# The Sampling Theorem and Normalized Time/Frequency

If the highest frequency contained in an analog signal,  $x_a(t)$ , is  $F_{max} = B$  and the signal is sampled at a rate  $F_s > 2F_{max} = 2B$ , then  $x_a(t)$  can be EXACTLY recovered from its sample values using the interpolation function:

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}.$$

 $x_a(t)$  may be expressed as:

$$x_a(t) = \sum_{n = -\infty}^{\infty} x_a(\frac{n}{F_s})g(t - \frac{n}{F_s})$$

Given a continuous signal:

$$x(t) = A\cos(2\pi f t + \theta),$$

A discrete-time sinusoid may be expressed as:

$$x(n) = A\cos\left(2\pi f\left(\frac{n}{f_s}\right) + \theta\right),$$

which, after regrouping, gives:

 $x(n) = A\cos(\omega n + \theta),$ 

where  $\omega = 2\pi \left(\frac{f}{f_s}\right)$ , and is called normalized radian frequency and *n* represents normalized time.

ELECTRICAL AND COMPUTER ENGINEERING

## **Singularity Functions**

Some Elementary Discrete-Time Signals:

(1) unit sample signal:

$$\delta(n) = \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$$

Using this function, we can write a mathematical expression for a sampled signal as:

$$x(n) = \sum_{k = -\infty}^{\infty} \left( x(t) \Big|_{t = \frac{k}{f_s}} \right) \delta(n-k)$$

Also, note that typical properties of continuous linear systems hold, such as the sifting property:

$$x(n) \otimes \delta(n-l) = \sum_{m=-\infty}^{\infty} x(m)\delta(l-m) = x(l)$$

(2) unit step signal:

$$u(n) = \begin{cases} 1, & n \ge 0\\ 0, & n < 0 \end{cases}$$

Using this function, we can write a mathematical expression for a finite duration segment of a signal, or window, of the signal:

$$w(n) = u(n) - u(N - n)$$
$$x_w(n) = x(n)w(n)$$

What is the impact of this on the spectrum of  $x_w(n)$ ?

#### **Energy and Power**

Energy:

$$E \equiv \sum_{n = -\infty}^{\infty} |x(n)|^2$$

Average Power:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n = -N}^{N} |x(n)|^2$$

Finite Energy:

$$E_N = \sum_{n = -N}^{N} |x(n)|^2$$

$$E = \lim_{N \to \infty} E_N$$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} E_N$$

Comments:

(1) If a signal's energy is finite, P = 0.

(2) If a signal's energy is infinite, its power may or may not be zero.

(3) RMS value is the square root of the power.

Examples:

- (1) The average power of a sinewave is  $\frac{A^2}{2}$ .
- (2) What does the following compute?

$$E(n) = E(n-1) + \alpha x^2(n)$$

ELECTRICAL AND COMPUTER ENGINEERING

### Transforms

The z-transform of a discrete-time signal is defined as:

$$X(z) \equiv \sum_{n = -\infty}^{\infty} x(n) z^{-n} \qquad \qquad x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

The Fourier transform of x(n) can be computed from the *z*-transform as:

$$X(\omega) = X(z)\Big|_{z = e^{j\omega}} = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n}$$

The Fourier transform may be viewed as the z-transform evaluated around the unit circle.

The Discrete Fourier Transform (DFT) is defined as a sampled version of the Fourier shown above:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}, \qquad k = 0, 1, 2, ..., N-1$$

The inverse DFT is given by:

$$x(n) = \sum_{n=0}^{N-1} X(k) e^{j2\pi kn/N}, \qquad n = 0, 1, 2, ..., N-1$$

The Fast Fourier Transform (FFT) is simply an efficient computation of the DFT.

Note that these are not the only transforms used in speech processing (wavelets, Wigner distributions, fractals, etc.).

