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Wavelets and Time-Frequency Analysis

❐ Premise: signal is decomposed in terms of dilates and translates of a

SINGLE function (the mother wavelet)

❐ This transform has a number of useful properties (e.g., linearity) and

an ability to trade time and frequency resolution in a controlled
manner.

❐ The wavelet transform provides compact representations of a wide

class of deterministic and stochastic signals.

Historical Perspective (originally introduced in the late 1930s):

❐ Signal representation as a countably infinite set of basis functions

(discrete transforms such as the Fourier series or Karhunen-Loeve
representation of stochastic processes) or as a weighted integral of a
particular function (continuous transforms such as the Fourier
transform)

❐ Such transforms are not “localized in time”

❐ Long windows imply high frequency resolution, short windows imply

low frequency resolution — can we trade resolution in both domains?

❐ Can we create a transform that consists of an analysis of the signal

at many time scales simultaneously?

Wavelet Overview:

❐ Two forms: continuous and discrete wavelet transforms

The continuous wavelet uses arbitrary dilations and translations; the
discrete wavelet encodes these into a parameter that takes discrete
values.

❐ Both are continuous time signal representations; discrete time

representations exist in each case.
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The Continuous Wavelet Transform

Assuming  has finite energy,

where  is a finite constant and  is the wavelet transform of :

The variable is the scale variable because it controls the effective width of
support of . The variable has the dimension of time and controls the
amount of translation of .

The wavelet transform obeys a number of important properties including
linearity, superposition, similarity (scaling) and shifting.

It has a simple systems interpretation:
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The wavelet transform produces a decomposition of in terms of a filter
bank that consists of filters with impulse responses derived from a single
impulse response, .

The wavelet transform is energy preserving:

It can also be shown that for smooth signals, most of the energy in
will appear at lower scales (an important practical consideration).
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An Example of a Wavelet — Second Derivative of a Gaussian
ELECTRICAL AND COMPUTER ENGINEERING

The “mother wavelet”:

Time compression:

Time expansion:
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Discrete Orthogonal Wavelet Transform

The continuous transform is highly redundant. An approach to eliminating

this is to sample the scale parameter, , on a grid . This gives

rise to the following transform pair:

Mathematically, we can construct a discrete wavelet by solving a two-scale
difference equation (a dilation equation):

where  satisfies the following constraints:

, which implies, ,

The wavelet is constructed from  as:

,

where .

Note that is orthogonal to for . We can compute
the Fourier transform of :

and show that .
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This gives rise to the following important practical implementation of the
wavelet transform:
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Mathematically, this can be expressed as:

and

With finite data sets, it is not possible to compute these equations exactly.
Hence, we assume that the signal is periodic outside the window (other
extensions are possible).

Much like the DFT can be computed using a recursive matrix formulation,
the DWT can also be computed using a matrix operation of complexity
proportional to N. This is slightly less than an FFT, which requires

operations.

It is easy to see that the DWT is better suited to compression problems than
pattern matching problems, because the “basis” functions can be derived
from the mother wavelet. Current research is focusing on developing optimal
signal-dependent wavelets.

One can also intuitively see the similarity to fractals. There are several other
popular time-frequency analysis methods, including the Wigner distribution:
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