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ABSTRACT applications of such a system capable of understanding
natural human speech is a task limited only by human

Automatic speaker-independent speech recognition hd§1agination. The aim of a continuous speech recognizer

made significant progress from the days of isolatedS: therefore, to provide an efficient and accurate
. mechanism to transcribe speech into text. To maximize

: . She benefits of such a system and to make it universally
capable of performing large-vocabulary continuousyppjicaple, it is desirable that it have the capability to
speech recognition (LVCSR) over complex domainspangle a large vocabulary and be independent of speaker
such as news broadcasts and telephone conversations.characteristics like accents, speaking styles and
significant contribution to this advancement in dysfluencies, as well as different grammatical structures
technology is due to the development of searchand noise environments.

techniques that support efficient, sub-optimal decoding

over large search spaces and complex statistical modelEven though human communication through speech
Moreover, these decoding strategies are capable GiPPears to be extremely easy, replicating the situation
dynamically integrating information from a number of artificially has proved to be one of the biggest

diverse knowledge sources to determine the correc?ha”enges of current technology. Many of the
; undamentals of the speech communication process are
word hypothesis.

still not understood clearly, and the dimensionality and

In this project we propose to implement two major qomplexny of creating an expert system based on such
. ) . ~ limited knowledge is staggeringly high. It appears that a

classes of such efficient evaluation algorithms Viz.giayistical approach to speech recognition is the most

multipass N-best search and search using acoustigromising one. A stochastic approach circumvents the

models that employ a weighted mixture of Gaussianneed for encoding extraordinary amounts of complex

probabilities as density functions. We have implementednformation into building a deterministic system.

these algorithms to function as a standalone decoding

engine and evaluated them in isolation using statistical 27. THE SPEECH RECOGNITION

measures and synthetic data. This search engine will PROBLEM

later be integrated with other software modules

implementing a language model and a speech signal-

processing front-end to build a complete speakerThe statistical framework for the speech recognition
roblem is as follows. If a sequence of words

independent LVCSR system. The performance of thid
LVCSR system will be evaluated on speech data
available in the public domain and compared with that W = Wy, Wa, -y Wiy (37)

of other recognizers as a benchmark. The final software

will be placed in the public domain at the Institute of is spoken, and ifA is the acoustic evidence (or the

Signal and Information Processing (ISIP). observation) that is provided to the system to identify
this sequence; then the recognizer should decide in favor
26. INTRODUCTION of a word stringW that maximizes the probability that

the word stringv was spoken given that the data  was

Speech is one of the most natural means of exchangingoserved.

information for humans, and this has spawned a

growing interest in developing machines that can accept ~ _ max

human speech as input and act appropriately on the pWAD= W ptW AC (38)
information conveyed in it. Enlisting the possible
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the speech signal is stationary over short intervals of

Input —me time. The acoustic front end takes in the human speech
Speech input and converts it into a signal format. It then divides
this signal into small blocks of time (frames) and from

[l each frame derives an estimate of the spectrum of the

signal. The spectral variation over different frames is the
Acoustic information used by further stages of the recognizer.
Front-End
Typically, the signal is divided into 10 ms to 20 ms

Speech parameter features [l frames and the frames are overlapped to give a longer
analysis window (popular window durations are 25 ms

Statistical Acoustic ar_1d 30 ms). For better_spe_ctral estimates a ta_pered
window function (Hamming) is used. Often, the signal
Models p(A/W) . . -
is preemphasized to compensate for high-frequency

attenuation caused by lip-radiation.

The spectral features can be extracted using a multitude

Language Model :> of techniques. They can be broadly classified as linear
p(W) prediction based and Fourier analysis based approaches.

The popularly used spectral features are signal energy,
mel-spaced cepstral coefficients (which can be derived
by linear prediction, filter-banks or Fourier analysis) and

Recognized Utterance their temporal derivatives of the first and second order

[1, 2, 3, 4,5, 6, 7]. The output of the front-end is a

Figure 1: Overview of a Statistical Speech Recognition multidimensional feature vector for each frame of input
system speech data.

