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ABSTRACT started deviating from the traditional representation of
speech as its FFT, to Mel Cepstral based features and

Speech Recognition can be treated in a very generj}erceptual Linear Prediction (PLP) based features. At

sense as a structured search problem. Corre . o
recognition is defined as outputting the most likely word urations etc. have also changed from the traditionally
sequence given the language model, the acoustic moddf€d values. At the language modelling front of the

and the observed acoustic data. This work involves th%peech recognizer, things have become very complex.
implementation of a commonly used search algorithm R€cognizers now use Trigram and Bigram models and

Viterbi Search. The implementation uses continuousEVen s high as 5-gram in some cases. More syntactic
and semantic information is being used now. The most

observation HMMs to represent its word models. The! . h din th ;
algorithm is provides the most likely word sequence tha:g"portant improvements have occurred in the Acoustic

e signal processing front sampling frequency, frame

could have produced the observed acoustic data. ThB€coding part of the recognizer, also called the Search

code is object oriented and the structure has been madg?9ine. The changes to the search engine have made it
nPossible for the speech recognizer to efficiently and

engine with various other modules of a speech -
recognizer including the language model, and the frontformulated as choosing the most probable path through
end signal processor. For experimentation a smalft |arge statistical network where the nodes in the
language model has been created and dummy HMMEtwork represent a state of the system. The problem

models have been used. The Viterbi algorithm has beelyith this formulation is that the network is a sparse
found to give the optimum solution to the search network, in that there are not many paths in the network

problem. It is not efficient in terms of memory. This which are as probable as the best or the correct path. The
basic frémework will now be used to develoh other Network is also a very large network so that exhaustively
efficient search algorithms searching for the best path through the network is
' impractical. With the advent of better processors we are
able to achieve real-time performance by adding some
1. INTRODUCTION constraints to the search paradigm.

Considerable progress has been made in the area #fis this component of the speech recognizer that my
speech recognition in the past few years, especially irfurrent work focuses on. In this paper we discuss the
the area of continuous Large Vocabulary Recognitionspeech recognizer in general. This will be followed by a
(LVR) Present day Systems can approach performanc&f?,ctlor.] on the (;urrently used .search algorlthms. We then
with word error rate as low as 5%. Their performance isdescribe the implementation of a specific search
equally commendable even in poor SNR conditions strategy, called the Viterbi search which a very simple
The key to this improvement can be attributed toalgorithm compared to its counterparts but, is quite
developments to all components of a traditional speechnefficient for real-time large vocabulary recognition
recognizer, especially the acoustic modelling. Mostpurposes. It is a Maximum Likelihood(ML) solution to
LVR systems today are Hidden Markov Model (HMM) the problem[1,2].The primarily purpose of this system is
[4]based makes the recognition a statistical networki0 allow using the framework for implementing more

searching problem. Some systems also have startegfficient algorithms in the future. The implementation
using Artificial Neural Networks (ANNs) or a Mmakes use of object oriented techniques in order for

combination of both. easy expansion of the system to simultaneously support
multiple search algorithms without greatly increasing

The signal representation of speech has changed ariie memory requirements. This is a necessary feature in

improved over the past decade or so. Systems have nofystems which are under development so that
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performance of the system when various algorithms ar@coustic models we have for each worelA) is the
used has to be compared before deciding on the fingbrobability of the acoustic sequence A. This probability
implementation of the speech recognizer. The later parfs not always necessary since this the same for all
of the paper will focus on the results achieved on thecomplete decodings of the A[16].

synthesized data.

2.1. Language Modelling
2. SYSTEM OVERVIEW
Figure 1 shows the schematic of a top-down approach to

The ultimate goal of continuous speech recognition is to>PEeCh recognition. In this case the word hypothesizer is
correctly decode a set of words or sentences given thguided by the sentence hypothesizer. As a frame is
input acoustic sequence. evaluation which will correctlyProcessed, each active sentence hypothesis asks for data
achieve this decoding always, is not possible. Therefor&S Needed. The sequence of data requests typically
the goal of the recognizer is modified to be the most?€9ins with a request for word hypothesis. These
probable word sequence which may have produced thEduests for word hypothesis in turn ask for a phoneme
given acoustic data. This leads to the following ypothesis. The process terminates with a request for a
definition of continuous speech recognition. frame of d_ata. Each level applies the constraints of a
grammar like structure to the next lower level of data
max representation. In a simple sense, the recognizer would
A — abandon pursuing a given sentence if the likelihood of
PW/A) W p(W/ A (2) the phoneme or word string is getting low. This
information is given by the LD. The phoneme or the

where A is the given acoustic sequence, W is theword strings are given by the AD.

