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Formalities

The discrete observation HMM is restricted to the production of a finite set
of discrete observations (or sequences). The output distribution at any state
is given by:

The observation probabilities are assumed to be independent of time. We
can write the probability of observing a particular observation, , as:

The observation probability distribution can be represented as a matrix
whose dimension is K rows x S states.
We can define the observation probability vector as:

, or,

The mathematical specification of an HMM can be summarized as:

For example, reviewing our coin-toss model:
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Recognition Using Discrete HMMs

Denote any partial sequence of observations in time by:

The forward partial sequence of observations at time  is

The backward partial sequence of observations at time  is

A complete set of observations of length  is denoted as .

What is the likelihood of an HMM?

We would like to calculate — however, we can’t. We can

(see the introductory notes) calculate . Consider the brute

force method of computing this. Let denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

The probability of the state sequence is

Therefore,

To find , we must sum over all possible paths:

This requires flops. For and , this gives about

 computations per HMM!
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The “Any Path” Method (Forward-Backward, Baum-Welch)

The forward-backward (F-B) algorithm begins by defining a “forward-going”
probability sequence:

and a “backward-going” probability sequence:

Let us next consider the contribution to the overall sequence probability
made by a single transition:
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Summing over all possibilities for reaching state “ “:
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Baum-Welch (Continued)

The recursion is initiated by setting:

Similarly, we can derive an expression for :

This recursion is initialized by:

We still need to find :

for any state . Therefore,

But we also note that we should be able to compute this probability using
only the forward direction. By considering , we can write:

These equations suggest a recursion in which, for each value of we iterate

over ALL states and update . When , is computed by

summing over ALL states.

The complexity of this algorithm is , or for and ,

approximately 2500 flops are required (compared to flops for the
exhaustive search).
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The Viterbi Algorithm

Instead of allowing any path to produce the output sequence, and hence,
creating the need to sum over all paths, we can simply assume only one
path produced the output. We would like to find the single most likely path
that could have produced the output. Calculation of this path and probability
is straightforward, using the dynamic programming algorithm previously
discussed:

where

(in other words, the predecessor node with the best score). Often,
probabilities are replaced with the logarithm of the probability, which
converts multiplications to summations. In this case, the HMM looks
remarkably similar to our familiar DP systems.

Beam Search

In the context of the best path method, it is easy to see that we can employ
a beam search similar to what we used in DP systems:

In other words, for a path to survive, its score must be within a range of the
best current score. This can be viewed as a time-synchronous beam
search. It has the advantage that, since all hypotheses are at the same point
in time, their scores can be compared directly. This is due to the fact that
each hypothesis accounts for the same amount of time (same number of
frames).
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