the training space is usua
partitioned iteratively in an effort to obtain
even better coverage.

Aside from the intuitive notion that assigning
zero probabilities will result in inferior speech
recognition performance, there are som
mathematical consequences as well. The
implications will be discussed in the evaluatio
section.

48. BUILDING THE MODEL

The Carnegie Mellon University Statistica
Language Modeling(CMU SLM)Toolkit[21]
was used to create the language model. So
of the issues that must be considered wh
building a language model are the type o
corpus that is available, what size n-gram
use and what type of standard will the mod
adhere to(i.e. ARPA, LDC, . . .).

48.1. Formatted Data

There are several types of data formats that a
common in speech research: verbalize
punctuation(VP), some verbalized
punctuation(SVP), SGML(ARPA), and tex

τ τ
τ′ τ″

Mt Mu

τ″ Mt Mu

εt

τ″
At Bt

Mt

Mu

A εt At 1 εt–( )Bu+=

B εtBt 1 εt–( )Bu+=
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are the main ones that are supported by the
CMU SLM.

VP consist of transforming symbols to words:
@ -----> at, + ------> plus, etc. SGML is the
ARPA standard for CSR use. It consists of text
words separated by whitespace and SGML
markers enclosed within angled brackets that
indicate beginning of article, beginning/end of
sentence and various other occurrences that
can be exploited to gain some contextual edge.
Finally, text is simply words separated by
whitespace. The text format also supports
beginning/end of sentence markers as well as
article markers. For the language model that
was created, the text format was used.

48.2. Text-to-Model

The method that is used to build the model can
be seen in Figure 3. The text corpus is taken in
and compiled into basic trigram counts. From
there a vocabulary is generated. Once the
vocabulary is generated, the words in the
vocabulary are mapped to word ID’s numbered
1 to V where V is the number of words in the
vocabulary. At this point, the final step is taken
to create the language model of choice(in this
case the ARPA Backoff)[21].

All of the steps in model generation are
performed using scripts that are written for

each specific purpose. The CMU SLM Toolk
is a versatile tool that allows the user to buil
model or a piece of a model and the
customize it for some specific application.

49. EVALUATION

Evaluation is arguably the most important pa
of any research project. Without prope
methods and some widely accepted measur
it is difficult to benchmark one’s progress
Evaluation plays an important role for system
developers(to tell if their system is improving)
for consumers(to identify which system bes
meets their needs) and evaluation also has
way of focusing research[22]. Prope
evaluation has led to many advances in th
field of speech research such as: developm
of test corpora, creation of at least fou
performance workshops, and has resulted
the word error rate decreasing by a factor
two every two years for six years in a row. On
of these afore-mentioned performanc
workshops is the ARPA workshop which
features an annual competition evaluation
systems on a common test corpus. Th
workshop has led to rapid algorithm
development and improvement in speec
research[5].

In speech recognition, our criterion is
recognition accuracy. One direct measureme
Speech Processing Spring ‘96
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TRIGRAM
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Figure 3: Creation of ARPA Backoff Language Model.
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of this is word error rate. Another measure of
accuracy, which is not quite as direct, is
obtained by measuring the fitness of the
language model via some accepted norm such
as perplexity.

49.1. Perplexity

Perplexity is a measure of the performance of a
language model. Care must be taken when
discussing perplexity as it depends on the
model and the training data. One can only get
valid comparisons when all of these factors are
taken into account. In particular, the training
data must be the same for the perplexity to
have any real meaning at all.

Perplexity can be viewed as the geometric
mean of the branch-out factor of the language
model[1]. When viewed from this definition
the importance of comparing perplexities
based on the same training corpus becomes
obvious. A small training corpus would result
in fewer branches at each node and hence
lower perplexity than that of a larger corpus.
These corpus size issues illustrate the fact that
perplexity measures only give information for
specific environments. Perplexity taken out of
context has no meaning. The perplexity can be
defined as[4]:

where  is the entropy of the model[16].

Since entropy is the measure of

uncertainty[14,15], it should be obvious tha
the highest entropic state occurs when all pat
leaving the node are equi-probable. It is du
noted that entropy gives a sound measure
difficulty, but speech researchers have chos
to use perplexity instead[19].

It can be seen that if a zero probability wer
ever assigned in the model, an infinit
perplexity would arise. This illustrates the
need for some type of smoothing in order to b
certain that outliers will be properly modeled
A low perplexity is not a sufficient condition to
guarantee a low word error rate[3]. Perplexit
however, is often used as it is uncommon for
low perplexity to lead to a high word error rate

49.2. Model Specifications

This model uses a vocabulary of 4000 word
It is an open vocabulary, which means th
there are no assumptions made about the ty
of words that it will be queried for(i.e. it
expects to be tested using words that do n
occur in the training corpus). This model wa
constructed using 18411 trigrams and the
counts.

The unigram part is derived from 17354 word
which results in 80 distinct counts and
maximum count of 1049. The bigram
component is based on 11727 distinct bigram
with a maximum count of 1049. Only 248
bigrams are kept as 11479 of them occur 5
fewer times and are consequently discarde
The final component(trigrams) is taken from
16219 distinct trigram counts with the
maximum count being 107. Of the 1621
trigrams, only 29 were allowed in the model a
16190 of them resulted in counts less than 1
and were excluded.

It can be reasoned from the above data that t
model will serve well as a test model only
While sparse data is one of the foremo
problems in language modeling today[20], th

Q w( ) 2
Ĥ w( ) 1

P̂ w
N

1 
 

N

------------------------≈=

Ĥ w( )
lim

N ∞→
P̂ w

N

1
w

N

1
= 

 log–=

Ĥ w( )
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model suffers even more severely than most
and is intended only as a testbed for small
scale recognition.

50. Future Improvements

A larger training corpus is always a good
method for improving results. Other
improvements that can be made to the basic n-
gram language models are usually aimed at
making use of any long term dependencies in
an attempt to add some contextual element to
the model to improve recognition.

One such example is presented in [6]. The
approach in this instance is to use grammatical
trigrams which utilize a highly lexical
grammar, with standard n-grams as a sub-
class, to reduce the relative entropy of natural
language. In another research effort[7], long-
range trigrams are used to allow prediction
from not only the two immediate preceeding
words, but also from any two preceeding pairs
of adjacent words in the same sentence. Some
other areas of improvement are cluster models
and trigger pairs.

In [2], cluster models are based on a topic-
dependent corpus. The attempt is to improve
recognition by placing unigram constraints on
words having the most mutual information
with the topic. A maximum entropy approach
using trigger pairs are used in [3] to allow
topical adaptation of the model. One study by
Ronald Rosenfeld[23] sought improvement by
optimizing the size of the vocabulary. The
attempt here is to find the best vocabulary size
as a trade-off between reducing OOV rate and
increasing the model’s entropy.

It is evident that an abundance of research is
geared toward the advancement of speech
technology. The number of ways that models
can be “improved” is essentially limitless as
there are so many aspects to be optimized and
even marginal improvements are considered

worthwhile.
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