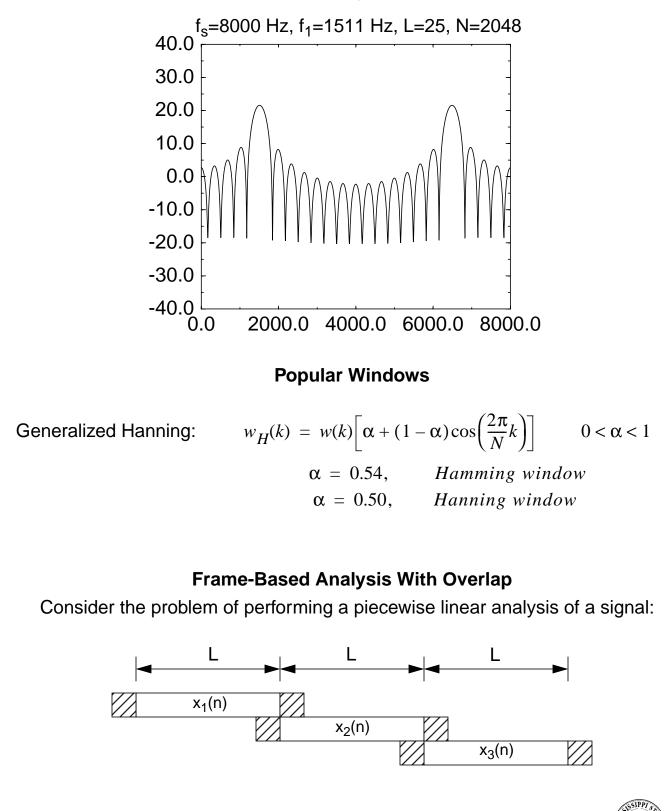


## **Time-Domain Windowing**

Let  $\{x(n)\}$  denote a finite duration segment of a signal:

$$\hat{x}(n) = x(n)w(n)$$

This introduces frequency domain aliasing (the so-called picket fence effect):



ELECTRICAL AND COMPUTER ENGINEERING

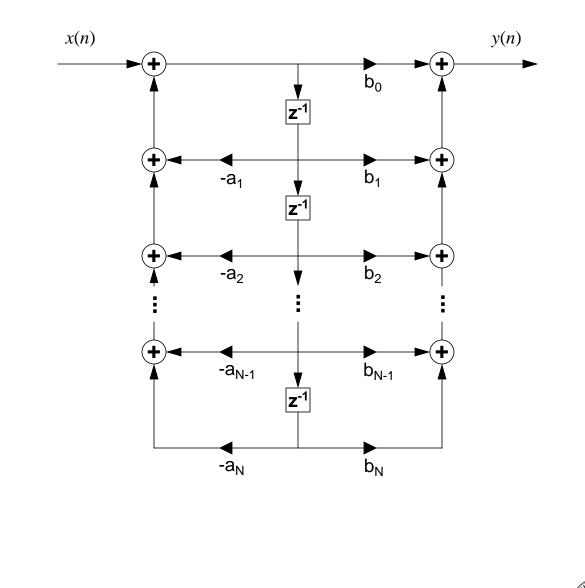
### **Difference Equations, Filters, and Signal Flow Graphs**

A linear time-invariant system can be characterized by a constant-coefficient difference equations:

$$y(n) = -\sum_{k=1}^{N} a_{k} y(n-k) + \sum_{k=0}^{M} b_{k} x(n-k)$$

Is this system linear if the coefficients are time-varying?

Such systems can be implemented as signal flow graphs:



## Minimum Phase, Maximum Phase, MIxed Phase, and Speech Perception

An FIR filter composed of all zeros that are inside the unit circle is minimum phase. There are many realizations of a system with a given magnitude response; one is a minimum phase realization, one is a maximum-phase realization, others are in-between. Any non-minimum phase pole-zero system can be decomposed into:

$$H(z) = H_{min}(z)H_{an}(z)$$

It can be shown that of all the possible realizations of  $|H(\omega)|$ , the minimum-phase version is the most compact in time: Define:

$$E(n) = \sum_{k=0}^{n} \left| h(k) \right|^2$$

Then,  $E_{min}(n) \ge E(n)$  for all *n* and all possible realizations of  $|H(\omega)|$ .

Why is minimum phase such an important concept in speech processing?

We prefer systems that are invertible:

$$H(z)H^{-1}(z) = 1$$

We would like both systems to be stable. The inverse of a non-minimum phase system is not stable.

We end with a very simple question:

Is phase important in speech processing?

