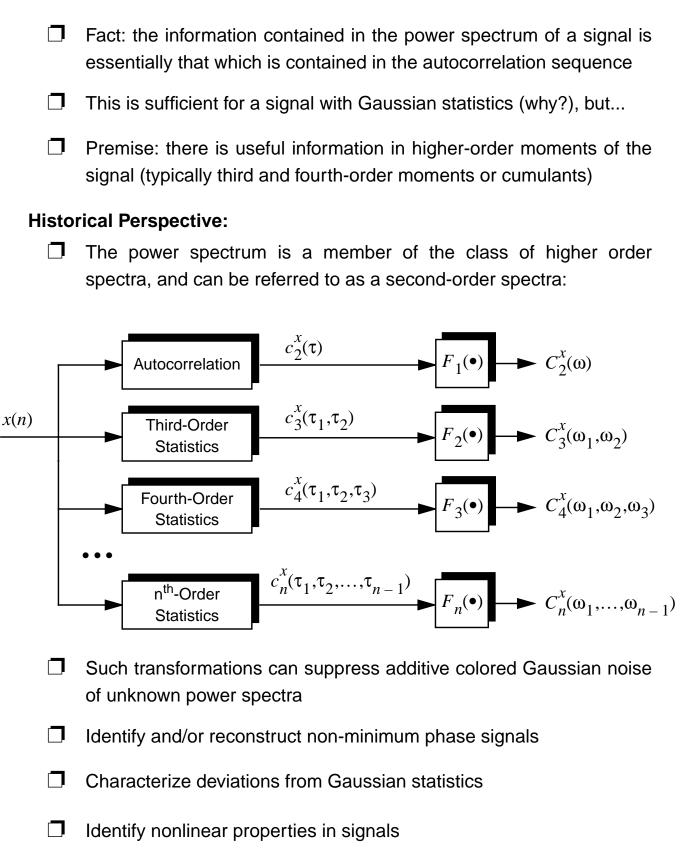
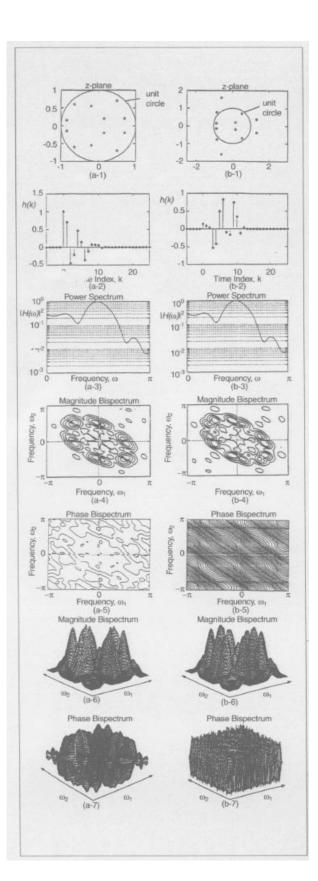
PAGE 1 of 4





An Example: Non-Minimum Phase Systems

PAGE 3 of 4

Mathematical Definitions

The nth-order moment is defined as:

$$m_n^{x}(\tau_1, \tau_2, \dots, \tau_{n-1}) \equiv E[x(n)x(n+\tau_1)x(n+\tau_2)\dots x(n+\tau_{n-1})]$$

The nth-order cumulant is defined as:

$$c_n^{x}(\tau_1, \tau_2, \dots, \tau_{n-1}) \equiv m_n^{x}(\tau_1, \tau_2, \dots, \tau_{n-1}) - m_n^{G}(\tau_1, \tau_2, \dots, \tau_{n-1})$$

where $m_n^G(\tau_1, \tau_2, ..., \tau_{n-1})$ is the nth-order moment of an equivalent Gaussian signal with the same mean and autocorrelation as x(n).

We can expand these functions as follows:

First-order moment:

$$c_1^x = m_1^x = E[x(n)]$$
 (mean value)

Second-order moment:

$$c_{2}^{x}(\tau_{1}) = m_{2}^{x}(\tau_{1}) - (m_{1}^{x})^{2}$$

= $m_{2}^{x}(-\tau_{1}) - (m_{1}^{x})^{2}$ (covariance)
= $c_{2}^{x}(\tau_{1})$

Third-order moment:

$$c_{3}^{x}(\tau_{1},\tau_{2}) = m_{3}^{x}(\tau_{1},\tau_{2}) - m_{1}^{x}[m_{2}^{x}(\tau_{1}) + m_{2}^{x}(\tau_{2}) + m_{2}^{x}(\tau_{1}-\tau_{2})] + 2(m_{1}^{x})^{2}$$

If the mean of the signal is zero, then the second and third-order cumulants are equivalent to the moments, and the fourth-order cumulant is given by:

$$c_{4}^{x}(\tau_{1},\tau_{2},\tau_{3}) = m_{4}^{x}(\tau_{1},\tau_{2},\tau_{3}) - m_{2}^{x}(\tau_{1})m_{2}^{x}(\tau_{3}-\tau_{2}) - m_{2}^{x}(\tau_{2})m_{2}^{x}(\tau_{3}-\tau_{1}) - m_{3}^{x}(\tau_{3})m_{2}^{x}(\tau_{2}-\tau_{1})$$

- ELECTRICAL AND COMPUTER ENGINEERING (st

Mathematical Properties of Deterministic Signals

• Spectrum

Energy spectrum: $M_2^x(\omega) = X(\omega)X^*(\omega)$ Bispectrum: $M_3^x(\omega_1, \omega_2) = X(\omega_1)X^*(\omega_2)X^*(\omega_1 + \omega_2)$ Trispectrum: $M_4^x(\omega_1, \omega_2, \omega_3) = X(\omega_1)X(\omega_2)X(\omega_3)X^*(\omega_1 + \omega_2 + \omega_3)$ • Quality Measures (zero mean) Variance: $\gamma_2^x = E[x^2(n)] = c_2^x(0)$ Skewness: $\gamma_3^x = E[x^3(n)] = c_3^x(0, 0)$

Kurtosis: $\gamma_4^x = E[x^4(n)] - 3[\gamma_2^x]^2 = c_4^x(0, 0, 0)$ Normalized Kurtosis: $\gamma_4^x / [\gamma_2^x]^2$

• Coherency

Biocoherency:
$$P_3^{x}(\omega_1, \omega_2) = \frac{C_3^{x}(\omega_1, \omega_2)}{\sqrt{C_2^{x}(\omega_1)C_2^{x}(\omega_2)C_2^{x}(\omega_1 + \omega_2)}}$$

Tricoherency: $P_4^{x}(\omega_1, \omega_2, \omega_3) = \frac{C_3^{x}(\omega_1, \omega_2)}{\sqrt{C_2^{x}(\omega_1)C_2^{x}(\omega_2)C_3^{x}(\omega_3)C_2^{x}(\omega_1 + \omega_2 + \omega_3)}}$

The latter measures are useful in discriminating linear processes from nonlinear ones. A signal is said to be a linear non-Gaussian process of order n if the magnitude of the nth-order coherency function is constant for all frequencies.

ELECTRICAL AND COMPUTER ENGINEERING