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Sound Propagation
A detailed acoustic theory must consider the effects of the following:

• Time variation of the vocal tract shape
• Losses due to heat conduction and viscous friction at the vocal tract walls
• Softness of the vocal tract walls
• Radiation of sound at the lips
• Nasal coupling
• Excitation of sound in the vocal tract

Let us begin by considering a simple case of a lossless tube:
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For frequencies that are long compared to the dimensions of the vocal tract (less
than about 4000 Hz, which implies a wavelength of 8.5 cm), sound waves satisfy
the following pair of equations:

or

where

is the variation of the sound pressure in the tube

is the variation in the volume velocity

is the density of air in the tube (1.2 mg/cc)

is the velocity of sound (35000 cm/s)

is the area function (about 17.5 cm long)

Uniform Lossless Tube

If , then the above equations reduce to:

The solution is a traveling wave:

which is analogous to a transmission line:

What are the salient features of the lossless transmission line model?
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where

The sinusoisdal steady state solutions are:

where  is the characteristic impedance.

The transfer function is given by:

This function has poles located at every . Note that these

correspond to the frequencies at which the tube becomes a quarter

wavelength: .

Acoustic Quantity Analogous Electric Quantity
p - pressure v - voltage
u - volume velocity i - current
ρ/A - acoustic inductance L - inductance

A/(ρc2) - acoustic capacitance C - capacitance
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Is this model realistic?
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Effects of Losses

What do we predict the effects of yielding walls to be?
Ao(x,t)

δA(x,t)
Use perturbation analysis:

We can develop a model that relates δA(x,t) to pressure:

and solve for the new transfer function. But we can easily predict the effect
of this:
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What would you expect to be the effect of friction and thermal losses?
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Lip Radiation

How is the sound pressure wave within the vocal tract coupled into the air?
Radiation from a spherical baffle Radiation from an infinite plane
baffle
Net effect is to place a complex load on the system:

and

where and , and is the radius of the opening.

This impedance acts as a short circuit at low frequencies, and an imaginary
impedance at high frequencies. The next effect on the volume velocity is to
act as a highpass filter and to attenuate low frequencies. Lip radiation
introduces a zero in the spectrum at DC and broadens the bandwidths at
higher frequencies.
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Nasal Coupling

How is the sound pressure wave within the vocal tract coupled into the air?

We also must worry about the nasal cavity, especially for labial sounds for
which the mouth is closed during sound production.

Nasal Cavity

Oral Cavity

Closure

Nostrils

Glottis

This is the equivalent of placing a transmission line in parallel with the vocal
tract (oral cavity). What will the effect be?

The net effect is to produce a zero in the spectrum at about 1 kHz. As a
result, nasal sounds (such as “m” and “n” in American English) have very
little high frequency energy.
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Piecewise Linear Approximations For The Vocal Tract

Consider the following approximation to the vocal tract area function:
l1 l2 l3 l4 l5 l6

A1 A2 A3 A4 A5 A6
Recall,

For the kth section, if we apply the boundary conditions:

We can combine these two equations to show:

where .

We can define a reflection coefficient for the kth junction:

It is easy to show that the reflection coefficients are bounded: .

The velocity can be expressed in terms of the reflection coefficients:

Ultimately, we will relate  to a discrete model of the velocity profile.
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uG(
Resonant Frequencies

Consider a two tube approximation to the vocal tract:
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The frequency response of this system is:

What does this tell us about the frequency response?

If we consider the case :
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For this system, the poles are located at values that satisfy the equation:

How does this compare to a single lossless tube?

Poles must be found through numerical analysis - nonlinear equation.
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L2 L1⁄ 1.5= A2 A1⁄ 8=

L2 L1⁄ 1.0= A2 A1⁄ 8=

Resonator Geometry Formant Patterns

L=17.6 cm
F1 F2 F3 F4

500 1500
x x x x

2500 3500

L2 L1⁄ 8= A2 A1⁄ 8=

2 1
F1 F2 F3 F4

320 1200

x x x x
2300 3430

L2 L1⁄ 1.2= A2 A1⁄ 1 8⁄=

F1 F2 F3 F4

780 1240

x x x x
2720 3350

L1 L2+ 17.6 cm=

2 1

2 1

F1 F2 F3 F4

220 1800

x x x x
2230 3800

L1 L2+ 14.5 cm=

2 1
F1 F2 F3 F4

260 1990

x x x x
3050 4130

L2 L1⁄ 1 3⁄= A2 A1⁄ 1 8⁄=

12

L1 L2+ 17.6 cm=

F1 F2 F3 F4

630 1770

x x x x
2280 3440
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Three-Tube Models

Resonator Geometry Formant Patterns

L=17.6 cm
F1 F2 F3 F4

500 1500
x x x x

2500 3500

F1 F2 F3/F4
x x xx

6 cm 6 cm 6 cm

8 cm 6 cm 4 cm
F1 F4F2/F3
x xxx

8 cm 6 cm 3 cm
F1 F2 F3/F4
x x xx

invdicates the fundamental resonance
of the front cavity
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Transfer Function of the Lossless Tube Model

Recall, . In the discrete domain, we can write: .

Following our derivation of the wave equation, we can express the transfer
function for a lossless tube as follows:

where

and

The combined transfer function is a product of these matrices.
The net result is a transfer function that can be expressed as:

where

We can write  in a simpler form:

Why is this important?
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