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ABSTRACT

Automatic speaker-independent speech recognition has
made significant progress from the days of isolated
word recognition. Today state of the art systems are
capable of performing large-vocabulary continuous
speech recognition (LVCSR) over complex domains
such as news broadcasts and telephone conversations. A
significant contribution to this advancement in
technology is due to the development of search
techniques that support efficient, sub-optimal decoding
over large search spaces and complex statistical models.
Moreover, these decoding strategies are capable of
dynamically integrating information from a number of
diverse knowledge sources to determine the correct
word hypothesis.

In this project we propose to implement two major
classes of such efficient evaluation algorithms viz.
multipass N-best search and search using acoustic
models that employ a weighted mixture of Gaussian
probabilities as density functions. We have implemented
these algorithms to function as a standalone decoding
engine and evaluated them in isolation using statistical
measures and synthetic data. This search engine will
later be integrated with other software modules
implementing a language model and a speech signal-
processing front-end to build a complete speaker
independent LVCSR system. The performance of this
LVCSR system will be evaluated on speech data
available in the public domain and compared with that
of other recognizers as a benchmark. The final software
will be placed in the public domain at the Institute of
Signal and Information Processing (ISIP).

26. INTRODUCTION

Speech is one of the most natural means of exchanging
information for humans, and this has spawned a
growing interest in developing machines that can accept
human speech as input and act appropriately on the
information conveyed in it. Enlisting the possible

applications of such a system capable of understand
natural human speech is a task limited only by huma
imagination. The aim of a continuous speech recogniz
is, therefore, to provide an efficient and accurat
mechanism to transcribe speech into text. To maximi
the benefits of such a system and to make it universa
applicable, it is desirable that it have the capability t
handle a large vocabulary and be independent of spea
characteristics like accents, speaking styles a
dysfluencies, as well as different grammatical structur
and noise environments.

Even though human communication through spee
appears to be extremely easy, replicating the situati
art i ficial ly has proved to be one of the bigges
challenges of current technology. Many of th
fundamentals of the speech communication process
still not understood clearly, and the dimensionality an
complexity of creating an expert system based on su
limited knowledge is staggeringly high. It appears that
statistical approach to speech recognition is the mo
promising one. A stochastic approach circumvents t
need for encoding extraordinary amounts of comple
information into building a deterministic system.

27. THE SPEECH RECOGNITION
PROBLEM

The statistical framework for the speech recognitio
problem is as follows. If a sequence of words

(37)

is spoken, and if is the acoustic evidence (or th
observation) that is provided to the system to identi
this sequence; then the recognizer should decide in fa
of a word string that maximizes the probability tha
the word string was spoken given that the data w
observed.

(38)

W w1 w2 … wN, , ,=

A

Ŵ

W A

p Ŵ A〈 | 〉
max

W
p W A〈 | 〉=
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Acoustic
Front-End

Statistical Acoustic
Models p(A/W)

LanguageModel
p(W)

Search

Recognized Utterance

Input
Speech

Speech parameter features

Figure 1: Overview of a Statistical Speech Recognition
system
It is difficult to directly compute all the possiblea
posteriori likelihoods because of the infinite
number of observations possible. This problem can
simplified by applying Bayes formula to finding such
that

(39)

The probability that the data was observed
a word sequence was spoken is given by astatistical
acoustic model. The likelihood that enumerates
the a priori chances of the word sequence bein
spoken is determined using astatistical language model.
Scores for various likely word sequences or hypothes
are generated using the acoustic model scores and
probability of the word sequence given by the langua
model. The process of combining the two scores a
weeding through all the hypotheses to select the o
with maximum score is called decoding or searc
Figure 1 illustrates the basic schematic structure o
stochastic speech recognition system. We present a b
discussion on each of the main components of th
system next.

27.1. Acoustic Front End

A key assumption in stochastic speech processing is t

p W A〈 | 〉

Ŵ

Ŵ
maxarg

W
p W〈 〉 p A W〈 | 〉=

p A W〈 | 〉 A

W

p W〈 〉
W
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the speech signal is stationary over short intervals
time. The acoustic front end takes in the human spee
input and converts it into a signal format. It then divide
this signal into small blocks of time (frames) and from
each frame derives an estimate of the spectrum of t
signal. The spectral variation over different frames is th
information used by further stages of the recognizer.

