Return to Main

Objectives

Definitions: Phonetics and Phonology English Transcription Standards Comparison

Phonetics:

The Vowel Space Formant Frequencies Bandwidth

Summary:

Acoustic Theory Consonants

On-Line Resources:

Ladefoged's Home Page Peterson-Barney Data HLT Central

LECTURE 06: PHONETICS AND PHONOLOGY

- Objectives:
 - o Linguistics 101
 - Understand the relationship between acoustic models of speech production physiology and linguistic models of language
 - o Introduce potential acoustic units for our speech recognition system
 - Understand how linguistic structure influences our approaches to speech recognition

Note that this lecture is primarily based on material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, *Spoken Language Processing - A Guide to Theory, Algorithm, and System Development*, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN: 0-13-022616-5, 2001.

In addition, information from:

J. Deller, et. al., *Discrete-Time Processing of Speech Signals*, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000.

has been used.

Return to Main

Introduction:

01: Organization (<u>html</u>, <u>pdf</u>)

Speech Signals:

- 02: Production (<u>html</u>, <u>pdf</u>)
- 03: Digital Models (<u>html</u>, <u>pdf</u>)
- 04: Perception (<u>html</u>, <u>pdf</u>)
- 05: Masking (<u>html</u>, <u>pdf</u>)
- 06: Phonetics and Phonology (<u>html</u>, <u>pdf</u>)
- 07: Syntax and Semantics (html, pdf)

Signal Processing:

- 08: Sampling (<u>html</u>, <u>pdf</u>)
- 09: Resampling (html, pdf)
- 10: Acoustic Transducers (<u>html</u>, <u>pdf</u>)
- 11: Temporal Analysis (<u>html</u>, <u>pdf</u>)
- 12: Frequency Domain Analysis (<u>html</u>, <u>pdf</u>)
- 13: Cepstral Analysis (<u>html</u>, <u>pdf</u>)
- 14: Exam No. 1 (<u>html</u>, <u>pdf</u>)
- 15: Linear Prediction (<u>html</u>, <u>pdf</u>)
- 16: LP-Based Representations (<u>html</u>, <u>pdf</u>)

Parameterization:

- 17: Differentiation (<u>html</u>, <u>pdf</u>)
- 18: Principal Components (html, pdf)

ECE 8463: FUNDAMENTALS OF SPEECH RECOGNITION

Professor Joseph Picone Department of Electrical and Computer Engineering Mississippi State University

email: picone@isip.msstate.edu phone/fax: 601-325-3149; office: 413 Simrall URL: http://www.isip.msstate.edu/resources/courses/ece_8463

Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of hundreds of thousands of words in operational environments.

In this course, we will explore the core components of modern statistically-based speech recognition systems. We will view speech recognition problem in terms of three tasks: signal modeling, network searching, and language understanding. We will conclude our discussion with an overview of state-of-the-art systems, and a review of available resources to support further research and technology development.

Tar files containing a compilation of all the notes are available. However, these files are large and will require a substantial amount of time to download. A tar file of the html version of the notes is available <u>here</u>. These were generated using wget:

wget -np -k -m http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current

A pdf file containing the entire set of lecture notes is available <u>here</u>. These were generated using Adobe Acrobat.

Questions or comments about the material presented here can be directed to <u>help@isip.msstate.edu</u>.

19: Linear Discriminant Analysis (<u>html</u>, <u>pdf</u>)

LECTURE 06: PHONETICS AND PHONOLOGY

- Objectives:
 - o Linguistics 101
 - Understand the relationship between acoustic models of speech production physiology and linguistic models of language
 - Introduce potential acoustic units for our speech recognition system
 - o Understand how linguistic structure influences our approaches to speech recognition

Note that this lecture is primarily based on material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, *Spoken Language Processing - A Guide to Theory, Algorithm, and System Development*, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN: 0-13-022616-5, 2001.

In addition, information from:

J. Deller, et. al., *Discrete-Time Processing of Speech Signals*, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000.

has been used.

PHONEMICS (PHONOLOGY) AND PHONETICS

Some basic definitions:

- Phoneme:
 - $\,\circ\,\,$ an ideal sound unit with a complete set of articulatory gestures.
 - the basic theoretical unit for describing how speech conveys linguistic meaning.
 - In English, there are about 42 phonemes.
 - Types of phonemes: vowels, semivowels, dipthongs, and consonants.
- Phonemics: the study of abstract units and their relationships in a language
- Phone: the actual sounds that are produced in speaking (for example, "d" in letter pronounced "l e d er").
- **Phonetics**: the study of the actual sounds of the language
- Allophones: the collection of all minor variants of a given sound ("t" in eight versus "t" in "top")
- Monophones, Biphones, Triphones: sequences of one, two, and three phones. Most often used to describe acoustic models.

Three branches of phonetics:

- Articulatory phonetics: manner in which the speech sounds are produced by the articulators of the vocal system.
- Acoustic phonetics: sounds of speech through the analysis of the speech waveform and spectrum
- Auditory phonetics: studies the perceptual response to speech sounds as reflected in listener trials.

