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Department of Electrical and Computer Engineering
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Modern speech understanding systems merge interdisciplinary technologies from Signal
Processing, Pattern Recognition, Natural Language, and Linguistics into a unified
statistical framework. These systems, which have applications in awide range of signal
processing problems, represent arevolution in Digital Signal Processing (DSP). Once a
field dominated by vector-oriented processors and linear algebra-based mathematics, the
current generation of DSP-based systems rely on sophisticated statistical models
implemented using a complex software paradigm. Such systems are now capable of
understanding continuous speech input for vocabularies of hundreds of thousands of
words in operational environments.

In this course, we will explore the core components of modern statistically-based speech
recognition systems. We will view speech recognition problem in terms of three tasks:
signal modeling, network searching, and language understanding. We will conclude our
discussion with an overview of state-of-the-art systems, and areview of available
resources to support further research and technology development.

Tar files containing a compilation of all the notes are available. However, these files are
large and will require a substantial amount of time to download. A tar file of the html
version of the notes is available here. These were generated using wget:
wget -np -k -m
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current
A pdf file containing the entire set of lecture notes is available here. These were generated
using Adobe Acrobat.

Questions or comments about the material presented here can be directed to
hel p@isip.msstate.edu.
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LECTURE 01: COURSE OVERVIEW

Return to Main L ECTURE 01 COURSE
Introduction: OVERVIEW AND OBJECTIVES

Syllabus
Technology

Softwar e Resour ces:

iniene e « ODjectives:

Educational Resour ces:

SRSDR02 0 Learn about basic technology
Training
Short Course

Misc. Notes 0 Understand theory at a
fundamental leve

0 Relate to other theory such
pattern recognition, signal
processing, computational
Inguistics, etc.

0 Develop perspective: Arethe
approaches we use specific to
a speech signal?

« What we won't do:
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0 Computer programming
0 Computer simulations
0 Matlab exercises

0 Teach you how to tune
parameters

0 Trainyou to be speech
technologists...

e Why?
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LECTURE 01: COURSE OVERVIEW AND
OBJECTIVES

o ODbjectives.

0 Learn about basic technology
0 Understand theory at a fundamental level

0 Relate to other theory such pattern
recognition, signal processing,
computational linguistics, etc.

0 Develop perspective: Are the approaches
we use specific to a speech signal?

« What wewon't do:

0 Computer programming

0 Computer ssmulations
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0 Matlab exercises
0 Teach you how to tune parameters

0 Trainyou to be speech technologists...

e Why?
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HUMAN LANGUAGE TECHNOLOGY::
SPEECH RECOGNITION IS
MULTIDISCIPLINARY

o Acoustic
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Processing
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Pattern
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LECTURE 02: SPEECH PRODUCTION

Return to Main
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LECTURE 02: A BRIEF
OVERVIEW OF SPEECH

PRODUCTION

o ODjectives:

[]

Basi¢c speech physiology

Speech is a sound pressure
wave

Transduction to an el ectrical
signal introduces distortion

Acoustic analysis follows the
same principles used in

el ectromagnetic wave
propagation
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LECTURE 02: SPEECH PRODUCTION

0 There are many waysto view a
speech signal

0 Concatenated tube models
(linear acoustics)

This lecture contains material from
an excellent textbook on the
fundamentals of speech processing:

J. Déller, et. d., Discrete-Time
Processing of Joeech Sgnals,
MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

aswell asinformation found in the
course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
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Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.
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LECTURE 02: A BRIEF OVERVIEW OF
SPEECH PRODUCTION

o ODbjectives.
0 Basic speech physiology
0 Speech is asound pressure wave

0 Transduction to an electrical signal
Introduces distortion

0 Acoustic analysis follows the same
principles used in electromagnetic wave
propagation

0 There are many waysto view a speech
signal
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0 Concatenated tube models (linear
acoustics)

Thislecture contains material from an excellent
textbook on the fundamentals of speech
processing:

J. Deller, et. a., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.

aswedll asinformation found In the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.
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SAGGITAL PLANE VIEW
OF THE HUMAN VOCAL APPARATUS
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SAGGITAL X-RAY OF
THE HUMAN VOCAL APPARATUS
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Muscle
force
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VOCAL CORDS - SOURCE OF
EXCITATION
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LECTURE 02: SPEECH PRODUCTION

TRANSDUCTION

e Speech isasound pressure wave that must be
converted to an electrical signal, and then a
digital signal, to be processed. This
conversion process introduces distortion
(frequency response, nonlinear dynamics,
etc.).
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LECTURE 02: SPEECH PRODUCTION

WHAT DOESA SPEECH SIGNAL LOOK
LIKE?