Typically, the signal is divided into 10 ms to 20 ms
frames and the frames are overlapped to give a long
analysis window (popular window durations are 25 m
and 30 ms). For better spectral estimates a tape
window function (Hamming) is used. Often, the signa
is preemphasized to compensate for high-frequen
attenuation caused by lip-radiation.

The spectral features can be extracted using a multitu
of techniques. They can be broadly classified as line
prediction based and Fourier analysis based approach
The popularly used spectral features are signal ener
mel-spaced cepstral coefficients (which can be deriv
by linear prediction, filter-banks or Fourier analysis) an
their temporal derivatives of the first and second ord
[1, 2, 3, 4, 5, 6, 7]. The output of the front-end is
multidimensional feature vector for each frame of inpu
speech data.

27.2. Statistical Acoustic Models

If a sequence of acoustic feature vectors is obtain
from the front-end, the acoustic models need to provi
a likelihood score for any such given a word sequen

. It is impractical to do this calculation for every
possible word sequence in case of large vocabulary si
and hence word sequences are decomposed into b
sound units calledphones.

The earlier approaches to continuous speech recognit
used the technique of Dynamic Time Warping (DTW
[8]. However, it was found to be impractical even fo
moderately large-vocabulary tasks as it places very hi
requirements on both memory and computation
capacity for implementation. Moreover, it suffers from
problems of robustness across multiple speake
interpolation of parallel hypotheses and inappropria
modeling of word-durations.

A Hidden Markov Model (HMM) is used to model each
phone (or in many systems now, a context-based gro
of phones). An HMM is a doubly stochastic stat
machine that has a Markov distribution associated wi
transitions between various states, and some probabi
density function that models the output for every stat
Depending on the complexity of the recognitio
problem, this distribution can be modeled as a discre
valued or continuous-valued process [9, 10].

In speech recognition applications the choice of th

Y

Y

W
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b3(y5)
b3(y4)b2(y3)b1(y2)b1(y1)

y1 y2 y3 y4 y5

Hidden Markov Model M

Acoustic feature vector sequence Y

Figure 2: HMM-based acoustic model

S 1 2 3

as1

a12

a11 a22

a23

a33

a3f
output probability function is crucial as it must mode
all of the intrinsic spectral variability of real speech
Most current state of the art systems use a multivaria
Gaussian distribution to model context-depende
sequences of three phones (triphone models).

The prime motivation behind HMM-based acousti
modeling is the availability of algorithms to train them
in a fairly efficient manner. Viterbi [11] and Baum-
Welch [12] are two commonly used techniques in HMM
acoustic model training. The Baum-Welch forward
backward training algorithm recursively re-estimates th
HMM parameters us ing the jo in t probabi l i ty
computation for each state sequence and the obser
output sequence. The Viterbi algorithm does the sam
by finding a state-sequence that maximizes the outp
sequence probability.

The HMM can be thought of as a vector sequenc
generator, where at every time unit instantt the model
makes a transition to a new statej and outputs and
acoustic speech vectoryt with an output probability
bj(yt). The transition from statei to statej is also
governed by a probabilityaij . Figure 2 has an illustration
of a simple HMM topology which is commonly used in
phone models in current state of the art systems. He
the HMM moves through the state sequenceS, 1, 1, 2, 3,
3, F to generate the corresponding acoustic vect
sequencey1 throughy5.

We will discuss some aspects of acoustic modeling
detail in the next section.

27.3. Language Models

A language model provides constraints on th
MS State Speech Recognition Conference
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occurrence of particular words and word sequences;
particular it provides a mechanism to estimate th
probability of some word in a word sequence

given the preceding words . A good

language model should be able to incorpora
grammatical constraints imposed by the structure of t
language, topical dependencies and singularities li
awkward phrasing, abbreviated word forms etc.

A simple but effective way of language modeling is t
treat word sequences as nth order Markov chains.

(40)

This gives rise to the notion of n-grams [13] where th
probability of occurrence of a word depends only on i
n predecessors.

(41)

n-grams simultaneously encode syntax, semantics a
pragmatics and they concentrate on local dependenc
Also, n-gram probabilities can be directly compute
from text data and therefore do not require explic
linguistic rules like a formal language grammar.