Issues:

• Broad phonemic transcriptions vs. narrow phonetic transcriptions

ENGLISH PHONEMES

	Vowels and Di	phthongs					
Phonemes	Word Examples	Description					
iy	f ee l, eve, me	front close unrounded					
ih	fill, hit, lid	front close unrounded (lax)					
ae	at, carry, gas	front open unrounded (tense)					
aa	father, ah, car	back open rounded					
ah	cut, bud, up	open mid-back rounded					
ao	dog, lawn, caught	open-mid back round					
ay	t ie , ice, bite	diphthong with quality: aa + ih					
ax	ag o , c o mply	central close mid (schwa)					
ey	ate, day, tape	front close-mid unrounded (tense)					
eh	pet, berry, ten	front open-mid unrounded					
er	t ur n, f ur , met er	central open-mid unrounded					
ow	go, own, town	back close-mid rounded					
aw	foul, how, our	diphthong with quality: aa + uh					
oy	toy, coin, oil	diphthong with quality: ao + ih					
uh	book, pull, good	back close-mid unrounded (lax)					
uw	tool, crew, moo	back close round					

	Consonants and	l Liquids
Phonemes	Word Examples	Description
b	big, able, tab	voiced bilabial plosive
p	p ut, o p en, ta p	voiceless bilabial plosive
d	dig, idea, wad	voiced alveolar plosive
t	t alk, s a t	voiceless alveolar plosive
g	gut, angle, tag	voiced velar plosive
t	me t er	alveolar flap
g	gut, angle, tag	voiced velar plosive
k	cut, ken, take	voiceless velar plosive
f	fork, after, if	voiceless labiodental fricative
v	vat, over, have	voiced labiodental fricative
s	sit, cast, toss	voiceless alveolar fricative
Z	zap, lazy, haze	voiced alveolar fricative
th	thin, nothing, truth	voiceless dental fricative
dh	then, father, scythe	voiced bilabial plosive
sh	she, cushion, wash	voiceless postalveolar fricative
zh	genre, azure	voice postalveolar fricative
1	lid	alveolar lateral approximant
1	elbow, sail	velar lateral approximant
r	red, part, far	retroflex approximant
У	yacht, yard	palatal sonorant glide
w	with, away	labiovelar sonorant glide
hh	help, ahead, hotel	voiceless glottal fricative

m	mat, amid, aim	biliabial nasal
n	no, end, pan	alveolar nasal
ng	si ng , a ng er	velar nasal
ch	ch in, ar ch er, mar ch	voiceless alveolar affricate: t + sh
jh	j oy, a g ile, ed g e	voiced alveolar affricate: d + zh

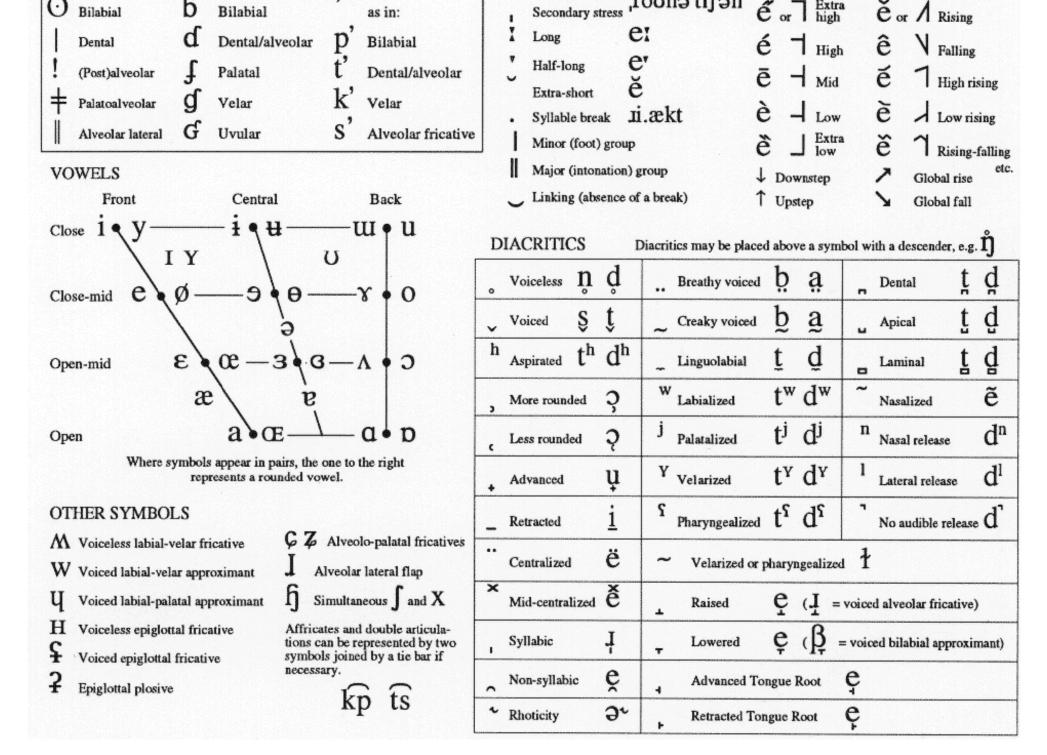
TRANSCRIPTION STANDARDS

Major governing bodies for phonetic alphabets:

- International Phonetic Alphabet (IPA): over 100 years of history
- ARPAbet: developed in the late 1970's to support ARPA research
- TIMIT: TI/MIT variant of ARPAbet used for the TIMIT corpus
- Worldbet: developed by Hieronymous (AT&T) to deal with multiple languages within a single ASCII system
- Unicode: character encoding system that includes IPA phonetic symbols.

Here is a chart classifying sounds using the IPA:

THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993) CONSONANTS (PULMONIC)


	Bila	bial	Labio	dental	Der	ntal	Alve	olar	Postal	veolar	Retr	oflex	Pala	tal	Ve	lar	Uvi	ılar	Phary	yngeal	Glo	ottal
Plosive	p	b					t	d	4		t	þ	С	Ŧ	k	g	q	G			?	
Nasal		m		ŋ				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap								ſ				τ										
Fricative	φ	β	f	v	θ	ð	s	z	ſ	3	ş	ą	ç	j	x	Y	χ	R	ħ	٢	h	6
Lateral fricative							ł	ţ		-												
Approximant				υ				I				ŀ		j		щ						
Lateral approximant								1				l		λ		L						

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks	Voiced implosives	Ejectives
0	C	,
O Bilabial	D Bilabial	as in:

SUPRASEGMENTALS Primary stress Secondary stress found'tifon found'tifon found'tifon Found'tifon found'tifon found'tifon

For a more detailed discusion of phone mappings across languages, see language independent acoustic modeling.

