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Digital Speech Production Models
Recall our concatenated lossless tube model:
l+rg
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We can approximate this as a digital filter using the sampling theorem:
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The transfer function of an N-tube model is:
N
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We can compute D(2) recursively:
D@ =1
D2 = D b, .ZH  k=12..N
K@ = Dy_1@+1z Dy _4(z") = L4
D(2) = D\(2
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Alternate Digital Filter Implementations Using Digital Resonators

Note that for D(2) to have real coefficients, zeros must occur in complex conjugate
pairs. We can transform zeros in the Laplace domain:

S S = —0tj2mF
The corresponding complex conjugate poles in the discrete-domain are:

x -0 T #j2mF,T
2.z =€ e

6, T 6, T
= e " cos(2mF, T) + je * sin(2mF,T)

Note that magnitude of the pole in the z-plane is related to the bandwidth.

We can write a transfer function as a product of these poles:

M
V(2 = |_| V(2
k=1

where
(1- 2|Zk| cos(2mF, T) + |Zk| 2)

V(@ =
“ (1- 2z cos(2mF kT)z_1 + |z 22_2)

This is an all-pole filter. It can be realized using a number of structures:
Under what conditions is this filter stable?

+ »_ oo e + > |
z1 G z1 G, z1 Gy
ay(1) z1 ax(1) z1 am(l) ¢ z1
< < <
ay(2) ax(2) am(2)
where,
G
_ M
V(2 =

1-a (1) 71 a,(2) 772

a (1) = 2|Zk| cos(2mF, T) a(2) = _|Zk|2 Gy = 1—2|zk| cos(2mF, T) + |Zk|2
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Excitation Models

How do we couple energy into the vocal tract?
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The glottal impedance can be approximated by:
Zs = Rg+jQlg
The boundary condition for the volume velocity is:
U(0, Q) = Ug(Q)—-P(0, Q)/Z5(Q)

For voiced sounds, the glottal volume velocity looks something like this:

\ Volume Velocity
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The Complete Digital Model (Vocoder)

fundamental A
frequency v
Impulse Glottal
Train - Pulse
Generator Model
Vocal Tract Lip
Model — Radiation >
V(z) Model
n
Random uG(n) p|_( )
Noise
Generator
AN
Notes:

» Sample frequency is typically 8 kHz to 16 kHz

* Frame duration is typically 10 msec to 20 msec

* Window duration is typically 30 msec

* Fundamental frequency ranges from 50 Hz to 500 Hz

» Three resonant frequencies are usually found within 4 kHz bandwidth
* Some sounds, such as sibilants (“s”) have extremely high bandwidths

Questions:
What does the overall spectrum look like?
What happened to the nasal cavity?
What is the form of V(z)?

K ELECTRICAL AND COMPUTER ENGINEERING \



FEBRUARY 5, 1996 EE 8993: LECTURE NO. 12 PAGE 5 of 8

/

Linear Prediction
How do we estimate the vocal tract parameters?

Recall our digital filter model:

p
A9 = 1- Z akz_k
k=1

This corresponds to a finite difference equation of the form:

y(n) = a;y(n-1) +ay(n-1) +... +a y(n—p +x(n)

We predict the current value, y(n), based on its previous values and the new
input value — this is known as linear prediction.

We can define the energy of the prediction error as:
N-1

EM) = Y [y -5
n=0

where y(n) is the predicted value. We can derive an equation for the
computation of {a,} by minimizing the mean-square error (differentiate the

energy of the error w.r.t. a; and solve for a;). This yields:

a= R
where:
2 | RO) R(1) ..R(p-1) R(1)
" r-| RO RO ..R(p-2) = |RQ)
a, R(P-D R(p-2) .. RO | R
and,
N—i
R() = Z x(Mx(n—=1).
n=0
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Relationship to the Lattice Filters and Reflection Coefficients

The standard direct-form FIR filter can be implemented in a lattice structure:

fo(n) fa(n) f5(n)
| -
x(n) K,
Ka
— 71 > 71 } >
9o 94(n) Q)

The inverse, or Infinite Impulse Response (IIR) equivalent, is an all-pole filter:

x(n) y(n)

>

The coefficients {K.} are called reflection coefficients, and can be computed
directly from the signal:
N-1
Z fi (Mg, _4(m-1)
Ki — m=20
%Ef\l ! SR 255%
05 (gL Y (fi_ym-1)0
m=0

(1] &
gm=0 0

For the filter to be stable, these reflection coefficients must be bounded: |Ki| <1.
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Transformations Between Parameters

The predictor coefficients, reflection coefficients, and area ratios represent
alternate descriptions of the same information:

Predictor to reflection coefficient transformation:
fori = p,p-1,...,,1
ki = ai(i)
a;(j) +ka(i—J)
1-k

a_ () = 1<j<i-1

Reflection to predictor coefficient transformation:

fori =1,2...,p
a;(i) = k;

a(j) = a_q()—kia _,(-]) 1<j<i-1

Durbin Recursion:  an efficient algorithm to solve linear equations
involving symmetric matrices):

fori =1,2...,p

Ey = R()
i—1
ki, = g?(i)— Z ai_l(j)R(i—j)E}/Ei_1
O =) O
forj =1,2,...,i—-1
a;(i) = k

a(j) = a _q() —kia _,(-1])

_ 2
B = (1-k)E_
Log of the ratio of the areas of adjacent sections of a lossless tube:

A 1-k
1 .
g = IOg{—'AJ.r } = Iog{l*_kj 1<i<p
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Fundamental Frequency Analysis
How do we determine the fundamental frequency?

—> f=— F

We use the (statistical) autocorrelation function:

50 100 \/ 150 lag

6.25 ms 12.5 ms 18.75 ms time
Y 160.0 Hz 80 Hz 53.3 Hz frequency

Other common representations:
Average Magnitude Difference Function (AMDF):
N-1

v@ = Y IXm) -x(n-9)
n=0

Zero Crossing Rate:

ZF N-1
Fo=—  Z-= Zolsgn[X(n)]—Sgn[X(n—l)”
n=
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