L . ) 27.2. Statistical Acoustic Models
It is difficult to directly compute all the possibla

posteriori likelihoods ptW AT because of the infinite If a sequence of acoustic feature vectdrs is obtained

number of observations possible. This problem can b, o, the front-end, the acoustic models need to provide
simplified by applying Bayes formula to finding  such g jikelihood score for any such  given a word sequence

that W. It is impractical to do this calculation for every
possible word sequence in case of large vocabulary sizes

~ argmax and hence word sequences are decomposed into basic

W = W p DNVCPLAWD (39) sound units calleghones

N _ The earlier approaches to continuous speech recognition
The probabilityptAWD that the data  was observed if ysed the technique of Dynamic Time Warping (DTW)
a word sequenc®/ was spoken is given lgadistical  [8]. However, it was found to be impractical even for
acoustic modelThe likelihoodpOwO that enumerates moderately large-vocabulary tasks as it places very high
thea priori chances of the word sequenge  bein requirements on both memory and computational

spoken is determined usingstatistical language model. CcaPacity for implementation. Moreover, it suffers from
Scores for various likely word sequences or hypothese.pmblemsf of robustness across multlp_le speak_ers,
are generated using the acoustic model scores and ﬂmterpplatlon of paralle_l hypotheses and inappropriate
probability of the word sequence given by the IanguagemOde“ng of word-durations.

model. The process of combining the two scores anc
weeding through all the hypotheses to select the on
with maximum score is called decoding or search.
Figure 1 illustrates the basic schematic structure of ¢

stochastic speech recognition system. We present a bri‘machine that has a Markov distribution associated with
discussion on each of the main coﬁ]ponents of thidransitions between various states, and some probability

system next. density fgnctlon that models the output for every state.

Depending on the complexity of the recognition
problem, this distribution can be modeled as a discrete-
valued or continuous-valued process [9, 10].

A Hidden Markov Model (HMM) is used to model each
phone (or in many systems now, a context-based group
of phones). An HMM is a doubly stochastic state

27.1. Acoustic Front End

A key assumption in stochastic speech processing is thy, speech recognition applications the choice of this
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occurrence of particular words and word sequences; in
particular it provides a mechanism to estimate the
probability of some wordy, in a word sequene

Hidden Markov Model M

given the preceding Woro\sﬁ/i'l =w;..w,_; .Agood

language model should be able to incorporate
grammatical constraints imposed by the structure of the
language, topical dependencies and singularities like
awkward phrasing, abbreviated word forms etc.

y 4 * * * \bg’(yf’) A simple but effective way of language modeling is to

|:| |:| |:| |:| |:| treat word sequences d8 order Markov chains.
N

Y1 Y2 Y3 Ya Y5
pONO = |_| PO Wy ,Wo,... W, O (40)
Acoustic feature vector sequence Y i=1
Figure 2: HMM-based acoustic model This gives rise to the notion of n-grams [13] where the

probability of occurrence of a word depends only on its
n predecessors.

output probability function is crucial as it must model

all of the intrinsic spectral variability of real speech. k—1_ k-1

Most current state of the art systems use a multivariat pmvk|W1 0= pENk|Wk_ n+ 1[ (41)
Gaussian distribution to model context-dependent

sequences of three phones (triphone models). . .
g P (trip ) n-grams simultaneously encode syntax, semantics and

pragmatics and they concentrate on local dependencies.
Also, n-gram probabilities can be directly computed
from text data and therefore do not require explicit
linguistic rules like a formal language grammar.

The prime motivation behind HMM-based acoustic
modeling is the availability of algorithms to train them
in a fairly efficient manner. Viterbi [11] and Baum-
Welch [12] are two commonly used techniques in HMM
acoustic model training. The Baum-Welch forward-
backward training algorithm recursively re-estimates the
HMM parameters using the joint probability
computation for each state sequence and the observe
output sequence. The Viterbi algorithm does the sam;
by finding a state-sequence that maximizes the outpu
sequence probability.

Most systems use a trigram back-off language model,
though there are a few systems that have ventured as far
as four-grams. Apart from such static models there are
other techniques like long-range n-grams [14], triggers
[15, 16, 17, 18], word caches [19, 20, 21] and class
grammars as well as decision-tree clustered grammars
[22].