Standard wideband spectrogram (/' = 10 kHz, T = 6 ms):

Orthographic: The  doctor examined the patient’s knees.

i ‘?'ali-

5 kHz

4 kHz

3 kHz

2 kHz

| kHz
 kHz

Time {5ecs)

Narrowband Spectrogram (f, = 8 kHz, T = 30 ms):
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LECTURE 02: SPEECH PRODUCTION
“Drown” (female)

o We often prefer to view a spectrogram using
a color visualization in which spectral log
magnitude is mapped to "temperature" (the

color that emanates from a steel bar when it is
heated):

o Here are more examples of color

spectrograms using the ever-popular Texas
| nstruments color map:
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SOUND PROPAGATION - LINEAR
ACOUSTICS

A detalled
acoustic
theory must
consider the
effects of the
following:

e [IMe
variation of
the vocal
tract shape
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. Losses due
to heat
conduction
and VISCous
friction at
the vocal
tract walls

o SOfthess
of the vocal
tract walls

« Radiation
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of sound at
the lips

« Nasa
coupling

o EXcitation
of sound In
the vocal
tract

o Letusconsider asmple case of alossless
tube:
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LECTURE 02: SPEECH PRODUCTION

WAVE PROPAGATION

For frequencies that are long compared to the dimensions of the vocal tract (less
than about 4000 Hz, which implies a wavelength of 8.5 cm), sound waves satisfy
the following pair of equations:

HusA) B dp _ du/A)
p = + grad p () e p_ﬂr
dpad g O w1 Apd), 04
0 JLat dx pfi ot ot

where

p = p(x, 1) is the variation of the sound pressure in the tube
u = u(x,t) Is the variation in the volume velocity

p is the density of air in the tube (1.2 mg/cc)

¢ is the velocity of sound (35000 cm/s)

A = A(x,t) isthe area function (about 17.5 cm long)
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HELIUM SPEECH:
RELATIONSHIP BETWEEN FREQUENCY AND DENSITY

« Deep-seadiving to depths exceeding about 140 feet of sea
water requires the use of heliox (a mixture of helium and
oxygen) as a breathing gas, rather than compressed air.

« Heliox eliminates the danger of nitrogen narcosis and reduces
the risk of decompression sickness which would otherwise be
present.

o Heliox presents another risk. The diver's speech is rendered
unintelligible because the higher velocity of sound in the
diver's vocal tract shifts the frequency components of the
diver's speech to much higher frequencies - an effect that has
been likened to the "Donald Duck" voice.

o Heliox isless dense than air or pure oxygen. Hence, the speed
of sound is greater, so the resonances occur at higher
frequencies.

« Theexcitation remains largely unchanged since flesh in your
vocal folds still vibrates at the same frequency, so the
harmonics occur at the same frequency. (There could be a
small change because the less dense Helium loads the vocal
folds a bit less than the air, but this effect is dlight.)
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LECTURE 02: SPEECH PRODUCTION

o Examplesof helium speech are aways fun to listen to.

o Descramblers are available that will perform real-time spectral
shifting.

o Such systems use real-time spectral shifting.

The information on this page comes from two sources:

K. Bryden and J. Hothi

Communications Research Centre

3701 Carling Avenue

P.O. Box 11490, Stn. H

Ottawa, ON K2H 8S2

Tel: (613) 998-2515

Fax: (613) 990-7987

Email: karen.bryden@crc.ca

URL: http://www.crc.ca/en/html/crc/tech transfer/10085

and,

J. Wolfe

School of Physics

The University of New South Wales
SYDNEY 2052

Australia

Tel: 61 2 9385 4954

Fax: 61 2 9385 6060
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Emall: JWolfe@unsw.edu.au
URL:

http://www.phys.unsw.edu.au/STAFF/ ACADEMIC/wolfe.html

Work on real-time frequency scaling can be found in several
journals including the IEEE Transactions on Speech and Audio
Processing (formerly Acoustics, Speech, and Sgnal Processsing),
and the Journal of the Acoustical Society of America.
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LECTURE 03: SOUND PROPAGATION