PHONEMES

• Phoneme Mappings

Most languages, including English, can be described in terms of a set of distinctive sounds, or phonemes. In particular, for American English, there are about 42 phonemes including vowels, diphthongs, semi-vowels and consonants. The internationally standard method to represent phonemes is International Phonetic Alphabet (<u>IPA</u>). To enable computer representation of the phonemes, it is convenient to code them as ASCII characters. Several schemes have been proposed, e.g., ARPABET, TIMIT, CMU, WSJ and SWB. The following table shows the mapping between these representations and IPA.

ARPABET	TIMIT	CMU	WSJ	SWB	ICSI	IPA
88.	lOck	lOck	lOck	lOck	stOck	α
ae	bAt	bAt	bAt	bAt	bAt	æ
ah	bUt	bUt	bUt	bUt	bUt	Λ1
ao	bOUght	bOUght	1	bOUght	bOUght	c
aw	dOWn	cOW	cOW	cOW	tOWn	αυ
awh	1	1	cOW	1	1	αυ
ax	About	1	1	About	About	э
axr	buttER	1	1	1	1	а
ax-h	sUspect	1	1	1	1	1
ay	ЪUY	bUY	ьич	bUY	bIte	aI
b	Bet	Bet	Bet	Bet	Bet	b
bcl	b-closure	1	1	1	1	1
ch	CHurch	CHurch	CHurch	CHurch	CHurch	č
d	Debt	Debt	Debt	Debt	Difficult	d
dcl	d-closure	1	1	1	1	1
dh	THat	THat	THat	THat	They	ð
dx	baTTer	1	1	1	allophone of d or t	/
ee	1	1	bEAt	1	1	i
eh	bEt	bEt	bEt	bEt	bEt	e
el	battLE	1	1	battLE	battLE	ł
em	bottOM	1	1	1	thEM	ηι
en	buttON	1	1	buttON	buttON	γ
eng	syllabic NG	1	1	1	workING	1
		1	,	1,	1,	,

Table 1: PHONEME MAPPINGS

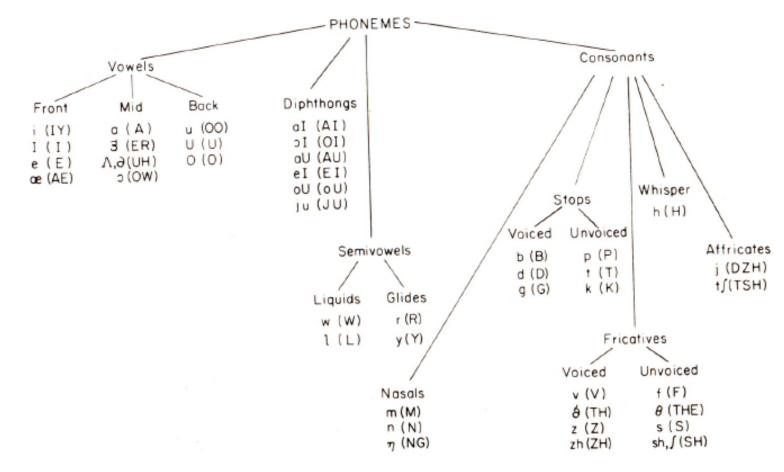
en	buttON	1	1	buttON	buttON	ր
eng	syllabic NG	1	1	1	workING	/
epi	epenthetic sil	1	1	1	1	1
er	bIRd	bIRd	1	bIRd	bIRd	a'
ey	bAIt	bAIt	bAIt	bAIt	bAIt	eI
f	Fat	Fat	Fat	Fat	Fat	f
g	Get	Get	Get	Get	Get	g
gcl	g-closure	1	1	1	1	1
h	1	1	Hat	1	1	h
hh	Hat	Hat	1	hello	Hay	h
hw	7	7	1	7	WHat	/
hv	voiced /HH/	1	1	1	1	1
h#	utt boundary	1	1	1	1	1
ih	bIts	bIts	bIts	bIts	bIts	I1
ix	rosEs	1	1	1	rosEs	Ι
iy	bEAt	bEAt	1	bEAt	bEAt	i
j	1	1	Judge	1	1	j
jh	Judge	Judge	1	Judge	Judge	Ý
k	Kit	Kit	Kit	Kit	Called	k
kcl	k-closure	1	1	1	1	1
1	Let	Let	Let	Let	Let	1
lg	1	1	1	1	oLd	1
m	Met	Met	Met	Met	Met	m
n	Net	Net	Net	Net	Net	n
ng	siNG	siNG	siNG	siNG	siNG	η
nx	wiNTer	1	1	1	allophone n	n
oh	7	1	bOAt	1	1	o
00	1	1	bOOt	1	1	u
ooh	1	1	bOOk	1	1	и
ow	bOAt	bOAt	bOAt	bOAt	bOAt	o
oy	bOY	ьоч	bOY	ьоч	ьоү	≎i