The HMM can be thought of as a vector sequence
generator, where at every time unit instatihe model 28. ADVANCED ACOUSTIC MODELS
makes a transition to a new stgtand outputs and

acoustic speech vectgt with an output probability  tpe simple model described in Figure 2 is found to be
bj(yt). The transition from stateto statej is also  jnadequate for modeling continuous speech as
governed by a probabilits;. Figure 2 has anillustration  contextual effects cause large variations in the way the
of a simple HMM topology which is commonly used in same phoneme may sound. a number of modifications
phone models in current state of the art systems. Herhave been made to the basic HMM phone model to
the HMM moves through the state sequegd, 1, 2,3, make it more amenable to continuous speech.

3, F to generate the corresponding acoustic vectol

sequence; throughys. 28.1. Context-dependent Models

We will discuss some aspects of acoustic modeling irTo achieve good phonetic description between sounds

detail in the next section. that differ only because of the context in which they
appear, different HMMs need to be trained for each of

27.3. Language Models such contexts. A simple and effective way to do this is to

usetriphonemodels, where every phone has a different
A language model provides constraints on theHMM corresponding to every unique pair of left and
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M
# observations z Cm = 1 A1<i<S (43)
m=1

A

and f, &Ji0 models the output density distribution
bi(y).

Detailed reestimation equations for the mixture
parameter mean and covariances as well as the weights
have been derived. Suppose that we define

—
observation value

v(i;t,m) = pLx(f) = ily()d (44)

Figure 3: Multiple modalities of a single sound

such thaty(t) was produced according to the mixture
right neighbors [23]. componenim . Then

Triphone models can be trained to encompass wor
boundaries. Such cross-word triphones offer maximun t T
modeling accuracy but offer a number of complications alyp DB 0 € DKy Cipy)
for the implementation of the decoding strategies. On Y(itm = —g ™

the other hand, word-internal triphones (with an t. T

optional back-off to diphone models) gre simplistic from z alyp By lit Z G D Emp Cjp)

an implementation and training perspective. However, j=1 =1

these lack the ability to model contextual effects at word

boundaries and hence add to the recognition error. (45)

28.2. Mixture Distributions ¢ T
where alyq.d) and[s@lluu are the Baum-Welch

The triphone models account for a significant amount oy o apility terms for the partial forward and backward
contextual variation of the phones. However, evengeq ences for time Also define the sum of all such
within the same immediate context there are a numb.etermS in Equation 8 as

of modalities associated with each sound.These exis
due to speaker characteristics like speed, accent ar

dialect; as well as long-term contexts within and across T

words. For instance, the phone “t" has 32 different  v(i;*,m) = Z v(i;t,m) (46)
modalities of pronunciation. A lot of these are taken “~

care of by creating different triphones for “t”, but even a t=1

single such triphone may have a number of distinct o _ _
modalities. Figure 3 shows a simple illustration of two So that the reestimation equations can be written as
modalities for a single phone.

- _ v m)

A single Gaussian distribution cannot model such astatt~ Cim = == — (47)
output. Therefore, a linearly weighted sum of different -
Gaussian densities is used to model the form of the stat z v(iz*,m)
output probability distribution. m=1
M T
fy/xBI0= Y €m0 EMim Ci) (42) > v(istm)y(t)
m=1 g = t=1 - 48
Fim = = (48)

where
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Figure 5: Optimized hypothesis generation

Figure 4: State-tying across different triphone models

T
. T
> VMY — il [Y() — K
Cim = =2 .
'm v(i;*,m)
Figure 6: Problem space reduction by merging
(49)
Equation (11) represents a ratio of the expected numbeSystems use typically 8 to 10 mixtures per state and then

. o . . tie them up.
of times the system is in stat@nd uses then™ mixture € hemup

component to generate the observation vector, to th
number of times the system is in stat&quation (12) is

a weighted temporal average of the observation vector
and the covariance in Equation (13) is also a similar
weighted computation.

The choice of which states to tie can be made using a
phonetic decision tree [30, 31]. A simple illustration of
state-tying is displayed in Figure 4.