Most systems use a trigram back-off language mod
though there are a few systems that have ventured as
as four-grams. Apart from such static models there a
other techniques like long-range n-grams [14], trigge
[15, 16, 17, 18], word caches [19, 20, 21] and clas
grammars as well as decision-tree clustered gramm
[22].

28. ADVANCED ACOUSTIC MODELS

The simple model described in Figure 2 is found to b
inadequate for modeling continuous speech
contextual effects cause large variations in the way t
same phoneme may sound. a number of modificatio
have been made to the basic HMM phone model
make it more amenable to continuous speech.

28.1. Context-dependent Models

To achieve good phonetic description between soun
that differ only because of the context in which the
appear, different HMMs need to be trained for each
such contexts. A simple and effective way to do this is
usetriphonemodels, where every phone has a differe
HMM corresponding to every unique pair of left and

wk W

W1
k 1–

w1…wk 1–=

p W〈 〉 p wi w1 w2 … wn,,,〈 | 〉
i 1=

N

∏=

p wk W1
k 1–〈 | 〉 p wk Wk n– 1+

k 1–〈 | 〉=
EE 8993, Spring 1996



Efficient Search Techniques in LVCSR Page 54 of 63

e
hts

re

d

Figure 3: Multiple modalities of a single sound

observation value

# observations
right neighbors [23].

Triphone models can be trained to encompass wo
boundaries. Such cross-word triphones offer maximu
modeling accuracy but offer a number of complication
for the implementation of the decoding strategies. O
the other hand, word-internal triphones (with a
optional back-off to diphone models) are simplistic from
an implementation and training perspective. Howeve
these lack the ability to model contextual effects at wo
boundaries and hence add to the recognition error.

28.2. Mixture Distributions

The triphone models account for a significant amount
contextual variation of the phones. However, eve
within the same immediate context there are a numb
of modalities associated with each sound.These ex
due to speaker characteristics like speed, accent a
dialect; as well as long-term contexts within and acro
words. For instance, the phone “t” has 32 differen
modalities of pronunciation. A lot of these are take
care of by creating different triphones for “t”, but even
single such triphone may have a number of distin
modalities. Figure 3 shows a simple illustration of tw
modalities for a single phone.

A single Gaussian distribution cannot model such a sta
output. Therefore, a linearly weighted sum of differen
Gaussian densities is used to model the form of the st
output probability distribution.

(42)

where

f Y X⁄ ξ i〈 | 〉 cimℵ ξ µim Cim,( , )
m 1=

M

∑=
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(43)

and models the output density distribution

bi(yt).

Detailed reestimation equations for the mixtur
parameter mean and covariances as well as the weig
have been derived. Suppose that we define

(44)

such that was produced according to the mixtu
component . Then

(45)

where and are the Baum-Welch

probability terms for the partial forward and backwar
sequences for timet. Also define the sum of all such
terms in Equation 8 as

(46)

so that the reestimation equations can be written as

(47)

(48)

cim
m 1=

M

∑ 1= 1 i S≤ ≤,

f Y X⁄ ξ i〈 | 〉

v i t m,;( ) p x t( ) i= y t( )〈 | 〉=

y t( )
m

v i t m,;( )
α y1

t
i( , )β y1

T
i〈 | 〉

α y1
t

j( , )β y1
T

j〈 | 〉

j 1=

S

∑
--------------------------------------------------

cimℵ ξ µim Cim,( , )

cil ℵ ξ µil Cil,( , )

l 1=

M

∑
----------------------------------------------------×=

α y1
t

i( , ) β y1
T

i〈 | 〉

v i * m,;( ) v i t m,;( )
t 1=

T

∑=

cim
v i *; m( , )

v i *; m( , )
m 1=

M

∑
-------------------------------=

µim

v i t; m( , )
t 1=

T

∑ y t( )

v i *; m( , )
--------------------------------------=
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Figure 4: State-tying across different triphone models
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Figure 5: Optimized hypothesis generation
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e

Figure 6: Problem space reduction by merging
(49)

Equation (11) represents a ratio of the expected num
of times the system is in statei and uses themth mixture
component to generate the observation vector, to t
number of times the system is in statei. Equation (12) is
a weighted temporal average of the observation vecto
and the covariance in Equation (13) is also a simil
weighted computation.