р	Pet	Pet	Pet	Pet	Pot	р
pau	pause	1	1	1	1	1
pcl	p-closure	1	1	1	1	1
pv	1		1	1	filled pause - "uh"	/
q	glottal stop	1	1	1	glottal stop	1
r	Rent	Rent	Rent	Rent	Red	I
s	Sat	Sat	Sat	Sat	niCE	s
sh	SHut	SHut	SHut	SHut	SHut	ſ
sil	1	1	1	1	silence	1
t	Ten	Ten	Ten	Ten	sTock	t
tcl	t-closure	1	1	1	1	1
th	THing	THing	THing	THree	THief	θ
uh	bOOk	bOOk	bOOk	bOOk	bOOk	и
ul	1	1	dULl	1	1	1
um	1	1	bUM	1	1	1
un	1	1	bUN	1	1	1
ur	1	1	bIRd	1	1	ä
uw	bOOt	t00	1	t00	bOOt	u
ux	t00	1	1	1	sUIt	u
v	Vat	Vat	Vat	Vat	Vat	v
w	Wit	Wit	Wit	Wit	Wet	W
у	You	You	You	You	Yet	j
z	Zoo	Zoo	Zoo	Zoo	Zoo	z
zh	pleaSure	pleaSure	pleaSure	pleaSure	pleaSure	3
?	1	1	1	1	unknown speech	/

• Features of Phonemes

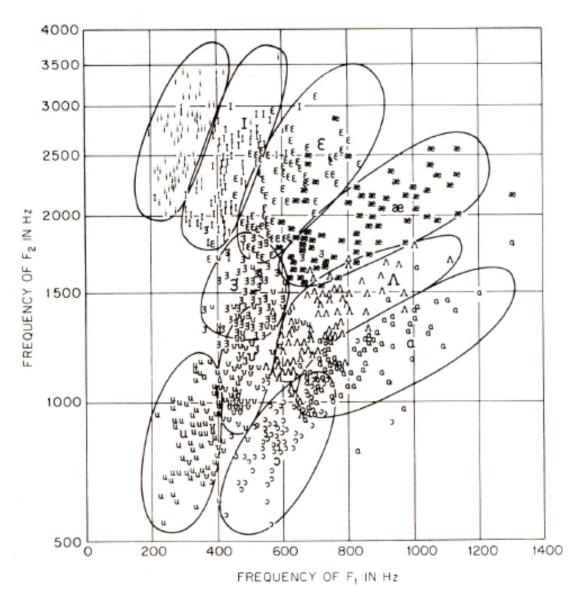
Phonemes can be classified in terms of distinct features, such as vowels, consonants, etc.

	FEATURES		PHONEMES
Vowels	Front		iy (i), ih (I ¹), eh (e), ae (æ)
	Mid		aa (α), ah (Λ^1), ax (\Im), er (\mathfrak{a})
	Back		uw (u), uh (U), ao(0)
Diphthongs			ay (aI), oy (p_i), aw (au), ey (eI), ow (o)
Semi-vowels	Liquid		w (w), l (l), el (l)
	Glides		r (J), y (j)
Consonants	Stops	voiced	b (b), d (d), g (g)
		unvoiced	p (p), t (t), k (k)
	Nasals		m (m), n (n), ng ($\eta)$
	Whisper		h (h)
	Fricatives	voiced	v (v), dh(δ), z (z), zh (\Im)
		unvoiced	f (f), th (θ), s (s), sh (\int)
	Affricates		$jh(\tilde{j}), ch(\tilde{c})$

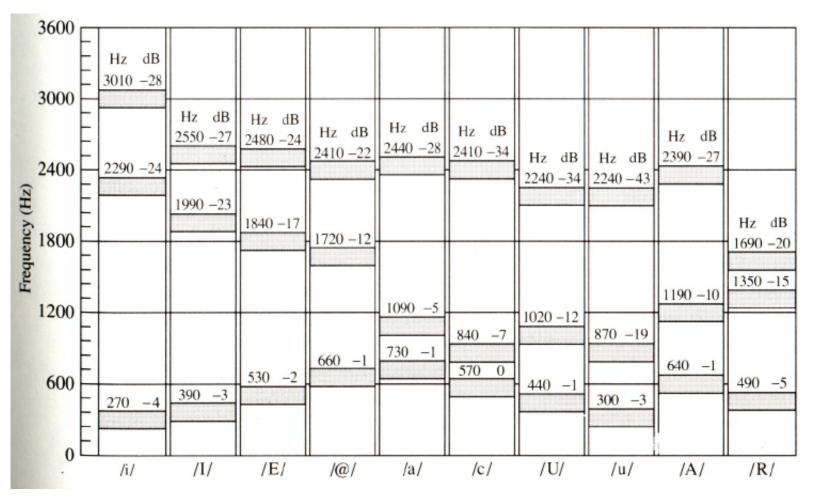

Table 2: FEATURES OF PHONEMES

Note: In the above table, the phonemes are represented by SWB and IPA.