inventory of word models the recognizer has in store .
and W is the derived word sequence. Another approach to the problem is the bottom up

approach. In this approach the grammar aids in
igecognition by not allowing symbol combinations that
are not in the language. In this case AD starts
hypothesizing phonemes, guided at each step by the
appropriateness of the string that is being created. Those
strings that are less likely are abandoned before the end
of utterance is reached. The main disadvantage with the
_ (P(W) xP(A/W) [y 2) bottom-up approach is that a sentence cannot be
u P(A) U recognized unless each of its symbols is recognized by
the AD. The disadvantage of top-down approach is that
the language should be highly constrained since all
This equation allows us to expre§gW/ A in a way possible sentences need to be hypothesized.
we can computep(w) is computed from the language _ . _ _ .
model and is the probability of the word occurring in a 1€ Previous discussion describes a high level
given context. P(A/W) is the conditional probability viewpoint of the recognition process. The lower level

o the acoustic sequence A gven the word sequence v 0L 11 SeCoding locss Ivolves e Sanal
This conditional probability is computed from the '

brief the signal processing side of the problem.

Word Models .
Digitized Speech

i Word Hypothesizer Sentence
Front-end Signal 4— a<- .
Processing Hypothesizer

Aj Recognized Sentence
Scoring Buffer

Figure 1. A simple schematic of a speech recognizer based on the top-down approach

By applying Bayes rule to the above equation of speec
recognition we can re-write the above equation as

P(W/ A
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2.2. Signal Processing On these features a principal components analysis is
performed to reduce the feature set to about 40 features.

The most important function of the signal processingA typical procedure for creating the feature vector
front-end is to convert the incoming speech into blocksincorporated in the HTK recognizer is shown in figure 2.
of data and allow for a compact representation of this
data. This form of compact representation results in2.3. Acoustic Modelling
what is called the feature vector. The input speech is
divided into frames of data of duration,typically,10ms. The purpose of the acoustic models is to provide a
These frames are normally overlapped by windows ofmethod of calculating the likelihood of any vector
duration,typically,35ms. This allows for removing the sequenc&’ given wordw.For small vocabulary systems,
artifacts of truncation resulting from the conversion into and digit recognition systems, we can have whole word
frames. Typically a Hamming window is used. From models and achieve good performance. But, in case of
these frames of data their spectral estimates are derivedarge vocabulary systems when we speak of several
using Linear Prediction or Fourier analysis. A numberthousand words, each spoken in a number possible
of other transformations are also applied to generate th@ays, it becomes impractical to have a model for each
final feature vectors. These transformation proceduresf the words. Thus we go in for modelling sub-word
include pre-whitening of the features, which does theunits like phones, phonemes, triphones, etc. There are
decorrelation of the features and, channel adaptatiogeveral advantages and disadvantages of each of these
which tries to remove the artifacts of the channel fromsub-word units. The most commonly used sub-word
the feature vector. Most systems use the Mel-frequencyinits in present day systems are the context dependent
cepstral coefficients (MFCCs) and their time derivatives.phonemes, and the triphones. The disadvantage of using
The reason for going for Mel-frequency based featuressub-word units is that they cannot capture the long term
is that research has proved that the human perception @bntext of the word as in digit recognition.
speech follows a logarithmic scale of frequency rather
than a linear scale. The fourier spectrum is converted t&arly systems used the Dynamic Time Warping
a Mel-scale by passing the fourier coefficients over a setechniques for decoding where each word was
of triangular frequency bins spaced on a log. scale. Thisepresented by a template and an optimal alignment was
is followed by a DCT operation which has the effect of desired for to get the most probable sequence of words.
compressing the spectral information in the lower orderMost of the present day systems use Hidden Markov
coefficients and it also decorrelates them[19]. SomeModels (HMM) for modelling words and sub-word
systems also include the energy and difference energyinits. In recent years some systems have started using
The need for having the time differences of MFCCs inneural networks to model their acoustic models.
the feature vector is to accommodate for longer context
than just that of the current frame. Since most of theThe next section discusses the HMM technology in
speech recognition techniques assume stationarity afeneral and also the issues in choosing the appropriate
speech in the frame of observation and uncorrelatednesaodels.
between adjacent feature vectors, which is a poor
assumption, the time differences, hopefully, compensate
for this assumption. Typically a feature vector has about 3. HIDDEN MARKOV MODELS
40 features. To start with about 60 features are extracted
per frame of data. A HMM is used as a model for words or sub-word units
in speech recognition. HMM is a doubly stochastic finite
Input Speech state automaton[6,7,24]. What this means is that the
transitions from one state to another in the HMM are
governed by a stochastic process as also are the output
probabilities associated with each state in the HMM.
Since the HMMs are finite state in nature, the whole
recognition process gets in turn converted to a search
Feature Vector problem in a massive network of states. The following
2 example will illustrate the components of a HMM and
A —> their use in the speech recognition paradigm.

