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Probability Spaces

A formal definition of probability involves the specification of:

• a sample space

The sample space, , is the set of all possible outcomes, plus the
null outcome. Each element in  is called a sample point.

• a field (or algebra)

The field, or algebra, is a set of subsets of  closed under
complementation and union (recall Venn diagrams).

• and a probability measure.

A probability measure obeys these axioms:

1.  (implies probabilities less than one)
2.
3. For two mutually exclusive events:

Two events are said to be statistically independent if:

The conditional probability of B given A is:

Hence,
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Functions of Random Variables

Probability Density Functions:
f(x) - discrete (Histogram)

1 2 3 4

f(x) - continuous

1 2 3 4

Cumulative Distributions:

F(x) - discrete F(x) - continuous
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1 2 3 4 1 2 3 4
Probability of Events:

f(x) - continuous

1 2 3 4

P 2 x< 3≤( ) f x( ) xd
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Important Probability Density Functions

Uniform (Unix rand function):

Gaussian:

Laplacian (speech signal amplitude, durations):

Gamma (durations):

We can extend these concepts to N-dimensional space. For example:

Two random variables are statistically independent if:

This implies:

and
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Expectations and Moments

The statistical average of a scalar function, , of a random variable is:

and

The central moment is defined as:

The joint central moment between two random variables is defined as:

We can define a correlation coefficient between two random variables as:

We can extend these concepts to a vector of random variables:

What is the difference between a random vector and a random process?

What does wide sense stationary mean? strict sense stationary?

What does it mean to have an ergodic random process?

How does this influence our signal processing algorithms?
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Correlation and Covariance of WSS Random Processes

For a signal, , we can compute the following useful quantities:

Autocovariance:

If a random process is wide sense stationary:

Hence, we define a very useful function known as the autocorrelation:

If  is zero mean WSS:

What is the relationship between the autocorrelation and the spectrum:

For a linear time-invariant system, :

The notion of random noise is central to signal processing:

white noise?

Gaussian white noise?

zero-mean Gaussian white noise?

colored noise?

Therefore, we now embark upon one of the last great mysteries of life:

How do we compare two random vectors?
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