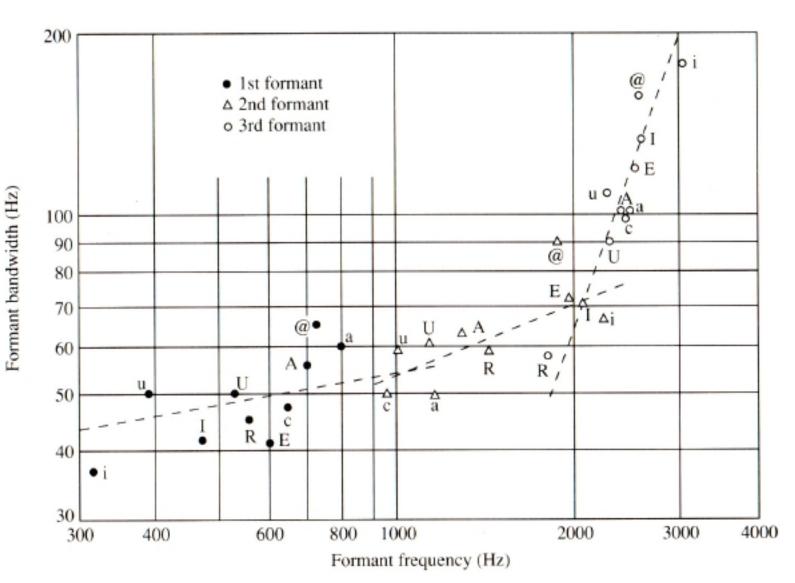
• References


- 1. International Phonetic Alphabet, <u>http://www.arts.gla.ac.uk/IPA/ipa.html</u>
- 2. LDC TIMIT lexicon, <u>http://www.ldc.upenn.edu/doc/timit/phoncode.doc</u>
- 3. LDC PRONLEX Transcription, <u>http://www.ldc.upenn.edu/readme_files/comlex_pron.readme.html.</u>
- 4. The CMU Pronouncing Dictionary, <u>http://www.speech.cs.cmu.edu/cgi-bin/cmudic.</u>
- 5. Phoneme Classification, <u>http://www-dsp.rice.edu/courses/elec532/PROJECTS96/synthesis/phoneme_descriptions.html</u>, Rice University
- 6. ARPABET-IPA MAPPINGS, <u>http://www.cs.cmu.edu/~laura/pages/arpabet.ps</u>
- 7. WordNet a Lexical Database for English, <u>http://www.cogsci.princeton.edu/~wn/</u>
- 8. Calvert, Donald R. Descriptive Phonetics, Thieme Medical Publishers, 1992.

THE VOWEL SPACE

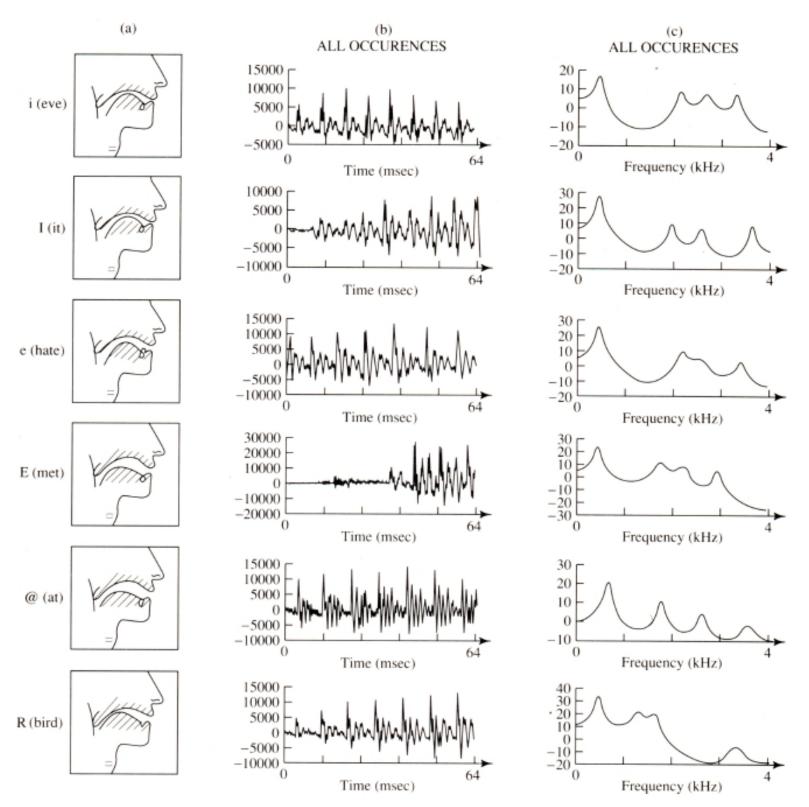

• Each fundamental speech sound can be categorized according to the position of the articulators. This is often known as the study of Acoustic Phonetics.

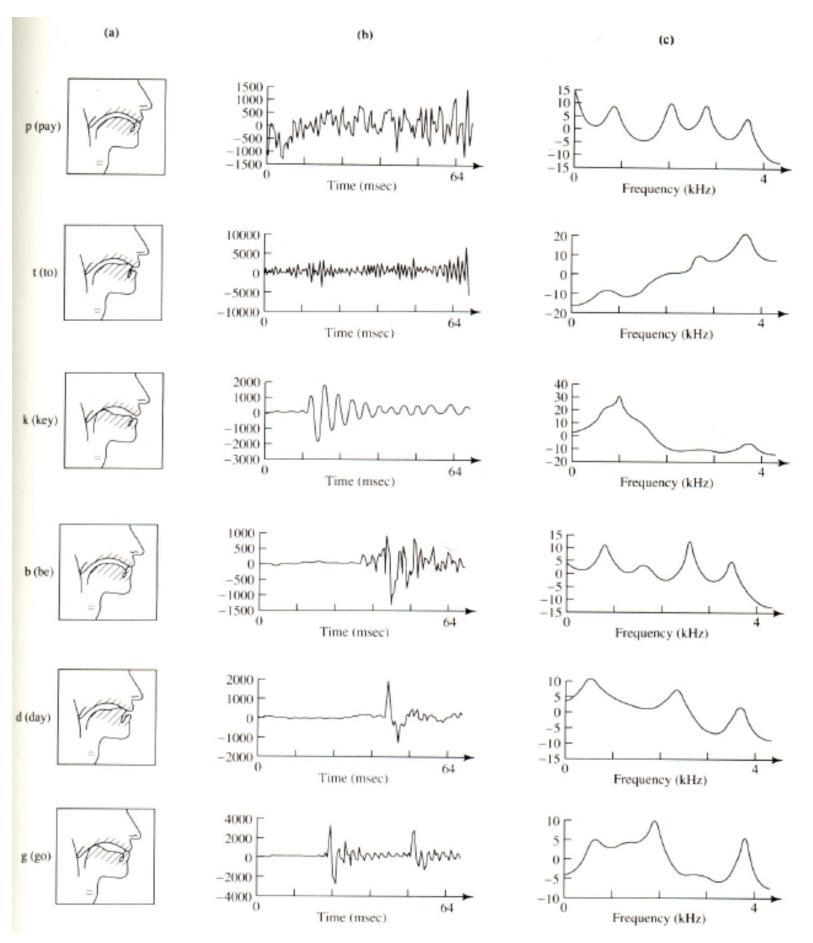
• We can characterize a vowel sound by the locations of the first and second spectral resonances, known as formant frequencies:



• Some voiced sounds, such as diphthongs, are transitional sounds that move from one vowel location to another.