The use of Gaussian mixture densities also puts sev
requirements on the computational complexity an
memory requirements of the system. Instead of o
mean vector and covariance matrix per state now the
are an M number of such parameters. Since typica
there are about 60,000 tr iphones to model an
approximately a 40-dimensional observation vector, t
number of system parameters to estimate easily ru
into a million or so. A truly huge amount of training
data is required to estimate all these parameters.

28.3. State and Mixture Tying

To alleviate the problem of too many parameters and t
little training data, it is customary to allow states in
different models that display similar characteristics t
share the same output distribution. This is called sta
tying [24, 25, 26, 27]. Similarly if two HMM states
share some common modal i t ies , the mix tur
components corresponding to those modalities may a
be tied together. This leads to a tied-mixture system [2
29]. Since good smoothing techniques have be
developed for continuous density distributions, curre

Cim

v i t; m( , ) y t( ) µim–[ ] y t( ) µim–[ ]T

t 1=

T

∑
v i *; m( , )

------------------------------------------------------------------------------------------=
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systems use typically 8 to 10 mixtures per state and th
tie them up.

The choice of which states to tie can be made using
phonetic decision tree [30, 31]. A simple illustration o
state-tying is displayed in Figure 4.

29. SEARCH TECHNIQUES

A decoding strategy is required to find the most likel
word sequence given the acoustic models and t
language model constraints, and the spoken uttera
(or acoustic data). It combines the scores obtained
the acoustic and language models and generates
possible word sequences (or hypotheses) from which
need to find the most likely for recognition.

An intuitive and straightforward solution appears to b
to simply combine the two scores and generate a
possible hypotheses and select the one with the larg
score. However, even for a small vocabulary task th
enumerative search will fail to terminate in a practica
amount of time, since the number of likely word
sequences rises exponentially with the length of th
sequence.

Therefore we need to restructure our decoding proble
to restrict the search space in some meaningful fashi
Some popular techniques for restructuring the sear
space [32] are as follows:
EE 8993, Spring 1996
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• Optimized Hypothesis Generationinvolves merging
common partial hypotheses. A set of all partia
sequences (hypotheses) is constructed in the form o
tree where common portions of the hypotheses are t
together. Refer to Figure 5 for an illustration.

• Problem-space Reductioninvolves transforming the
state space of the problem to make the search mo
efficient. This is done by merging common states
different hypotheses so that they need not be evalua
again and again. Figure 6 has an example.

• Search Reductionentails pruning away hypotheses tha
have partial evaluation scores less than some compl
evaluation or some pre-determined threshold.

• Knowledge Appl icat ionmakes use of expert
information to improve the efficiency of the search. A
tight constraint in the knowledge base translates direc
into smaller search space.

Use of such approximations forces the decoder to ma
sub-optimal choices, but it has been observed that t
does not significantly affect the recognition error rate
Based on these modifications a number of sear
techniques have been evolved.

29.1. Viterbi Search Techniques

Viterbi search and its variants form what is known as th
breadth-first search techniques. Here all hypotheses
pursued in parallel and gradually pruned away as t
correct hypothesis emerges with the maximum score.

The recognition system can be treated as a recurs
transition network composed of the states of HMMs i
which any state can be reached from any other. T
Viterbi search algorithm [11] builds a breadth-firs
search tree out of this network in the following fashion

• If N is the duration of the utterance, N number o
state lists S are generated. These lists are initialized
setting the probability of the initial state as 1 and th
others 0.

• For each state s in S(t)

For each possible transition from s to some state s’
S(t+1)

- Compute the transition score p(s’/s)

- If s’ is uninitialized, initialize it with a score p(s’/s)
and a backpointer to s.

- Else update score of s’ only if this transition gives
better score.
MS State Speech Recognition Conference
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• Go to step 2 with t = t + 1

• If t = N backtrack to get best path

Viterbi search is time-synchronous; i.e. at any stage
partial hypotheses correspond to the same portion of
utterance and hence can be directly compared. Howev
a complete Viterbi search is impractical for eve
moderate-sized tasks because of the size of the st
space. A Viterbibeamsearch is used to reduce the
search space.