29. SEARCH TECHNIQUES
The use of Gaussian mixture densities also puts sevel

requirements on the computational complexity anda decoding strategy is required to find the most likely
memory requirements of the system. Instead of oneyord sequence given the acoustic models and the
mean vector and covariance matrix per state now therjanguage model constraints, and the spoken utterance
are an M number of such parameters. Since typicallyor acoustic data). It combines the scores obtained on
there are about 60,000 triphones to model ancine acoustic and language models and generates the

approximately a 40-dimensional observation vector, thepossible word sequences (or hypotheses) from which we
number of system parameters to estimate easily runpee( to find the most likely for recognition.
into a million or so. A truly huge amount of training

data is required to estimate all these parameters. An intuitive and straightforward solution appears to be
) ) to simply combine the two scores and generate all
28.3. State and Mixture Tying possible hypotheses and select the one with the largest

score. However, even for a small vocabulary task the
To alleviate the problem of too many parameters and tocenumerative search will fail to terminate in a practical
little training data, it is customary to allow states in amount of time, since the number of likely word
different models that display similar characteristics tosequences rises exponentially with the length of the
share the same output distribution. This is called statesequence.
tying [24, 25, 26, 27]. Similarly if two HMM states
share some common modalities, the mixtureTherefore we need to restructure our decoding problem
components corresponding to those modalities may alsto restrict the search space in some meaningful fashion.
be tied together. This leads to a tied-mixture system [28Some popular techniques for restructuring the search
29]. Since good smoothing techniques have beeispace [32] are as follows:
developed for continuous density distributions, current
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» Optimized Hypothesis Generatiomvolves merging <« Gotostep2witht=t+1

common partial hypotheses. A set of all partial

sequences (hypotheses) is constructed in the form of ¢ If t = N backtrack to get best path

tree where common portions of the hypotheses are tie

together. Refer to Figure 5 for an illustration. Viterbi search is time-synchronous; i.e. at any stage all
partial hypotheses correspond to the same portion of the

» Problem-space Reductidnvolves transforming the utterance and hence can be directly compared. However,

state space of the problem to make the search mora complete Viterbi search is impractical for even

efficient. This is done by merging common states inmoderate-sized tasks because of the size of the state

different hypotheses so that they need not be evaluatespace. A Viterbibeamsearch is used to reduce the

again and again. Figure 6 has an example. search space.

» Search Reductioantails pruning away hypotheses that In Viterbi beam search33, 34, 35, 36] only the
have partial evaluation scores less than some complethypotheses whose likelihood falls within a fixed radius
evaluation or some pre-determined threshold. of the most likely hypothesis are considered. It is a
dynamic programming technique that exploits the
* Knowledge Applicatiormakes use of expert observation that many states in the state lists have zero
information to improve the efficiency of the search. A or near-zero scores and therefore need not be considered
tight constraint in the knowledge base translates directltowards a solution. The best beam size can be
into smaller search space. determined empirically or adaptively. The advantage of
the dynamic beam heuristics is that it allows the search
Use of such approximations forces the decoder to makto consider many good hypotheses in absence of a
sub-optimal choices, but it has been observed that thiclearly dominant solution. Conversely, in case of a clear
does not significantly affect the recognition error rate.best hypothesis few others need to be maintained. The
Based on these modifications a number of searctmain problem with this strategy is that the same state
techniques have been evolved. occurring in different paths needs to be recomputed
every time adding to the computation cost.
29.1. Viterbi Search Techniques
Many variations of Viterbi beam search have been
Viterbi search and its variants form what is known as thePr0posed to improve upon its performance. The state
breadth-first search techniques. Here all hypotheses aSPace can be partitioned into subsets that are subject to
pursued in parallel and gradually pruned away as thdifferent beam widths [37]. If there is more information
correct hypothesis emerges with the maximum score. in the form of a larger number of contextual states a
tighter pruning threshold is applied. A maximum of path
The recognition system can be treated as a recursivSC0res may be taken when they merge at word
transition network composed of the states of HMMs in Poundaries and a sum when the merging is within a
which any state can be reached from any other. Th&vord. In another modification, additional pruning is
Viterbi search algorithm [11] builds a breadth-first Performed at the frame level to evaluate only a few best-
search tree out of this network in the following fashion: Scoring states [38]. This pruning is typically done only
at the few initial frames as almost 95% of hypotheses
« If N is the duration of the utterance, N number of are generated here. In very large vocabulary problems, a
state lists S are generated. These lists are initialized btr€€ structured network in which the states
setting the probability of the initial state as 1 and the€orresponding to common initial phones are shared by