THE RANGE OF FORMANT FREQUENCIES


THE RELATIONSHIP BETWEEN FORMAT FREQUENCIES AND BANDWIDTHS


Vowels	Vowels Avg.		emes	Avg.	F ₂ Extr	remes	Avg.	F ₃ Extr	F ₃ Extremes	
i	38	30	80	66	30	120	171	60	300	
I	42	30	100	71	40	120	142	60	300	
E	42	30	120	72	30	140	126	50	300	
@	65	30	140	90	40	200	156	50	300	
a	60	30	160	50	30	80	102	40	300	
с	47	30	120	50	30	200	98	40	240	
u	50	30	120	58	30	200	107	50	200	
Ū	51	30	100	61	30	140	90	40	200	
A	56	30	140	63	30	140	102	50	300	
R	46	30	80	59	30	120	58	40	120	
Avg.	49.7			64.0			115.2			

U A	51 56	30 30	100 140	61 63	30 30	140 140	90 102	40 50	200 300
R	46	30	80	59	30	120	58	40	120
Avg.	49.7			64.0			115.2		

AN ACOUSTIC THEORY FOR VOWEL PRODUCTION

THIS THEORY IS ALSO APPLICABLE TO CONSONANTS

Prof. Peter Ladefoged

Pronunciation UCLA Linguistics Dept. 3125 Campbell Hall Los Angeles CA 90095-1543 oldfogey@ucla.edu

Research Interests

• Current activity

Writing a book *Phonetic Data Analysis: An introduction to phonetic fieldwork and instrumental techniques.* <u>A</u> draft of the first part of this book is available.

• Recent work

Publication of a book *Vowels and Consonants* designed as a very elementary introduction to phonetics. The book is accompanied by a CD illustrating the sounds being discused. <u>A web version of the CD.</u>

• The use of the respiratory system in speech.

Preliminary studies are in progress investigating subglottal pressure and muscular activity (a return to work begun 40 years ago). <u>A draft of a preliminary paper.</u>

- Editor of the Journal of the International Phonetic Association
- Phonetic studies of endangered languages.

Thousands of languages all over the world will not be spoken in a generation or two. Thanks to an NSF grant, Ian Maddieson and I have worked with fieldworkers and students over the last few years on languages spoken in Africa, India, Australia, Brazil, the U.S. and elsewhere.

• Sounds of the World's Languages

A long-time ambition has been to hear and describe all the distinct sounds of the world's languages, perhaps 900 consonants and 200 vowels. This interest has led to co-authoring with Ian Maddieson *The Sounds of the World's Languages*, and supervising a set of hypercard stacks with the same name. With this go two other interests:

- 1. Developing an explanatory phonetic classificatory system.
- 2. Maintaining the International Phonetic Alphabet (the IPA).
- Simplifying acoustic phonetic problems.

A second edition of Elements of Acoustic Phonetics (University of Chicago Press) with new material on articulatory-acoustic relations and computer speech processing (including FFT and LPC analysis) has recently been published.

Publications

Books

- P. Ladefoged. Vowels and Consonants. Blackwells. 2001.
- P. Ladefoged. <u>A Course in Phonetics</u>. Harcourt Brace. 4th. ed. 2001.
- P. Ladefoged and I. Maddieson. <u>The Sounds of the World's Languages</u>. Blackwells. 1996.
- P. Ladefoged. Elements of Acoustic Phonetics. University of Chicago Press. 2nd. ed. 1996.
- P. Ladefoged. Preliminaries to Linguistic Phonetics. University of Chicago Press. 1971.

- P. Ladefoged, R. Glick and C. Criper. Language in Uganda. Oxford University Press. 1969.
- P. Ladefoged. A Phonetic Study of West African Languages. Cambridge University Press. 2nd. ed. 1968.
- P. Ladefoged. Three Areas of Experimental Phonetics. Oxford University Press. 1967.

Some selected papers

- Ladefoged, P. Instrumental techniques for linguistic phonetic fieldwork. In W. Hardcastle. and J. Laver (Eds.), The Handbook of Phonetic Sciences Oxford: Blackwell Publishers. (1997).
- Ladefoged, P. Linguistic phonetic descriptions. In W. Hardcastle and J. Laver (Eds.), Oxford: Blackwell Publishers. (1997).
- Ladefoged, P. David Abercrombie and the changing field of phonetics. Journal of Phonetics, 25(1), 85-92. (1997).
- Ladefoged, P., & Everett, D. The status of phonetic rarities. Language, 72(4), 794-800. (1996).
- Wright, R., & Ladefoged, P. A phonetic study of Tsou. Bulletin of the Institute of History and Philology, Academia Sinica. (1996).
- Silverman, D., Blankenship, B., Kirk, P., & Ladefoged, P. Phonetic Structures in Jalapa Mazatec. Anthropological Linguistics, 37(1), 70-88. (1995).
- Shalev, M., P. Ladefoged & P. Bhaskararao. Phonetics of Toda. PILC Journal of Dravidic Studies 4: 21-56. (1994).
- Ladefoged, P. & A. Traill. Clicks and their accompaniments. Journal of Phonetics 22: 33-64. (1994).
- Maddieson, I., S. Spajic, B. Sands & P. Ladefoged. The phonetic structures of Dahalo. Afrikanistische Arbeitspapiere 36:5-53. (1993).
- Blankenship, B., P. Ladefoged, P. Bhaskararao and N. Chase. Phonetic structures of Khonoma Angami. Linguistics of the Tibeto-Burman area 16: 69 88. (1993).
- Maddieson, I. and P. Ladefoged. The phonetics of partially nasal consonants. In M. K. Huffman and R. A. Krakow (eds) Nasals, Nasalization and the Velum. Academic Press: 251-301. (1993)
- Johnson, K., P. Ladefoged, and M. Lindau. Individual differences in vowel production. J. Acoust. Soc. Amer. 94: 701-714. (1993).
- Kirk, P., J. Ladefoged & P. Ladefoged. Quantifying acoustic properties of modal, breathy and creaky vowels in Jalapa Mazatec. In honor of Laurence C. Thompson. University of Montana (1993).
- Henton, C., P. Ladefoged, & I. Maddieson. Stops in the world's languages. Phonetica. 49: 65-101. (1992).
- Ladefoged, P. The many interfaces between phonetics and phonology. Phonologica 1988. 165-179. (1992).