In Viterbi beam search[33, 34, 35, 36] only the
hypotheses whose likelihood falls within a fixed radiu
of the most likely hypothesis are considered. It is
dynamic programming technique that exploits th
observation that many states in the state lists have z
or near-zero scores and therefore need not be conside
towards a solut ion. The best beam size can
determined empirically or adaptively. The advantage
the dynamic beam heuristics is that it allows the sear
to consider many good hypotheses in absence o
clearly dominant solution. Conversely, in case of a cle
best hypothesis few others need to be maintained. T
main problem with this strategy is that the same sta
occurring in different paths needs to be recompute
every time adding to the computation cost.

Many variations of Viterbi beam search have bee
proposed to improve upon its performance. The sta
space can be partitioned into subsets that are subjec
different beam widths [37]. If there is more information
in the form of a larger number of contextual states
tighter pruning threshold is applied. A maximum of pat
scores may be taken when they merge at wo
boundaries and a sum when the merging is within
word. In another modification, additional pruning is
performed at the frame level to evaluate only a few be
scoring states [38]. This pruning is typically done onl
at the few initial frames as almost 95% of hypothese
are generated here. In very large vocabulary problems
t ree s t ruc tu red ne twork in wh ich the s ta te
corresponding to common initial phones are shared
different words can be used [39]. This uses the fact th
the uncertainty about the identity of the word is muc
higher at its beginning than at the end and therefo
more computation is required at the initial phones tha
the later ones.

29.2. Stack Decoders

Stack decoding search [40] is similar to the A* search
artificial intelligence [41]. It is a depth-first technique in
which the most promising hypothesis is pursued un
the end of the speech data is reached. It construct
search tree from the language model state graph wh
the states correspond to abstract states in the langu
and the branches represent transitions between th
EE 8993, Spring 1996
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states. The basic stack decoder paradigm [42, 43] can
summarized as:

• Pop the best partial hypothesis from the stack

• Apply acoustic and language model fast match
(computationally cheap methods for reducing th
number of word extensions which need to be checked
the more accurate but computationally expensiv
detailed matches) to shortlist the candidate next word

• Apply acoustic and language model detailed match
to candidate words.

• Choose the most likely next word and update a
hypotheses.

• Insert surviving new hypotheses into the stack.

The stack decoding algorithm requires an evaluatio
function to compare hypotheses of different length
The evaluation uses only the forward algorithm t
evaluate partial scores, and is therefore unsuitable a
causes the search to always prefer shorter hypothes
This is avoided by making the evaluation functio
normalizing and discriminating, so that it compensat
for the path length and favors the optimal path more a
more with time.

The A* stack decoder suffers from problems of spee
size, accuracy and robustness. However, an import
advantage of the stack decoder is its consistency w
the forward-backward algorithm. Therefore sever
variations that use weaker and cheaper initial acous
and language models to produce a list of l ikel
hypotheses that is later refined using more detailed a
expensive models have been proposed that improve
its performance. An important emerging stack decodin
technique is the envelope search.

30. MULTIPASS SEARCH

This class of search strategies have found widespre
use in modern-day LVCSR systems. An approxima
and efficient search is used to generate a subset
hypotheses that are more likely than others, and
subsequent passes of more detailed decoding over
reduced search space the correct hypothesis is fou
The advent of N-best search has been instrumenta
the advancement of multipass search techniques.

30.1. N-best Search

The optimal N-best decoding algorithm [44] is quite
similar to the Viterbi search. However, while Viterb
decoding is inherently 1-best, N-best search finds a
hypothesis sequences within the specified beam a
MS State Speech Recognition Conference
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keeps track of hypotheses with different histories at ea
state. It then allows only N top-scoring hypotheses
propagate to the next state. This state-dependent prun
is independent of the global Viterbi beam threshold.

The sources of information on speech used fo
recognition purposes can be extremely diverse and
correspondingly associated with different costs in term
of computation and memory requirements. A hypothes
that scores the highest given all these knowled
sources will be an optimal solution to the recognitio
problem. But this typically requires an impractically
large search space. It is advantageous to use a strateg
which the most efficient knowledge sources are us
first to generate a list of top N hypotheses. Thes
hypotheses can later be re-evaluated with other, mo
expensive knowledge sources to arrive at the be
hypothesis. N-best search provides an efficient meth
of integrating different knowledge sources and mak
the search process more modular. The scores fro
different knowledge sources can be combined usi
weights chosen to minimize the recognition error [45]

The N-best paradigm as described above has t
problem of being partial towards shorter hypotheses.
other words, if we consider the probability of error in
recognition of a single word being roughly independe
of its position in the sentence, then a longer senten
will have more errors and therefore will be pushed dow
in the rank of correct hypotheses. Thus an exact N-b
search will require a very large value of N to find the
correct answer for a long sentence.