others 0. different words can be used [39]. This uses the fact that
the uncertainty about the identity of the word is much
« For each state s in S(t) higher at its beginning than at the end and therefore

more computation is required at the initial phones than

For each possible transition from s to some state s’ irthe later ones.
S(t+1)
29.2. Stack Decoders
- Compute the transition score p(s’/s)
Stack decoding search [40] is similar to the A* search in
- If s’ is uninitialized, initialize it with a score p(s'/s) artificial intelligence [41]. It is a depth-first technique in
and a backpointer to s. which the most promising hypothesis is pursued until
the end of the speech data is reached. It constructs a
- Else update score of s’ only if this transition gives asearch tree from the language model state graph where
better score. the states correspond to abstract states in the language
and the branches represent transitions between these
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states. The basic stack decoder paradigm [42, 43] can tkeeps track of hypotheses with different histories at each

summarized as: state. It then allows only N top-scoring hypotheses to
propagate to the next state. This state-dependent pruning
» Pop the best partial hypothesis from the stack is independent of the global Viterbi beam threshold.

» Apply acoustic and language model fast matchesThe sources of information on speech used for

(computationally cheap methods for reducing therecognition purposes can be extremely diverse and are

number of word extensions which need to be checked bycorrespondingly associated with different costs in terms

the more accurate but computationally expensiveof computation and memory requirements. A hypothesis

detailed matches) to shortlist the candidate next word. that scores the highest given all these knowledge
sources will be an optimal solution to the recognition

» Apply acoustic and language model detailed matchejproblem. But this typically requires an impractically

to candidate words. large search space. It is advantageous to use a strategy in
which the most efficient knowledge sources are used

» Choose the most likely next word and update allfirst to generate a list of top N hypotheses. These

hypotheses. hypotheses can later be re-evaluated with other, more
expensive knowledge sources to arrive at the best
* Insert surviving new hypotheses into the stack. hypothesis. N-best search provides an efficient method

of integrating different knowledge sources and makes
The stack decoding algorithm requires an evaluatiorthe search process more modular. The scores from
function to compare hypotheses of different lengths.different knowledge sources can be combined using
The evaluation uses only the forward algorithm to weights chosen to minimize the recognition error [45].
evaluate partial scores, and is therefore unsuitable as
causes the search to always prefer shorter hypotheseThe N-best paradigm as described above has the
This is avoided by making the evaluation function problem of being partial towards shorter hypotheses. In
normalizing and discriminating, so that it compensatesother words, if we consider the probability of error in
for the path length and favors the optimal path more ancrecognition of a single word being roughly independent
more with time. of its position in the sentence, then a longer sentence

will have more errors and therefore will be pushed down
The A* stack decoder suffers from problems of speed.in the rank of correct hypotheses. Thus an exact N-best
size, accuracy and robustness. However, an importarsearch will require a very large value of N to find the
advantage of the stack decoder is its consistency witlcorrect answer for a long sentence.
the forward-backward algorithm. Therefore several
variations that use weaker and cheaper initial acoustiA number of modifications have been proposed to
and language models to produce a list of likely overcome this problem and to make N-best search more
hypotheses that is later refined using more detailed anaccurate and efficient. These modifications allow for
expensive models have been proposed that improve acsome approximations to generate the list of sentences
its performance. An important emerging stack decodincwith much less computation. Such approximations are

technique is the envelope search. justified as long as the correct hypothesis is assured to
be in this list. Even if it does not hold a very high rank in
30. MULTIPASS SEARCH this preliminary list, the correct hypothesis can be found

later by rescoring on other knowledge sources.