Return to Main LECTURE 03 SOUND
Objectives PROPAGATION

Acoustic M oddls:
Acoustic Theory

Lossless Tubes
Resonances ] ]
Loses o ODbjectives.
Lip Radiation

Nasal Cavity

L ossless Tubes:

Concatendted Tubes 0 Basic properties of lossless

Excitation Models

Two Tube Models tUbeS

Three Tube Models
Transfer Functions

igital M oddls:

Dioital Euivalents o Resonant structure of the vocal
Digital Transfer Functions
Excitation Models trmt

V ocoder Model

On-Line Resour ces:
Sound Wavesin Tubes

Tube Models 0 Articulator positions (basic
L o speech sounds) trandate to

predictable spectral signatures

0 Digital filter-based models of
the vocal tract (linear
acoustics)
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0 Relationship of the parameters
of these digital modelsto
speech recognition.

Note that this lecture is based on
material 1n this textbook:

J. Déller, et. a., Discrete-Time
Processing of Joeech Sgnals,
MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.
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LECTURE 03: SOUND PROPAGATION

LECTURE 03: SOUND PROPAGATION

o ODbjectives:
0 Basic properties of |ossless tubes
0 Resonant structure of the vocal tract

0 Articulator positions (basic speech sounds)
trandlate to predictable spectral signatures

0 Digital filter-based models of the vocal
tract (linear acoustics)

0 Relationship of the parameters of these
digital models to speech recognition.

Note that this lecture i1s based on material in this
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LECTURE 03: SOUND PROPAGATION

textbook:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.
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LECTURE 03: SOUND PROPAGATION

SOUND PROPAGATION

A detailed acoustic theory must consider the effects of the following:

« Time variation of the vocal tract shape
» Losses due to heat conduction and viscous friction at the vocal tract walls
« Softness of the vocal tract walls
« Radiation of sound at the lips
» MNasal coupling
«  Excitation of sound in the vocal tract
Let us begin by considering a simple case of a lossless tube:

p = plx.1)

Glottis
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LECTURE 03: SOUND PROPAGATION

UNIFORM LOSSLESS TUBE

For frequencies that are long compared to the dimensions of the vocal tract (less
than about 4000 Hz, which implies a wavelength of 8.5 cm), sound waves satisfy
the following pair of equations:

/Ay e dp  dlusA)
o gradp =0 el L
or
1 dp  dA : B du 1 dpd) | a4
Em+m+dn i =1 = ETI +_§:_

where
p = plx, 1) is the variation of the sound pressure in the tube
u = wix, ) isthe variation in the volume velocity
P is the density of air in the tube (1.2 mg/ce)
¢ is the velocity of sound (35000 cm/s)
A = Aix.n isthe area function (about 17.5 cm long)

Uniform Lossless Tube

If A(x, 1) = A, then the above equations reduce to:

_dp _ pou _du_ A dp
o’ Aa o o300

The solution is a traveling wave:
wx, 1) = u IU —x/e)—u(t+x/¢)

plx. 1) = %Iu I[f —xSe)y+tu(t+x/e)]

which is analogous to a transmission line:

dv L di i dv
=l & ST

What are the salient features of the lossless transmission line model?
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LECTURE 03: SOUND PROPAGATION

RESONANT FREQUENCIES OF A
LOSSLESS TUBE

where
Acoustic Quantity Analogous Electric Quantity
p - pressure v - voltage
u - volume velocity i - current
p/A - acoustic inductance L - inductance
Al(pc?) - acoustic capacitance | © - capacitance

The sinusoisdal steady state solutions are:

_ sin[QU-x)/¢l,. a
cos| Q] -x) ], . fLe]]
X)) = U L)e
. 1) cos| L3/ ¢ gltbe
where Eﬂ. = F!T;- is the characteristic iI'TIFIEdEII'IEE.
The transfer function is given by:
UL 1
0, Ly cos(S2 )
This function has poles located at every 1‘31%,131‘. Note that these
ﬂﬂﬁﬂﬂpﬂnd to the fr'E'I:]l..IE.‘I"I'EiES at which the tube becomes a 'EiLI-EII"[Ef
Q] = -
avelength: [w=~] [ =—-].
W A Y A Cay
4 Hif)

AAAA
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N N N N
0 1 kHz 2 kHz 3 kHz 4 kHz

Is this model realistic?
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EFFECTS OF LOSSES

What do we predict the effects of yielding walls to be?