A number of modifications have been proposed
overcome this problem and to make N-best search m
accurate and efficient. These modifications allow fo
some approximations to generate the list of sentenc
with much less computation. Such approximations a
justified as long as the correct hypothesis is assured
be in this list. Even if it does not hold a very high rank in
this preliminary list, the correct hypothesis can be foun
later by rescoring on other knowledge sources.

30.2. Lattice N-best Search

An initial pass of the recognition system is used to bui
a latt ice of word (or phoneme or syl lable etc.
hypotheses which is searched through by subsequ
passes to generate the correct hypothesis. A tim
synchronous one-best forward-pass search algorithm
used within words and at each frame all the theories a
their respective scores are stored in a traceback list. T
best score at this frame is sent forward along with
backpointer to the saved list [46]. The N-best sentenc
are obtained by recursive search through this traceba
l i s t . Th is a lgor i thm is ex t reme ly fas t bu t
often underestimates or misses high-scoring hypothes
EE 8993, Spring 1996
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Figure 7: Forward-backward search: The combined score is the normalized product of the forward
and backward path scores
A progressive search [47] can be used to avoid th
problem. Here a lattice of all sentence hypotheses
maintained instead of evaluating independent senten
hypotheses. This lattice is treated as a grammar and u
to rescore all the hypotheses.

30.3. Word-dependent N-best Search

This algorithm differentiates between hypotheses on t
basis of only the previous word instead of the who
preceding sequence [46]. The probability for each of th
different preceding words is stored within the word a
each state. At the end of the word the score for ea
hypothesis and the name of the previous word a
recorded. A recursive traceback is used at the end of
sentence to derive the list of the most likely sentences

30.4. Forward-Backward Search

Forward-backward search a lgor i thms use a
approximate time-synchronous search in the forwa
direction to facilitate a more complex and expensiv
search in the backward direction [46, 48, 49, 50]. Th
generally results in speeding up the search process
the backward pass as the number of hypotheses to
explored is greatly reduced by the forward search.

A simplified acoustic or language model is used t
perform a fast and efficient forward-pass search
which the scores of all partial hypotheses that fall abo
a pruning beamwidth are stored at every state. The
normal within-word beam search is performed in th
backward direction to generate the N-best hypothes
list. The backward search scores high on a hypothe
only if there also exists a good forward path leading to
word-ending at that time. Figure 7 describes th
forward-backward search in detail.

Similar to the Baum-Welch training algorithm we
combine the scores on the forward and backward pas
to compute the overall score at each state of the HMs
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whereα andβ are the partial path scores on the forwar
and backward search passes. The N-best sentences
obtained are rescored using more sophisticated acou
and language models to obtain the best senten
hypothesis.

Since the forward-backward search allows use
different models on the two passes, a complex mod
can be used on the backward pass to come up w
extremely accurate results [51]. The forward score
though not exact, are good enough estimates of the w
end scores and can be further modified by normalizati
relative to the highest score in each frame. The tim
synchronous nature of both passes allows them to ha
different normalized scores without loss of accuracy.

Forward-backward search algorithms have great
facilitated real-time handling of large-scale tasks. Th
backward pass search is fast enough to be perform
without any perceptible delay after the forward searc
The forward search can be made more approximate a
hence efficient as the scores need not be very accur
on the forward pass.

A variation of the forward-backward N-best search is
tree-trellis based fast searchalgorithm [52] that uses a
modified Viterbi beam algorithm in the forward pas
and an A* stack decoder search on the backward pa
The partial hypothesis map prepared in the forwa
trellis search is used by the backward search to estim
the incomplete portion of the partial hypothesis.

31. SYSTEM IMPLEMENTATION

In the course of this project we tried to implement

t

γ t s( )
αt s( )βt s( )

αT
-----------------------=
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Figure 8: Linked list structure of an HMM
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Figure 9: The language model for evaluation
HMM-based speaker independent LVCSR system.
key component of this system was the search modu
that used acoustic models built with Gaussian mixtu
distributions and employed a multipass N-best strateg
We wi l l now concen t ra te on descr ib ing the
implementation and evaluation of this search engine.