Mel Scale
Triangular
Filters

3.1. Characteristics of an HMM

Why the name ‘Hidden Markov Model'? The HMM can

- be concisely defined as a doubly stochastic
Logarithm kg DCT L g interconnection of states. The present state depends only
on the previous state and the present input and need not
know anything prior to that. This justifies the name

Figure 2 Generation of a feature vector
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Markov. The sequence of states is not explicitly seen irdescribes the output distribution.

an HMM. Theoretically speaking, a HMM can generate

all possible state sequences, though with different M= .

probabilities. It is the search paradigm which solves this ny/ XD[&“D_ NEw Ci) 3

problem by finding the likelihood of a certain sequence

given the HMM and an input acoustic sequence. Figure ] ] .

3 shows the structure a simple 5 state HMM There ardn the above equatiop s the observation vector and
explicit start and stop states in this model which needs the state sequence. In general single Gaussian pdf is
not be the case in practice. At each observation, statgot sufficient to model the observation at a state. Most
transition is assumed to occur. This transition issystems now have a Gaussian mixture density instead,
governed by a state transition probabih’ﬁy . There isso as to better model the modalities of input speech.

associated with each state an output density functio@otrjn; c;f sutph rgodez coucqu kl)e ? m_lgrllt_a/ffmale ('j”isginlction,

bi(y;) » which gives the probability of an output vector anc distinction based on dialects. This topic will be fater
" ) ) o addressed in the paper.

being emitted at that state. There is also an initial state

probability vector. A matrix can be created with the 3 > Training the HMM
transition probabilities from one state to another called

the State Transition Matrix. Taken together, the stat
transition matrix and the initial state probability vector
specify the probability of residing in any given state at
any time.

O

SWe have to train the HMM to correctly represent its
designated word or other utterance like the phoneme or
triphone etc. This is more difficult than the actual
recognition of an utterance. The performance of the
recognizer is very heavily dependent on the training

a, a,, 2y, process. There are two main procedures for this
purpose. The Forward-Backward (Baum-Welch)
ﬂ algorithm and the Viterbi algorithm[19-21]. The training
of the HMMs is a training-by-recognition process. The
HMM models are initialized by some seed models. The
[\ \ |\ recognizer is then forced to recognize the known
I\ \ | \\ utterance byfreest:matin”g i;[s paralmletecrls. The ugeI of
reestimation formulae will ultimately lead to a Mode
b0 1 0,0y b, \bs(y)\bs(ye) which represents a local maximum of the likelihood
PIMO However, finding a good local maximum
Acoustic depends rather critically on the initial estimate of the
Vector matrix parameters for each state[19]. This problem can
Sequence be circumvented by using good seed models which are
got by actually hand-excising a representative token and
y y y Y, Y creating one state for each frame in the token. Transition
1 2 3 probabilities are initialized to favor a path through the
Figure 3 A simple HMM model consisting enurgly of progressing transitions. The

Ulllg(:‘lb‘lll lUpUIUJJ)Ib'S dre i use 1or mAvivis. 11e UIIUiCG Of representatlve t0ken IS typlca”y seIeCted_ based on its

the topology depends primarily on the type of acousticduration. A standard thumb of rule being that the

data we want to recognize. The above example is a leftfumber of states should be equal to the average duration
to-right model with no skip states. in frames of the recognition unit[19].