Use perturbation analysis:
Alx, 1) = A (x, 1)+ 8A(x, 1)

We can develop a model that relates dA(x.t) to pressure:

m”_d“{iﬂ.s!‘.l Ef[-ﬁ.-‘f::l

+b, +k, (84) = p(x, 1)

- T
and solve for the new transfer function. But we can easily predict the effect
of this:
4 Hif)
0 1 kHz 2 kHz 3 kHz 4 kHz

What would you expect to be the effect of friction and thermal losses?
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LIP RADIATION

How is the sound pressure wave within the vocal tract coupled into the air?

() 1

Radiation from a spherical baffle Radiation from an infinite plane
baffle

Met effect is to place a complex load on the system:
JOQLR,

Z0) = ——m—
A R+ jQL,

and P L) = EL[QJU[L L)

where R = 128797 and L, = 8a/3me, and a is the radius of the opening.

This impedance acts as a short circuit at low frequencies, and an imaginary
impedance at high frequencies. The next effect on the volume velocity is to
act as a highpass filter and to attenuate low frequencies. Lip radiation
introduces a zero in the spectrum at DC and broadens the bandwidths at
higher frequencies.

4 P(.f)

AWWAWANWWAVEN

0 1 kHz 2 kHz 3 kHz 4 kHz
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NASAL COUPLING

How is the sound pressure wave within the vocal tract coupled into the air?

We also must worry about the nasal cavity, especially for labial sounds for
which the mouth is closed during sound production.

MNasal Cavity

/ .: | Nostrils

Oral Cavity

Closure

Glottis
This is the equivalent of placing a transmission line in parallel with the vocal
tract (oral cavity). What will the effect be?

5—]

Ly

il

B

The net effect is to produce a zero in the spectrum at about 1 kHz. As a
result, nasal sounds (such as "m” and "n" in American English) have very

little high frequency energy.
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PIECEWISE LINEAR APPROXIMATIONS
FOR THE VOCAL TRACT

Consider the following approximation to the vocal tract area function:

|—_I—|—I—

Aq Az Az Ay As  Ag

I__I—Ir

Recall,

¥ | .
px ) = 2—-—;[:.'&{: —x/Se) tut+xsc)l

wx, 1) = z.—i_f:—gtf:-}—z.—;_u+_1,f;-]

For the k™ section, if we apply the boundary conditions:
Pl ) = Py (0.0
s 1) = 1y (0, 8)

We can combine these two equations to show:

24

A — A
¥ k41 f k] k| -
1 i{) = | —o—o— i (- T }—|:—--—----:|n (1)
k+1 k & |
|:.-=]'&|l+.»=]‘&:| "!A-II+"!£.-

where 1, = [./¢c.
We can define a reflection coefficient for the k'™ junction:

[
- U, l{!} B "!,-!.-l I—.a-!k

T A, +4
"y l{!} [

1

It is easy to show that the reflection coefficients are bounded: -1 = Fp = 1.
The velocity can be expressed in terms of the reflection coefficients:

z.—;_ pptt) = (1 +:-k]|z.—;.f!—rk} + r'&n;[ v )

.
I % e e faa fw -~ % 1 i1 s haa ki
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Ultimately, we will relate {r, } to a discrete model of the velocity profile.
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ACOUSTIC EXCITATION MODELS

Consider a two tube approximation to the vocal tract:

L +r;
2 1 ) 14 Fr
— »—{+w| T - [-B - T2 -
H{;—[r] = HL[I]
Py r i
] —n"l
The frequencg.r response of this system is:
— LT, + 1)
U, (€2) 0.5(1+r (1 +r)e 7
I.-' [ﬂ} = = T
ua {."(.[ﬂ} o — L2, o — 32T, o — X2 T+ 12)

What does this tell us about the frequency response?
If we consider the case Foo = Fp = l:

uglt) As % Ag

— = U (t)

4 2

- | —=

For this system, the poles are located at values that satisfy the equation:

A
Eﬁlmn[ﬂ’rzj = cot(L21;)

How does this compare to a single lossless tubea?

