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What Is Information? (When not to bet at a casino...)

Consider two distributions of discrete random variables:
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Which variable is more unpredictable?

Now, consider sampling random numbers from a random number generator
whose statistics are not known. The more numbers we draw, the more we
discover about the underlying distribution. Assuming the underlying distribution is
from one of the above distributions, how much more information do we receive
with each new number we draw?

The answer lies in the shape of the distributions. For the random variable x, each
class is equally likely. Each new number we draw provides the maximum amount
of information, because, on the average, it will be from a different class (so we
discover a new class with every number). On the other hand, for y, chances are,
c=3 will occur 5 times more often than the other classes, so each new sample will
not provide as much information.

We can define the information associated with each class, or outcome, as:

Since , information is a positive quantity. A base 2 logarithm is used so

that discrete outcomes can be measured in bits. For the distributions
above,

Huh??? Does this make sense?
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What is Entropy?

Entropy is the expected (average) information across all outcomes:

Entropy using  is also measured in bits, since it is an average of information.

For example,

We can generalize this to a joint outcome of N random vectors from the same
distribution, which we refer to as the joint entropy:

If the random vectors are statistically independent:

If the random vectors are independent and indentically distributed:

We can also define conditional entropy as:

For continuous distributions, we can define an analogous quantity for entropy:

     (bits)

A zero-mean Gaussian random variable has maximum entropy ( .

Why?
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Mutual Information

The pairing of random vectors produces less information than the events
taken individually. Stated formally:

The shared information between these events is called the mutual
information, and is defined as:

From this definition, we note:

This emphasizes the idea that this is information shared between these two
random variables.

We can define the average mutual information as the expectation of the
mutual information:

Note that:

Also note that if and are independent, then there is no mutual
information between them.

Note that to compute mutual information between two random variables, we
need a joint probability density function.
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Entropy in Pattern Recognition

Generalized entropy measures are used to assess the effectiveness of a set
of features at pattern classification. The conditional entropy is one such
measure:

This is sometimes referred to as the equivocation. We want this measure to
be small, meaning the feature vector greatly reduces the uncertainty
about the class identity.

Another way to assess the usefulness of a feature is the average mutual
information:

If this measure is large, a given feature contains a significant information
about the class outcome.
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How Does Entropy Relate To DSP?

Consider a window of a signal:
x(n)

n

window
What does the sampled z-transform assume about the signal outside the
window?

What does the DFT assume about the signal outside the window?

How do these influence the resulting spectrum that is computed?

What other assumptions could we make about the signal outside the
window? How many valid signals are there?

How about finding the spectrum that corresponds to the signal that matches
the measured signal within the window, and has maximum entropy?

What does this imply about the signal outside the window?

This is known as the principle of maximum entropy spectral estimation.
Later we will see how this relates to minimizing the mean-square error.
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