This class of search strategies have found widespreazg 2 | attice N-best Search
use in modern-day LVCSR systems. An approximate
and efficient search is used to generate a subset ¢
hypotheses that are more likely than others, and ir
subsequent passes of more detailed decoding over th
reduced search space the correct hypothesis is foun:
The advent of N-best search has been instrumental t
the advancement of multipass search techniques.

An initial pass of the recognition system is used to build
a lattice of word (or phoneme or syllable etc.)
hypotheses which is searched through by subsequent
passes to generate the correct hypothesis. A time-
synchronous one-best forward-pass search algorithm is
used within words and at each frame all the theories and
their respective scores are stored in a traceback list. The
best score at this frame is sent forward along with a
backpointer to the saved list [46]. The N-best sentences
The optimal N-best decoding algorithm [44] is quite are obtained by recursive search through this traceback
similar to the Viterbi search. However, while Viterbi |ist. This algorithm is extremely fast but

decoding is inherently 1-best, N-best search finds aloften underestimates or misses high-scoring hypotheses.
hypothesis sequences within the specified beam an

30.1. N-best Search
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Figure 7: Forward-backward search: The combined score is the normalized product of the forward
and backward path scores

A progressive search [47] can be used to avoid thisat timet . Thus
problem. Here a lattice of all sentence hypotheses i

maintained instead of evaluating independent sentenc a,(9)B,(S)
hypotheses. This lattice is treated as a grammar and ust — _t t

V(9 (50)
to rescore all the hypotheses. ar

30.3. Word-dependent N-best Search wherea andp are the partial path scores on the forward

and backward search passes. The N-best sentences thus
obtained are rescored using more sophisticated acoustic
and language models to obtain the best sentence
hypothesis.

This algorithm differentiates between hypotheses on thi
basis of only the previous word instead of the whole
preceding sequence [46]. The probability for each of the
different preceding words is stored within the word at
each state. At the end of the word the score for eaclg;, o the forward-backward search allows use of
hypothesis and the name of the previous word are
recorded. A recursive traceback is used at the end of th
sentence to derive the list of the most likely sentences.

different models on the two passes, a complex model
can be used on the backward pass to come up with
extremely accurate results [51]. The forward scores,
though not exact, are good enough estimates of the word
end scores and can be further modified by normalization
relative to the highest score in each frame. The time-
Forward-backward search algorithms use ansynchronous nature of both passes allows them to have
approximate time-synchronous search in the forwarcdifferent normalized scores without loss of accuracy.
direction to facilitate a more complex and expensive
search in the backward direction [46, 48, 49, 50]. ThisForward-backward search algorithms have greatly
generally results in speeding up the search process cfacilitated real-time handling of large-scale tasks. The
the backward pass as the number of hypotheses to thackward pass search is fast enough to be performed
explored is greatly reduced by the forward search.  without any perceptible delay after the forward search.
The forward search can be made more approximate and
A simplified acoustic or language model is used tohence efficient as the scores need not be very accurate
perform a fast and efficient forward-pass search inon the forward pass.
which the scores of all partial hypotheses that fall above
a pruning beamwidth are stored at every state. Then A variation of the forward-backward N-best search is a
normal within-word beam search is performed in thetree-trellis based fast searaigorithm [52] that uses a
backward direction to generate the N-best hypothesemodified Viterbi beam algorithm in the forward pass
list. The backward search scores high on a hypothesiand an A* stack decoder search on the backward pass.
only if there also exists a good forward path leading to aThe partial hypothesis map prepared in the forward
word-ending at that time. Figure 7 describes thetrellis search is used by the backward search to estimate
forward-backward search in detail. the incomplete portion of the partial hypothesis.