HMMs can also be characterized as Continuous or 4. SEARCH ALGORITHMS
Discrete depending on the type of output densities they

are associated with. Discrete HMMs were in use for
most of the 80’s but now the focus has shifted to
Continuous HMMs since they have been found to mode
phonemes better than Discrete HMMs. The penalty on
pays for this shift, is the large increase in the number o
parameters the recognition has to deal with during th

Having talked about the basic components of the Speech
|Recognizer we now introduce the various available
search techniques. The search process is the most
?mportant and challenging part of the speech recognizer.
Most of today’s speech research is aimed at achieving
training phase as well as the recognition phase Iebetter performances by formulating more efficient

- TLearch techniques. In continuous speech recognition the

continuous density HMMs each state has a mean VeClqfyelihood of the observed data is computed by scoring it
and a Covariance matrix associated with it. The mea n all the feature models. The search paradigm then

vector and the covariance matrix together are used Bhooses a speech pattern with the highest likelihood.

describe the probability of an output governed by a : :
Multivariate Gaussian distribution. Equation 3. The number of possible hypotheses grows exponentially

Speech Recognition
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with the number of feature HMMs and imposes heavysolutions due to ita dynamic programming
constraints on the computation and storagecharacteristics. The partial solutions, in this case, are
requirements. Therefore intuitively obvious techniquesrecombined using the Max. function instead of the Sum
such as an exhaustive search are not at all practicableinction[9]. This is computationally efficient because
and strategies that save on computation by modifyingMax. evaluation is faster than the Sum function
the search space are vital. These may sometimes causeealuation. However it is inconsistent with the summing
the system to make suboptimal choices but the availableperation used in the forward-backward algorithm.
suboptimal algorithms are known not to significantly

affect the accuracy of recognition. The following section4.2. Viterbi Beam Search

briefly discusses the various commonly used search

paradigms. The Viterbi search takes advantage of the dynamic
- programming techniques that reduce the problem size
4.1. Viterbi Search considerably compared to an exhaustive search.

However, the problem is still too large when complex
The Viterbi algorithm is an efficient algorithm for finite state grammars or large vocabulary systems are
finding the optimal solution [2]. It is based on the DP considered. By observing that most partial hypotheses at
principles postulated by Bellman. [25,33] and has beera state have zero or near-zero probability at a given time,
extensively used in DP based speech recognition. Itve can modify the viterbi algorithm to consider only
imposes the restriction that the cost, or probability ofstates which have a probability ef less than the best
any path leading can be recursively computed as thgcoring state at the time in consideration, where
sum of the cost in making a transition from the previousyafines thebeamwidth of the search. Only a minor

state to the current state. This constraint goes well withy, o gification to the Viterbi algorithm results in the Beam
the time constraint imposed by the Hidden Markov. search[36,37].

The Viterbi search is a time synchronous searchrpg clear advantage of the Viterbi beam search is that
str,ategy. That is, at a given tlme,_each partial soluhpnthe problem size is reduced and the path merging
W accounts for the same portion of the acousticg,nction is theMax function which has significant
sequence, namely; . Thus partial hypothesis can beomputational savings over thedd function when
directly compared without any complicated evaluationapplied to log probabilities[9]. The advantage of a
functions. dynamic beam heuristic is that it will consider only
those hypothesis which are good relative to the best
hypothesis. This heuristic therefore allows the search to

P(i) -> probability of path i consider many hypotheses when there is no clear best
P2)> P(1) 8 hypothesis. Alternately, when there is a clearly best
hypothesis, only a few alternate hypothesis need to be
P(3)> P(5) maintained by the search engine.
P(7)> P(8)