Poles must be found through numerical analysis - nonlinear equation.
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TWO TUBE MODELS

Resonator Geometry Formant Patterns

L=17.6 cm |
F1 FE F3 F4
.. . .. *
500 1500 2500 3500
' | | | |
| | | |
_ | | | |
Ly/L, =8 Ay/A; =8 | : | |
| | |
L Fi | Fo | Fy Fy
2 1 *— *— 1 *q
[ I 320 | 1200 | 2300 3430
| | | |
| I | |
Lo/Ly =12  A/4, = 1/8 I ' I I
2 2 ! ! ! !
| ' IF, Fp | Fs F)
., o l, «
2 1 Irl- Fi I Fat Fat
I , JB0 1240 .{?zn 3350
1
| I | |
| I | |
|
Ly/L; = 10 dy/d, =8 | | | |
l ! Fy | IFE Fa | Fyq
2 1 | - ol L
[ ! 220 : :wcln zzzn: :aaﬁu
- Lty = 110 cm g | | | |
| I | |
Ly/L; = 15 Ay /A, =8 | | | |
| ! Fi | | Fs | Fa | Fy
2 1 *— _— % %
| i 260 | :199.3 | ap50 | 4130
. . I ! | |
| | |
| I F1 FE F3 | F4 I
2 1 = H— I * I
1 1630 1770 2280 1 3440 :
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|
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THREE TUBE MODELS

Resonator Geometry Formant Patterns
L=17.6 cm
F1 FE FE F4
.’F. : .’F. e
500 1500 2900 3900
| | |
f | | |
| | |
6em  6em Geom : : : :
| | F1 Fg | Fa/Fs |
* I * % I
| | | |
| | | |
| | | |
8cm Gem 4eocm | | | |
— Fyo | | FufFz ! Fy |
— e ——*——
I
1 | | * | |
| | | |
| | | |
| | | |
8 cm Gecm 3cm | | | |
—|—| Fi I I Fa | FE,J" Fq I
®% | | % | L |
| | | | | |
| | | | * |
| | | |
| | | |

invdicates the fundamental resonance
* of the front cavity
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TRANSFER FUNCTION OF
THE LOSSLESS TUBE MODEL

I.'flfﬂ} . . . L-'L-[z]

_ . In the discrete domain, we can write: F(z) = .
U A €2) Uz}
Following our derivation of the wave equation, we can express the transfer
function for a lossless tube as follows:

Recall, F(L1) =

r ;
L'k II?{!L'L.'ic—l
where
172
:]HE —F 2
|
Llz) 1 +r, 1+r,
v, = | * and Q, - k k
g - . 1/2

[ z) —rpz S 12
_I_rlﬂ; ]+IA._

The combined transfer function is a product of these matrices.
The net result is a transfer function that can be expressed as:

il
-

05(1+rg) [T (1 +rpz ™7
ko]

Viz) =
(z o

where

1 -} 1 il
D@ = [lorg]| | ;! m

We can write [Xz) in a simpler form:

M
—K
Dz) = 1- Z oL,z
k=]

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_03/lecture_03_11.html (1 of 2) [6/15/2002 10:41:44 AM]



LECTURE 03: SOUND PROPAGATION

Why is this important?
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DIGITAL SPEECH PRODUCTION
MODELS

Fecall our concatenated lossless tube model:

]'f,r_

T — T > @ ot B -
_,]i

uAl) ' (1)
Fe r Fy
T] - "f'l?" L | T

P <

.I—l"l

We can approximate this as a digital filter using the sampling thearem:

| b | Fry

— :]—p - > @ - —
uﬁ-{fﬂ"j —F i Hﬂﬂi"']
iz O F rp
+ —g

I—.l"l_

[
[

The transfer function of an N-tube model is:
M
-N/2
0.5(1+r) H (1+r,)z
&=

Miz) = D)

where

INz) = |:I —:'r;| B _]] v _:I |:LIJi|

—F'-I ko A —I'NE £

We can compute [Xz) recursively:

}'_J”{z] = 1
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Dyz) = Dy (&) +rz "Dy 2y k=12, N
Nz) = Dydz)
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ALTERNATE DIGITAL FILTER

IMPLEMENTATIONS

USING DIGITAL RESONATORS

Mote that for 4z) to have real coefficients, zeros must occur in complex conjugate

pairs. We can transform zeros in the Laplace domain:

L
, P J
e 8y atjinF,

The corresponding complex conjugate poles in the discrete-domain are:

o —g, T +f2nF,T
Iy =€ e

T -3, I | -
= ¢ ' cos(2mF, T)xje " sin(2mF T)

Mote that magnitude of the pole in the z-plane is related to the bandwidth.