The search algorithms were implemented with a
object-oriented thrust. we designed the module
function as a standalone unit that can be plugged in
any system that employed HMM-based technology. T
next step is to combine this module with an acoust
front end and a language model to build a public doma
HMM-based LVCSR system.

31.1. Structure of the Software

Present-day research in LVCSR technology is severe
constrained by the limitations on the amount of easi
accessible portable memory. This makes it imperative
use well-designed data structures that optimize memo
usage and allow for its reusability.

In order to provide a lot of flexibility to the user to se
the topology of the models and the component structu
of mixture distributions most of the implementation i
based on l inked l i s ts . F igure 8 shows th
implementation of an HMM as a linked list.

The hypotheses are kept track of through another link
list of a scoring structure associated with each HMM
state. Each hypothesis is stored using back-pointers
the previous time-frame score structure. Score structu
which have not grown for the last two frames are delet
from the list as dead hypotheses (this is the prunin
action). The final hypotheses are found by tracin
through these back-pointers starting at the head of t
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linked list at the time of end of data.

31.2. Data Driven Implementation

The software is capable of adapting to a variety o
HMM-based recognition applications. There are n
constraints on the topology of the HMMs, as well as th
number of mixture components at any state of an
model. The user can define the number and structure
the models, as well as the grammar that governs t
language model.

32. EXPERIMENTS AND RESULTS

We evaluated the performance of the search algorithm
isolation on synthetically created data for a simp
experimental setup that closely simulates the working
a real recognition system. We created a gramm
structure for a digit-string recognition application an
some dummy acoustic word models for the digits.

32.1. Experimental Setup

The experiment for evaluation of the search algorith
consisted of a digit-string recognition problem for th
digits “one” through “four” and silence.

The acoustic models were given a fixed topology as th
displayed in Figure 8. The state transitions were set
be equiprobable. Tri-dimensional Gaussian mixtur
were used to model the output distributions of eac
HMM state. Different states had different number o
mixture components (we experimented with at mo
three mixtures per state). The mean vectors were cho
to allow a reasonable amount of confusibility betwee
EE 8993, Spring 1996
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Figure 10: Sample results for the evaluation test
certain words. A duration constraint was imposed
allow a maximum stay of 9 frames in any single HMM
A Euclidean distance measure was used to compute
likelihood scores on each acoustic model.

The grammar allowed for multiple transitions betwee
words as well as self-loops (thus allowing for digi
strings of arbitrary length). The grammar transitio
probabilities were chosen arbitrarily [Figure 9].

The test data was synthetically generated by passin
test sequence of words and durations to a data gener
program (that we developed for this testing) and gettin
the corresponding sequence of vectors as the out
with user-defined amount of White Gaussian nois
added to the feature vectors.

32.2. Results

We ran a number of tests constraining the grammar
that any utterance of the digit string would start onl
with a silence, and observed that the best sequen
output were typically variants of each other in one o
two places at most, or differed in durations and locatio
of silences.

A sample of the system output for the aforementione
setup is shown in Figure 10. Further experiments a
currently underway for more detailed analysis of th
algorithms.

33. SUMMARY

Statistical speaker-independent large vocabula
continuous speech recognition systems have enjoy
significant progress with the advent of high-powe
efficient algorithms for search and detailed acoust
modeling techniques. Current state of the art machin
are capable of real-time recognition of vocabulary siz
ranging more than 40,000 words. The algorithm
MS State Speech Recognition Conference
to
.
the

n
t
n

g a
ator
g

put
e

so
y
ces
r

ns

d
re
e

ry
ed
r
ic
es
es
s

implemented in this work represent the leadin
technology to date, with systems like BBN’s Byblos an
Cambridge University’s HTK system using simila
techniques.

Data driven systems allow the user flexibility to adap
the appl icat ion to a wide var ie ty of prob lem
environments. We have a commitment to produc
modular object-oriented systems that will find
multitude of applications in the public domain. This
software was created as part of a larger project dedica
to build a flexible freeware LVCSR system. Our futur
efforts will be dedicated in this regard.

The focus of our research will now be to complete th
implementation of the backward pass and integrate t
search modules with the other components to comple
the recognition system. We will train and test the syste
on real speech data and compare its performance w
other LVCSR systems on similar tasks.
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