4.3. Stack Decoding
1

The stack decoding algorithm is similar to the A* search
used in artificial intelligence[5]. Stack decoding is a
state-synchronous approach as compared to the Viterbi
algorithm which is a time-synchronous approach. Stack
decoding constructs a search tree from state graph S that
is described by the language model. The states in the
graph represent the abstract states in the language
model, and the branches in the search tree are the words
that cause transition from one language state to another.

nm-—a>-0n

t=0 1 yve 2 3 An important advantage of the stack decoding algorithm
is its consistency with the forward-backward training
Figure 4. The shaded path is the best partial path  algorithm. The disadvantage with the stack decoding
through the network of states according to the algorithm is that an extra function is required for the
Viterbi algorithm. comparison of hypotheses of different lengths. The

basic stack decoding algorithm[11,17,34] can be
In the Viterbi search, both within-word and between summarized as follows [35]:

word transitions are considered in a unified framework.
This has the advantage of efficiently evaluating partial
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1. Pop the best partial hypothesis from the stack. In the Lattice N-Best Algorithma time synchronous 1-
best forward-pass search algorithm is used within words
2. Apply acoustic and language model fast matches t@nd at each frame all the theories and their respective
shortlist the candidate next word. scores are stored in a traceback list. The best score of
this frame is sent forward along with a backpointer to
3. Apply acoustic and language model detailed matchethe saved list. The N-best sentences are obtained by
to candidate words. recursive search through this list. This algorithm is
extremely fast but often underestimates or misses high-
4. Choose the most likely next word and update allscoring hypotheses[29].
hypotheses.
In the Word-dependent N-Best seartte algorithm
5. Insert surviving new hypotheses into the stack. differentiates between hypotheses based on the previous
word rather the whole preceding sequence of words.
This approach suffers from speed, size, accuracy and
robustness, but efficiently combines all information into In the Forward-Backward searchn approximate time-

a one-pass paradigm. synchronous search is done in the forward direction to
facilitate a more complex and expensive search in the
4.4, N-Best Search backward direction[30,31]. A simplified acoustic model

and a simple language model like the unigram is used

The optimal N-best decoding algorithm is quite similar for the forward pass. Then a normal within-word beam
to the Viterbi search[15,26]. The Viterbi search is a Search is performed in the backward pass to generate the
simple case of N-best in that it is inherently a 1-bestN-best hypotheses list. The backward search scores high
approach. In N-best search all hypotheses within then @ hypothesis only if there also exists a good forward
specified beam are found and all hypotheses withPath leading to a word ending at that time. Figure 5
different path histories at each state are kept track of. IEXPlains this in a simple schematic.

then allows only the N-top scoring hypotheses to

propagate to the next state. This state dependent pruning

is independent of the global Viterbi beam threshold.

There are different sources of information whichcanbe 5. |[MPLEMENTATION SPECIFICS

used for the purpose of recognition nut each of which is

associated with a different cost. A hypothesis whichAft the brief fvari h alaorith

scores the highest given all the knowledge sources gives' ¢ 1€ Dr€T SUTVEY of various search aigoriihms one
the optimal solution. This is impractical though becausec@" S€€ that Viterbi search is the most simple to
of the large search space. It is therefore advantageous {g]plebmlent and eﬁlci_ekntépo_, when dealing ;’]‘"th small
use the most efficient knowledge sources to find a list o’ Olﬁfi u a;rybsystems ! g |g(|jt rleco%mzfelrls, Where we are
N-top scoring hypotheses. These hypotheses can then fKing of about 12 word models. The following sections

re-evaluated using more complex and expensivé’v'” describe in detail our implementation of the Viterbi
knowledge sources algorithm. The main motivation for this implementation

is to use this framework to build other more efficient

glgorithms like the Beam search in the near future. The
lJmplemc?ntation hgsllgept in mind this fact and also other
hypotheses. Thus an exact N-best search will require J.CLOS like extensibility of the code to accommodate for
very large N to find the correct long sentence. Some of/2r0us ramifications in HMM based speech recognition
the variations of the N-best search are the Lattice N_Besrtechnology. The |mple_ment§1t|on will allow the search

engine to be tested in isolation from other components

Algorithm, Word-dependent N-Best search and the : : ok .
Forward-Backward search. of the speech recognizer as well as in combination with

The N-best paradigm as described above has th
disadvantage that it is more partial towards shorte

_> 4_
Forward Backward

(%]

o

o

(@]

N

af(t) B(t)

Figure 5 Forward-backward search. Forward and backward scores for the same state and frame are combined
to predict final score for each hypothesis
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these components. words that the word represented by the end state with
the best score, can transition to.