Personal

Married for 48 years to <u>Jenny Ladefoged</u>, a notorious Episcopal Church Woman. (I am a member of Atheists for Jesus.) Three offspring (plus grandchildren): Lise Friedman, Bookseller; Thegn Ladefoged, Archaeologist, University of Auckland; Katie Weiss, Criminal Defence Attorney.

Informal CV

In my early career I never stayed long enough in a particular field to be contradicted. I started as a poet learning about the sounds of words with David Abercrombie. Then, remembering my background in physics, I moved to studying acoustic phonetics. From there I became a pseudo-psychologist testing perceptual theories, until a meeting with a physiologist led to work on the respiratory muscles used in speech. Eventually I landed in Africa teaching English phonetics and learning about African languages. So by the time I was asked to set up a lab at UCLA I was a specialist in nothing. But I was able to use my background to describe the sounds of a wide range of languages, becoming a sort of linguist. Computers and bright students led to other ways of analyzing sounds. Building a research group who felt that they had a stake in the development of the lab taught me their varied ideas from statistics to engineering, and the philosophy of linguistics. Now, still looking for the growing edge of the field, I think it might be in the physically observable activity of the brain; but perhaps this is because I have never been a pseudo-neurologist.

My formal <u>*CV</u> <i>is also available online.*</u>

Last Updated: March 2001

INFO

FAQs ROOT PAGE

Peterson Barney: Vowel formant frequency database

areas/speech/database/pb/

This directory contains the Peterson and Barney vowel formant frequency database, as used in their 1952 JASA paper. Peterson and Barney measured the frequency and amplitude of F1, F2 and F3 for 10 vowels and 76 speakers.

Origin:

HOME

ftp.cis.upenn.edu:/pub/ldc/pb.data.tar.Z

SEARCH

Version: 5-JAN-93 CD-ROM: Prime Time Freeware for AI, Issue 1-1 Keywords: Authors!Barney, Authors!Peterson, Speech Recognition!Databases, Speech Synthesis!Databases, Vowel Formant Frequency Database References: Peterson and Barney, "Control methods used in a study of the vowels", JASA 24, 175-184, 1952. Watrous, JASA, vol 89, May 1991

Last Web update on Mon Feb 13 10:28:18 1995 AI.Repository@cs.cmu.edu

Joint European Website for Education in Language and Speech

HLTCentral					
General News	Information	Recommendations	Institutions&Courses	Tools&Material	s Search
Welcome	Acoustic Pho	netics			
About Language and					
Speech			ansmitted through the air as si		Elements of study
- Elements of study			udinal waves from the speaker		Suggested Reading
- Speech Communication			ured. Differences between ind either one or several or all of		Products
- Speech Production			lity of the belonging speech wa		
- Speech Perception					
- Phonology			ly and description of the acous ce quality, forms not only the in		
- Acoustic Phonetics	between articulator	y phonetics and speech p	erception, but is also important		
- Phonetic Variation	applications in the	fields of signal processing	and speech technology.		
- 1st Language Acquisition	Elements of stu				<u>Top</u> Suggested Reading
- 2nd Language Acquisition	Elements of Stu	iery			Products
- Communication Disorders	Basic concepts of	acoustic phonetics [see	e also Speech Signal Process	sinal	
- Singing	What is so				_
- Methods and Tools (IPA)	o Way	veforms			
- Language Resources		nidirectionality			
- Speech Signal Processing		pressure and electrical ana usoids and complex signal			
- Speech Coding	 Peri 	odicity			
- Speech Synthesis		riodicity (random noise, tra I Measurements	ansient noise)		
- Speech Recognition	₀ Inte				
- Spoken Dialogue	o Dura				
Modelling	 Free Pha 	quency se			
- Natural Language	 Speech red 	cording			
Processing		rophones log and digital recordings			
- Applications	5 Alla	log and digital recordings			
Navigation Map					
The Jewellers		f speech production: Fa Signal Processing]	nt's source-filter model		
	 Ran Sou Vari The filter c Area Pole Forr Vari The radiati Lip Nos 	tal wave shape models dom and Iransient noises rce spectrum ability and individuality			
	Experimental met	hods and tools [see also	Speech Signal Processing]		

Sound oscillograph

- Waveforms
- Sound spectrograph
 - Spectrum and spectrogram
 - Wide-band and narrow-band spectrogram
 - Short-term and long-term spectra
 - Filtering, rectification and smoothing
 - o Gain

