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The Sampling Theorem and Normalized Time/Frequency

If the highest frequency contained in an analog signal, , is and

the signal is sampled at a rate , then can be EXACTLY

recovered from its sample values using the interpolation function:

.

 may be expressed as:

where .
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Given a continuous signal:

,

A discrete-time sinusoid may be expressed as:

,

which, after regrouping, gives:

,

where , and is called normalized radian frequency and

represents normalized time.
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Singularity Functions

Some Elementary Discrete-Time Signals:

(1) unit sample signal:

Using this function, we can write a mathematical expression for a
sampled signal as:

Also, note that typical properties of continuous linear systems hold,
such as the sifting property:

(2) unit step signal:

Using this function, we can write a mathematical expression for a finite
duration segment of a signal, or window, of the signal:

What is the impact of this on the spectrum of ?
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Energy and Power

Energy:

Average Power:

Finite Energy:

Comments:

(1) If a signal’s energy is finite, .

(2) If a signal’s energy is infinite, its power may or may not be zero.

(3) RMS value is the square root of the power.

Examples:

(1) The average power of a sinewave is .

(2) What does the following compute?
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Transforms

The -transform of a discrete-time signal is defined as:

The Fourier transform of  can be computed from the -transform as:

The Fourier transform may be viewed as the -transform evaluated around
the unit circle.

The Discrete Fourier Transform (DFT) is defined as a sampled version of the
Fourier shown above:

The inverse DFT is given by:

The Fast Fourier Transform (FFT) is simply an efficient computation of the
DFT.

Note that these are not the only transforms used in speech processing
(wavelets, Wigner distributions, fractals, etc.).
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Time-Domain Windowing

Let  denote a finite duration segment of a signal:

This introduces frequency domain aliasing (the so-called picket fence effect):
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fs=8000 Hz, f1=1511 Hz, L=25, N=2048
Popular Windows

Generalized Hanning: wH k( ) w k( ) α 1 α–( ) 2π
N
------k 

 cos+= 0 α 1< <

α 0.54,= Hamming window

α 0.50,= Hanning window
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Frame-Based Analysis With Overlap

Consider the problem of performing a piecewise linear analysis of a signal:
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Difference Equations, Filters, and Signal Flow Graphs

A linear time-invariant system can be characterized by a constant-coefficient
difference equations:

Is this system linear if the coefficients are time-varying?

Such systems can be implemented as signal flow graphs:
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Minimum Phase, Maximum Phase, MIxed Phase,
and Speech Perception

An FIR filter composed of all zeros that are inside the unit circle is minimum
phase. There are many realizations of a system with a given magnitude response;
one is a minimum phase realization, one is a maximum-phase realization, others
are in-between. Any non-minimum phase pole-zero system can be decomposed
into:

It can be shown that of all the possible realizations of , the minimum-phase
version is the most compact in time:
Define:

Then,  for all  and all possible realizations of .

Why is minimum phase such an important concept in speech processing?

We prefer systems that are invertible:

We would like both systems to be stable. The inverse of a non-minimum phase
system is not stable.

We end with a very simple question:

Is phase important in speech processing?
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