We can write a transfer function as a product of these poles:

M
I"T:} = H I".’Afz}
k=]

where
e

(1-

z,|cos( 2

Vilz) = 72

|
~2 (2 -
J_|2&|mh{_?tf'#f}2 +¢& |

This is an all-pole filter. It can be realized using a number of structures:
Under what conditions is this filter stable”

-

—f- h—ttq-
7 G1 z1 Gy é:] z1 Gm
T a1(1) gz 2(1) (1) .
a1(2) EM{E}
where
G.‘l-f

| T . -
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L 7 )
I—a (l)z  —a,f2)z

ay(1) = 2fzlcosQRELT) a2 = Jg” G = 1-2Jg|cos2nFT) + |z
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EXCITATION MODELS

How do we couple energy into the vocal tract?

Air Flow —a

Viocal
Cords

‘ -+—Trachea —=-

- Viocal Tract - ‘

Muscle Force

‘) Y

Subglottal
Pressure

The glottal impedance can be approximated by:
Zg = R+ jQLg
The boundary condition for the volume velocity is:
U0, Q) = U Q) P(0, Q)/Z ()

For voiced sounds, the glottal volume velocity looks something like this:

Volume Velocity

1000 b  (ccisec)

A W

0 5 10 15 20 25
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time (ms)
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THE VOCODER (COMPLETE) DIGITAL
MODEL

fundamental p.lv
frequency
Impulse Glottal l
Train — - Fulse -
Generator Model
L
Vocal Tract Lip
Model Radiation -
WVi(z) Model
n
Random ug(n) pLE }
Moise -
Genearator
A
Notes:

« Sample frequency is typically 8 kHz to 16 kHz

» Frame duration is typically 10 msec to 20 msec

« Window duration is typically 30 msec

» Fundamental frequency ranges from 50 Hz to 500 Hz

* Three resonant frequencies are usually found within 4 kHz bandwidth
« Some sounds, such as sibilants ("s") have extremely high bandwidths

Questions:
What does the overall spectrum look like?

What happened to the nasal cavity?
Wikat ie tha farm AF W T2
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Return to Main

Objectives

Transduction:
Sound Pressure Level

Physiology of the Ear

Per ception:
Psychoacoustics
Equal Loudness
Bark and Mel Scales

Comparison

On-Line Resour ces:
Signal Modeling
Bilinear Transform
Auditory Web
Auditory.Org

LECTURE 04: HEARING
PHYSIOLOGY

o ODbjectives.
0 Basic physiology

0 Frequency response
Implications

0 Nonlinear frequency warping

0 Bark and Méel scales

Note that this lecture is primarily
based on material from the course
textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
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Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

In addition, information from:

D. O'Shaughnessy, Soeech
Communications. Human and
Machine, |EEE Press, |ISBN:
0-7803-3449-3, 2000.

has been used for the first dide.
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LECTURE 04: HEARING PHYSIOLOGY

o ODbjectives:
0 Basic physiology
0 Frequency response implications
0 Nonlinear frequency warping

0 Bark and Mdl scales

Note that this lecture is primarily based on
materia from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice

Hall, Upper Saddle River, New Jersey, USA,
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ISBN 0-13-022616-5, 2001.
|n addition, information from:

D. O'Shaughnessy, Soeech Communications:
Human and Machine, |EEE Press, | SBN:
0-7803-3449-3, 2000.

has been used for the first dlide.
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SOUND PRESSURE LEVEL

s

Annoyance

Intensity (dB)

20 51]' llélﬂ EI.'III.'I
Frequency (Hz)
Key points:

o Theear isthe most sensitive human organ.
Vibrations on the order of angstroms are used
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to transduce sound. It has the largest dynamic
range (~140 dB) of any organ in the human
body.

o Thelower portion of the curveisan
audiogram - hearing sensitivity. It can vary up
to 20 dB across listeners.

o Above 120 dB corresponds to your favorite
heavy metal rock and roll band (or standing
under a Boeing 747 when It takes off).