30.4. Forward-Backward Search

Similar to the Baum-Welch training algorithm we
combine the scores on the forward and backward pass¢ 31. SYSTEM IMPLEMENTATION

to compute the overall score at each state  of the HMV _ . _ _
In the course of this project we tried to implement a
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Figure 8: Linked list structure of an HMM Figure 9: The language model for evaluation

HMM-based speaker independent LVCSR system. Alinked list at the time of end of data.
key component of this system was the search moduls

that used acoustic models built with Gaussian mixture31.2. Data Driven Implementation
distributions and employed a multipass N-best strategy

We will now concentrate on describing the Tne software is capable of adapting to a variety of
implementation and evaluation of this search engine. H{pmM-based recognition applications. There are no
) . ) constraints on the topology of the HMMs, as well as the
The search algorithms were implemented with anhymber of mixture components at any state of any
object-oriented thrust. we designed the module tCcyodel. The user can define the number and structure of

function as a standalone unit that can be plugged int4he models, as well as the grammar that governs the
any system that employed HMM-based technology. Theanguage model.

next step is to combine this module with an acoustic

EWQS;;“@L?Q%“:&;Q::?e' to build a public domair 4, =y bERIMENTS AND RESULTS

31.1. Structure of the Software We evaluated the performance of the search algorithm in
isolation on synthetically created data for a simple

Present-day research in LVCSR technology is severelexperimental setup that closely simulates the working of
constrained by the limitations on the amount of easilya real recognition system. We created a grammar
accessible portable memory. This makes it imperative testructure for a digit-string recognition application and
use well-designed data structures that optimize memorsome dummy acoustic word models for the digits.
usage and allow for its reusability.

32.1. Experimental Setup
In order to provide a lot of flexibility to the user to set
the topology of the models and the component structurThe experiment for evaluation of the search algorithm
of mixture distributions most of the implementation is consisted of a digit-string recognition problem for the
based on linked lists. Figure 8 shows the digits “one” through “four” and silence.
implementation of an HMM as a linked list.

The acoustic models were given a fixed topology as that
The hypotheses are kept track of through another linkedisplayed in Figure 8. The state transitions were set to
list of a scoring structure associated with each HMMbe equiprobable. Tri-dimensional Gaussian mixtures
state. Each hypothesis is stored using back-pointers twere used to model the output distributions of each
the previous time-frame score structure. Score structureHMM state. Different states had different number of
which have not grown for the last two frames are deletecmixture components (we experimented with at most
from the list as dead hypotheses (this is the prunincthree mixtures per state). The mean vectors were chosen
action). The final hypotheses are found by tracingto allow a reasonable amount of confusibility between
through these back-pointers starting at the head of th
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Reference Sentence

<Silence> one two four three <Silence>

6 6 4 5 8 3 duration (frames)

Recognized Sentence Hypotheses

Score: 111.87 <Silence> <Silence> one two four <Silence> three <Silence>
Score: 111.87 <Silence> <Silence> one two four <Silence> three <Silence> <Silence>
Score: 115.36 <Silence> <Silence> one two four <Silence> three <Silence>

Figure 10: Sample results for the evaluation test

certain words. A duration constraint was imposed toimplemented in this work represent the leading
allow a maximum stay of 9 frames in any single HMM. technology to date, with systems like BBN’s Byblos and
A Euclidean distance measure was used to compute trCambridge University’'s HTK system using similar
likelihood scores on each acoustic model. techniques.

The grammar allowed for multiple transitions betweenData driven systems allow the user flexibility to adapt

words as well as self-loops (thus allowing for digit the application to a wide variety of problem

strings of arbitrary length). The grammar transition environments. We have a commitment to produce

probabilities were chosen arbitrarily [Figure 9]. modular object-oriented systems that will find a
multitude of applications in the public domain. This

The test data was synthetically generated by passing software was created as part of a larger project dedicated

test sequence of words and durations to a data generatto build a flexible freeware LVCSR system. Our future

program (that we developed for this testing) and gettincefforts will be dedicated in this regard.

the corresponding sequence of vectors as the outpt

with user-defined amount of White Gaussian noiseThe focus of our research will now be to complete the

added to the feature vectors. implementation of the backward pass and integrate the
search modules with the other components to complete
32.2. Results the recognition system. We will train and test the system

on real speech data and compare its performance with

We ran a number of tests constraining the grammar sother LVCSR systems on similar tasks.
that any utterance of the digit string would start only

with a silence, and observed that the best sequence 34. ACKNOWLEDGEMENTS
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