Acoustic properties of speech sounds

- Vowels
 - Formant structure
 - o intrinsic duration, fundamental frequency and intensity
 - o Oral and nasal vowels; other vowel types
 - $_{\odot}$ $\,$ Vowel reduction $\,$
 - o Diphthongs, triphthongs, glides
 - Duration: neutral, short, long, contextual, etc.
- Consonants
 - o Stops
 - Nasals
 - Fricatives
 - Affricates
 - Laterals
 - Approximants
 - Thrills, taps and flapsEjectives and implosives
 - Coarticulation and transitions
- Word level prosody
 - o Tone
 - o Accent
 - Quantity
 - Stress
- Sentence level prosody
 - Intonation
 - Tempo (speech rate and articulation rate)
 - Stress
 - Rhythm
 - Final lengthening
 - o Juncture
 - Pausing
- Discourse level intonation
 - o Text and discourse intonation
 - Dialogue intonation
 - Speaking styles
- Voice quality (phonetic settings)
 - Laryngeal settings (phonation types)
 - Supra-laryngeal settings

Suggested reading

Top Elements of Study Products **Borucki, H.** (1989). Einführung in die Akustik. Mannheim: B.I. Wissenschaftsverlag. **Clark, J. and Yallop, C.** (1995). An Introduction to Phonetics and Phonology, Second edition. Oxford & Cambridge, MA: Blackwell.

Fant, G. (1962). Descriptive analysis of the acoustic aspects of speech. In: Logos, 5, S. 3-17

Fant, G. (1970). Acoustic Theory of Speech Production. With Calculations based on X-Ray Studies of Russian Articulations. (2nd ed.) The Hague: Mouton.

Fant, G. (1973). Speech Sounds and Features. Cambridge, MA: MIT.

Ferrero, F., Genre, A., Boë, L.J. and Contini, M. (1979). Nozioni di Fonetica Acustica. Torino: Omega.

Fry, D.B. (1979). The Physics of Speech. Cambridge: Cambridge University Press. **Fry, D.B.** (ed.) (1976). Acoustic Phonetics. A Book of Basic Readings. Cambridge: Cambridge University Press.

't Hart, J., Collier, R., and Cohen. A. (1990). A Perceptual Study of Intonation. Cambridge: Cambridge University Press.

Johnson, K. (1997). Acoustic and Auditory Phonetics. Oxford: Blackwell.

Kent, R.D. and Read, Ch. (1992). The Acoustic Analysis of Speech. London: Whurr / San Diego: Singular.

Ladefoged, P. (1995). New Elements of Acoustic Phonetics. Chicago: University of Chicago Press.

Ladefoged, P. (1996). Elements of Acoustic Phonetics. 2nd ed. Chicago: The University of Chicago Press.

Laver, J. (1980). The Phonetic Description of Voice Quality. Cambridge: Cambridge University Press.

Lehiste, I. (ed.) (1967). Readings in Acoustic Phonetics. Cambridge, MA: MIT Press. Lehiste, I. (1970). Suprasegmentals. Cambridge, MA: MIT Press.

Lieberman, P. and Blumstein, S.E. (1988). Speech physiology, speech perception and acoustic phonetics. Cambridge: Cambridge University Press

Lieberman, P. (1977). Speech physiology and acoustic phonetics: An introduction.New York: Macmillan.

Lindblad, P. (1998). Talets Akustik och Perception. Compendium, Göteborgs Universitet. Llisterri, J. (1996) "Los sonidos del habla". Elementos de Linguistica (Martin Vide, ed.). Barcelona: Octaedro universidad.

Neppert, J. and Pétursson, M. (1986/1992). Elemente einer akustischen Phonetik. Hamburg: Buske.

Perkell, J.S. and Klatt, D.H. (Eds.) (1986). Invariance and Variability in Speech Processes. Proceedings of the Symposium on Invariance and Variability of Speech Processes held at MIT in Honor of K.N. Stevens. Hillsdale, NJ: Erlbaum.

Pickett, J.M. (1980). The Sounds of Speech Communication. A Primer of Acoustic Phonetics and Speech Perception.Baltimore.

Quilis, A. (1981). Fonetica acustica de la lengua española. Madrid: Gredos. **Rosen, S. and Howell, P.** (1991). Signals and Systems for Speech and Hearing. London: Academic Press.

Rossing, T.D. (1990). The Science of Sound. 2nd edition. Addison-Wesley.
Stevens, K.N. (1972). The quantal nature of speech: evidence from articulatory-acoustic data. In: Human Communication, a Unified View., Ed.: P.B. Denes & E.E. David.
Zwicker, E. & Zollner, M. (1984). Elektroakustik. Berlin: Springer.

Journal

Journal of the Acoustical Society of America.

Products

Product	Operating System	Web site information
KAY CSL 4300	PC/DOS	www.kayelemetrics.com/
Signalyze	Macintosh	http://agoralang.com/signalyze.html
ESPS/Waves	UNIX	www.entropic.com/products/esps/esps.html
KAY 5500	Special Purpose	www.kayelemetrics.com/
KAY Multispeech	PC/Win	www.kayelemetrics.com/
SFS	PC/Win or UNIX	www.phon.ucl.ac.uk/resource/sfs.html
MATLAB	Various OS	www.mathworks.com/
НТК/НММ	UNIX	www- white.media.mit.edu/~nuria/HTKV2.0/htk.html
CSRE 3.0	PC/Win	www.avaaz.com/products.html
SoundScope	Macintosh	www.gwinst.com/web-pages/products.html
KAY Visipitch 6087	PC/DOS	www.kayelemetrics.com/
PRAAT 3.7	PC/Various	http://fonsg3.let.uva.nl/praat/praat.html

Mounted by Gerrit Bloothooft

Please report problems to <u>HLTTeam@hltcentral.org</u>.

Last updated: 17.12.01 10:05

<u>Top</u>