5.1. The Viterbi Algorithm
7. Repeat steps 5 and 6 till end of input data is reached

The Viterbi algorithm we have used can be summarizedtt=T.

as follows: ) ]
8. For all possible end states at t=T, find the end state

to represent each of the word in the vocabulary and find the most probable word sequence.

2. Read the language model specifics and create a state
machine which represents the language model ) ] ) ]
Figure 6. is shows a schematic of the above described
3. Initialize the system to the start state of the languagéMplementation.
model at t=0 . ) ) .
For th_e purpose of |mplementat|0r_1 of the_ Viterbi search
4. Depending on the language model create a slot in thé!gorithm we have used an object oriented design
scoring buffer for the initial state of the words to which Méthodology. The next few sections deal with objects

the start state can transition to according to the languag¥&€ created_ gnd their features as also their significance to
grammar the recognition problem.

5. For each word model that is initialized, look-ahead in5.2. The Datastructures

the input data and build the trellis by accumulating

scores. Constrain the length of a word to safe number oMost of present day research in speech recognition is

frames (we use 9) driven primarily because of lack of really large portable
memory (of the order of 2 GB) which has fast random

6. At t=1 check if any possible end state occurs. If anaccess. Algorithms and implementations are sought

end state occurs create a score slot for all initial states ofvhich can achieve decent performance with average

f) 52 V) HMM Model Language Model (Inter Word Transitions)
’ ' Y

Create HMM I Create Language
Models Model

Build the trellis using

Principle of Viterbi
Decoding

Y

Find the best word sequence

by finding best end state at the
end of test input and backtracing

Partial
Hypotheses

Look-ahead
hypothesizer

Most Probable Word Sequence

Figure 6. Implementation schematic of a Viterbi decoder for search in speech recognition
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memory requirements. This has lead to the importance
of choosing the right datastructures in the search process
which represent information in a very compact way ag
well allow for reusability of memory and code
structures[8][13].

For the purpose of keeping track of the scoreg
accumulated at each state at each time instant we creg
an object called the Score_Hyp which carries the
following information which can be used in the
decoding process.

a) log-likelihood score b) reference time

c¢) end of word flag d) end of sentence flag

So—~"—unsSo=—+

e) back-pointer to parent node and

f) a word history for path or theory identification. Figure 7. Representation of an HMM as a Linked kigfe
been chosen arbitrarily. There are cases of multiple
The reference time data helps us in the reuse of théransitions from one state to another which causes
structure. Suppose a Score_Hyp has a time stamp of ¢onfusion to the search engine during the decoding
At time t+8 when we need to store score information inprocess. For each word a model has been created. Each
a Score_Hyp we could do so by using the Score_Hypwvord is represented by a three state left-to-right
created at time t if the path on which this Score_Hyptopology without skip states which is one of the most
falls is found to be inactive. To facilitate easy searchingcommonly used systems in present day systems. Equal
of Score_Hyps we found it more appropriate to havetransition probabilities have been chosen.
them as a doubly linked list.

The HMM is a stochastic interconnection of states. With Q
each state is associated a mean vector and a covarian

matrix when we are dealing with continuous density Q
HMMs. There is also a transition probability associated

with each state pair. We found it appropriate to build a|
HMM also as a Linked list to have a more intuitive

representation of the structure. For future applicationg
and development to the system it is necessary to provid ’

for mixture densities too. In most of present day

systems, mixtures have become a common practice. Start Finish
The language model can also be represented as a sté e
machine and hence we have designed the languag ‘

model also as a linked list of states. Figure 7 shows a
example of an HMM and its representation as describet Figyre 8 State diagram representation of the
above. This representation has the advantage that it i experimental language model

very flexible as far as number of states present in ar

HMM and also the different transitions. This 3.dimensional mean vectors have been used at each

