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Short-Term Measurements
What is the point of this lecture?
T; =5ms
() w = 10ms
e T, =10ms
) —F T, = 20ms
Tf = 20 ms
tc) —
W= 30 ms
Tf = 20 ms
(L] TW = 30 ms
Hamm Win.
Tf = 20 ms
(e
TW = 60 ms
Hamm Win.
in Recursive
50 Hz LPF
(g Speech Signal
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Time-Domain Windowing
Let {x(n)} denote a sequence to be analyzed. Let’s limit the duration of
{x(n)} to L samples:

X(n) = x(nw(n)
where w(n) is a rectangular window and is defined as

D < < —_
w(n) = D1, O_n_I._ 1_
1o, otherwise

The Fourier transform of w(n) is given by:

sin(w(L/ 2))e—j w((L-1)/2)
sin(w/2)
The transform of X(n) is given by:

W(w) =

X(w) = %[W(w—wo) + W(w +w))].

This introduces frequency domain aliasing (the so-called picket fence
effect):

fs=8000 Hz, f;=1511 Hz, L=25, N=2048
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Time/Frequency Properties of Windows
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Improvements Via Better Windows

Rectangular Window:
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Hanning Window:
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Popular Windows
1, ki< N
1. Rectangular: w(k) = K _
Ep, otherwise
2. Generalized Hanning:  wy(k) = W(k)[(] + (1—a)cos%%nkg} O<a<l1
a = 0.54, Hamming window
a = 0.50, Hanning window
3. Bartlett we(K) = W(k)[l——M—J
' B N+1

4. Kaiser w () = Wikl o /1-E2E(|O(a)

2
wWy(K) = 2(xq—1)wy, _4(K)
5. Chebyshev: N 20 N-1

0 2

O 1.2 ZPog

E exp[ 2k tan 0 DJ |kl < N
6. Gaussian we(K) = O 2[?0

(N —1)/[2N sin D?E} k| < N

0

3 0 k| > N

There are many others. The most important characteristics are the width of the
main lobe and the attenuation in the stop-band (height of highest sidelobe). The
Hamming window is used quite extensively.
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Recursive-in-Time Approaches

Define the short-term estimate of the power as:

N.—1
S N
(0 = 3 Fmstn- e mf]
sm:O

We can view the above operation as a moving-average filter applied to the
2
sequence s (n).

This can be computed recursively using a linear constant-coefficient
difference equation:

N N,

PI) = - Y 2 P-+ bpw(j)sz(n—j)

=1 =1

Common forms of this general equation are:

P(n) = aP(n-1) + sz(n) (Leaky Integrator)
P(n) = aP(n-1) +(1- a)sz(n) (First-order weighted average)
P(n) = aP(n-1) + BP(n—-2) + sz(n) + ysz(n -1 (Z”d—order Integrator)

Of course, these are nothing more than various types of low-pass filters, or
adaptive controllers. How do we compute the constants for these
equations?

In what other applications have we seen such filters?
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Relationship to Control Systems

The first-order systems can be related to physical quantities by observing
that the system consists of one real pole:

H@) = ——

1-az !
a can be defined in terms of the bandwidth of the pole.

For second-order systems, we have a number of alternatives. Recall that a
second-order system can consist of at most one zero and one pole and their
complex conjugates. Classical filter design algorithms can be used to design
the filter in terms of a bandwidth and an attenuation.

An alternate approach is to design the system in terms of its unit-step
response:

P(n)

Overshoot
7 ~ ~
/
10 - . -----\!---E-i_-‘-\-__-,‘—-*- U(n)
/ final response threshold
/
0.5
/
0 d > N
rise times settling time
h(n L
(n) A rise time

: Equivalent impulse response
fall time

There are many forms of such -controllers (often known as
servo-controllers). One very interesting family of such systems are those
that correct to the velocity and acceleration of the input. All such systems
can be implemented as a digital filter.

ELECTRICAL AND COMPUTER ENGINEERING \

\




