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Probability Spaces

A formal definition of probability involves the specification of:

» a sample space
The sample space, S, is the set of all possible outcomes, plus the
null outcome. Each element in S is called a sample point.

* a field (or algebra)

The field, or algebra, is a set of subsets of S closed under
complementation and union (recall Venn diagrams).

 and a probability measure.
A probability measure obeys these axioms:
1. P(S = 1 (implies probabilities less than one)

2. P(A =0
3. For two mutually exclusive events:

P(AO B) = P(A B = P(A) + P(B)

Two events are said to be statistically independent if:
P(An B = P(A)P(B)
The conditional probability of B given A is:

P(B|A = St
Hence,
P(BN A = P(B| AP(A

Mutually Exclusive P(Bn A = P(B|AP(A)
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Functions of Random Variables

Probability Density Functions:

A f(x) - discrete (Histogram) A f(x) - continuous

- | I P

1 2 3 4 1 2 3 4
Cumulative Distributions:

y F() - discrete 4 F(¥) - continuous

L A B

L A -

B b B
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1 2 3 4 1 2 3 4

Probability of Events:
A f(x) - continuous

PR<x<3) = [f(dx = F(3)-F(2)
2
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Important Probability Density Functions
Uniform (Unix rand function):

01
<x<b
i = b-a o

%b elsewhere

Gaussian:

2

1 L(x — []
F(x) = exp= ;) 0
2thr2 U 20 0

Laplacian (speech signal amplitude, durations):

1 [-./2|x U
f(x) = —expD—“QX'D
og?2 O [
Gamma (durations):
JK
f(x) = exp{ —k|X
(X) N p{-kIx}

We can extend these concepts to N-dimensional space. For example:

f(x, y)dydx

P(AD ABOA) = PF()?’B)B) = ACA

I f(y)dy
Ay
Two random variables are statistically independent if:
P(A B = P(AP(B)
This implies:

fry® W = F,0f(y) and  F (xy) = F,()F(Y)
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Expectations and Moments

The statistical average of a scalar function, g(x), of a random variable is:
E[o(¥] = Z xP(x=x) and E[g(X]= Ig(X)f(X)dX
i=1 —00
The central moment is defined as:

[e¢]

E[(x—p)] = j(x—u)if(x)dx

—00
The joint central moment between two random variables is defined as:

0 00

EL(x=1)' (=)' T = [ [ =)' (v =) F(x, oy

We can define a correlation coefficient between two random variables as:
C

_ Xy
p =
Xy PxPy
We can extend these concepts to a vector of random variables:

o T
X = [Xg5 Xor ooy X\

_ 1 01, _ 7171, _.U
f®) = ————expi-5(X-R) Cg (X-p)0
N/2/2T[ /|C| ] ]

What is the difference between a random vector and a random process?
What does wide sense stationary mean? strict sense stationary?
What does it mean to have an ergodic random process?

How does this influence our signal processing algorithms?
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Correlation and Covariance of WSS Random Processes

For a signal, x(n), we can compute the following useful quantities:

Autocovariance:
c(i, ) = E[(x(n=1 —p)(x(n—=]) = ;)]
= E[x(n=)x(n— )] =K,

1N—1 DlN_l [DlN—l 0
= X(n=)x(n— ) — X(n—i X(n—j
NZ( )X(n—]) an( )%Z( )o

n=0 n=0 n=0
If a random process is wide sense stationary:

c(i,j) = c(li-jl, 0

Hence, we define a very useful function known as the autocorrelation:
N-1

M) = 5 3 x(mxn-K
0

n=

If x(n) is zero mean WSS:
c(i, j) = r(li-jl)
What is the relationship between the autocorrelation and the spectrum:
2
DFET{r(} = [X(K)

For a linear time-invariant system, h(n):
2
DFT{ ry(k)} = [DFT{h(nN}"DFT{r (K}

The notion of random noise is central to signal processing:
white noise?
Gaussian white noise?
zero-mean Gaussian white noise?
colored noise?

Therefore, we now embark upon one of the last great mysteries of life:
How do we compare two random vectors?
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