representation is very intuitive too. state. For the purpose of scoring we used the log-
_ likelihood probabilities and a euclidean metric has been
5.3. The Experimental Setup chosen for scoring the output at each state owing to the

simplicity of the computation. In practice this part
For the purpose of experimentation with the searchresults in a matrix multiplication and addition process.
engine we designed our own very small vocabulary
language model as well as acoustic models. Care haSynthetic data is created by adding random noise to the
been take to design these test models so as to verify th@ean vectors at each state in each model and test vectors
performance of the search engine in an accurate way. corresponding to a given model are varying in length too

to account for possible self transitions within the model.
The vocabulary was chosen to be consisting of four ~ The maximum duration of a word is assumed to be 9
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utterance constrained to start with silence

synthetically generated data (with option to add noise)
Euclidean distance as model scoring criterion

premise that a word occupies a maximum of 8 frame durations

Reference sentence

<Silence> one two four three <Silence>
6 6 4 5 8 3 (duration in frames)

Recognized Sentence Hypotheses

<Silence> <Silence> one two four <Silence> three <Silence>
Score: 114.37

<Silence> <Silence> one two four <Silence> three <Silence> <Silence>
Score: 111.87

<Silence> <Silence> one two four <Silence> three <Silence>
Score: 115.36

Figure 9. Experimental results on the search engine. Note that the most probable sequence is the one with the
highest score. This matches very well with the input synthesized data

frames. Figure 9 shows results of this experimentakize and shape of the structure. The language model is
setup. also specified by the user. Incorporating features such as
tying of states and mixture distributions is easily done.

6. SALIENT FEATURES OF THE
IMPLEMENTATION 7. SUMMARY AND FUTURE

RESEARCH

The above discussed design has incorporated many of
the features which are in use in most present dayEfficient search techniques and better acoustic models

systems. are vital for the improved performance of LVR systems.
Most systems still continue to be HMM based though
Object Oriented Design ANN based systems have made inroads into this area.

ANN can model non-linearities better than HMMs but
The implementation is data driven for most part. these systems have only performed atmost as best as
Making algorithms datadriven has been a thrust area itHMM based systems. Most of the techniques discussed
speech recognition research for many years now due tm the present work represent state-of-art techniques.
the size of the search space. In order to make thémportance has been given to the software structure for
recognizer perform in real-time importance has to beefficient memory management which is a core issue in
given in choosing the data structures for thespeech recognition. Also, catering to the long term goal
implementation[8,13]. Most of the present of integrating the present search engine with other
implementation is based on linked lists for more modules to form a comprehensive LVR system,
flexibility in the search process [9,13,22,25]. software has been made very flexible and extensible.

Data driven Implementation Future research in this area will be based on this existing
frame work. Our immediate goal is to extend the system
The implementation is made modular to allow for to a Viterbi beam search paradigm. Work towards
testing various HMM-based applications. The searcimplementing the Forward-Backward algorithm using
engine can be easily integrated with other modules ofthe N-best paradigm is under progress. Once this
the recognition system (front-end,language-model). Thalgorithm is functional, results from the different
key feature in the design is that the user has control ovealgorithms will be compared. Table 1. shows the search
almost the whole process of the search. The HMM-strategies employed by some of the present day LVR
topology is specified by the user. There is no limit on thesystems. The code will allow for the simultaneous use of

Speech Recognition
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these different algorithms. This system will then be
integrated with the other modules and testing on rea

data will be done. Various topologies, tied states,

mixture densities etc.[22] will be tested on real data.
Acoustic models representing different sub-word units

such as phonemes, tri-phones etc. will be tested on.Once
this initial testing phase is complete, the recognition5.

performance of the system will be compared with other
LVR systems on similar tasks. The recognizer will be

initially used for digit-recognition purposes.

LVR System Search Strategy

BBN/BYBLOS | Multi pass forward-backward seargh

Dragon Systemsg Initial fast match, followed by
detailed match: shortlist of words

used at each time instant

HTK Time-Synchronous decoding
MIT Lincoln Stack Decoder paradigm
IBM-SPHINX Multi-pass stack decoding

Table 1: Search methods in present day LVRg

systems
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