« Typical ambient office noiseis about 55 dB.

o Three common weighting scales exist for
Intensity - A (SPL in the range 20 to 55 dB),
B (SPL intherange 55to 85 dB), and C (85
dB or more). A weighting Is used most often
IN speech research (and by the government
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when setting regulations).
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PHYSIOLOGY OF THE EAR

Key points:

o Three main sections. outer, middle, and inner.
The outer and middie ears reproduce the analog
signal (impedance matching); the inner ear
transduces the pressure wave into an electrical

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_04/lecture_04_02.html (1 of 3) [6/15/2002 10:41:47 AM]



LECTURE 04: HEARING PHYSIOLOGY

signal.

o Theouter ear consists of the external visible part
and the auditory canal. The tubeis about 2.5 cm
long.

o Themiddle ear consists of the eardrum and three
bones (malleus, incus, and stapes). It converts
the sound pressure wave to displacement of the
oval window (entrance to the inner ear).

o Theinner ear primarily consists of afluid-filled
tube (cochlea) which contains the basilar
membrane. Fluid movement along the basilar
membrane displaces hair cells, which generate
electrical signals.

e Thereareadiscrete number of hair cells
(30,000). Each hair cell istuned to adifferent
frequency.
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o Placevs. Temporal Theory: firings of hair cells
are processed by two types of neurons (onset
chopper units for temporal features and transient
chopper units for spectral features).

o Most mammals have ssmilar hearing systems
(cats and chinchillas are popular animals for
experimentation).
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PHYSICAL VS. PERCEPTUAL
ATTRIBUTES

o Psychoacoustics: a branch of science dealing
with hearing, the sensations produced by

sounds.

o A basic distinction must be made between the
perceptual attributes of a sound and
measurable physical quantities:

Physical  Perceptual
Quantity Quality
Intensity L oudness
Fundamental Ditch
Frequency
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Timbre

Onset/Off set
Time
Phase

Difference
(Binaural
Hearing)

Timing

L ocation

o Many physical quantities are perceived on a
logarithmic scale (e.g. loudness). Our
perception is often a nonlinear function of the
absolute value of the physical quantity being
measured (e.g. equal |loudness).



LECTURE 04: HEARING PHYSIOLOGY

o Timbre can be used to describe why musical
Instruments sound different.

o What factors contribute to speaker identity?
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EQUAL LOUNDESS CURVES

g

i

Intensity Level in dB

=5£-;!!ttl:l:ﬁ§

A\

1 1
LENWER LiMaT D& Jiuh“.rh"_w'l
1 I TN

i ] oK o

yn Frequencyin Hz

« Just Noticeable Difference (JND): The
acoustic value at which 75% of responses
judge stimuli to be difference (also known as
adifference limen).

o The perceptual loudness of asound is
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specified viaitsrelative intensity above the
threshold. A sound's loudness is often defined
IN terms of how Intense areference 1 kHz
tone must be heard to sound as |oud.
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NONLINEAR FREQUENCY WARPING:
BARK AND MEL SCALES

o Critical Bandwidths: correspond to
approximately 1.5 mm spacings along the
basilar membrane, suggesting a set of 24
bandpass filters.

o Critical Band: can berelated to a bandpass
filter whose frequency response corresponds
to the tuning curves of an auditory neurons. A
frequency range over which two sounds will
sound like they are fusing into one.

« Bark Scale:

Bark |3 m:an[ {f 76/

f
| +3.5atan -
000/ ‘u (7500) ")
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e« Md Scale:

mel frequency = 2595 logl0 (1 + //700.0)

o Comparison: filter bank implementations for
atypical speech recognizer.
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Bark Scale Mel Scale
Center Center
Freq. BW I'req. BW
Index (Hz) (Hz) (Hz) (Hz)
| 50 100 100 100
2 150 100 200 100
3 250 100 300 100
4 350 100 400 100
5 450 110 500 100
§ 5370 120 600 100
7 700 140 700 100
8 540 150 800 100
9 1000 160 900 100
10 1170 190 1000 124
|1 1370 210 1149 160
12 1 600 240 1320 | 54
13 | 850 280 1516 211
14 2150 320 1 741 242
15 2500 380 2000 278
| 6 2900 450 2297 320
17 3400 550 2639 367
I & 4000 700 3031 422
19 4800 900 3482 484
20 5800 1100 4000 556
21 7000 1300 4595 GRE
22 8500 1 800 5278 734
23 10500 2500 6063 843
24 1 3500 3500 6964 D69
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o Nonlinear Frequency Warping: The Bark
scale implies a nonlinear frequency mapping
of frequency.

14000 -

0+ : N i e
0 5 10 15 20

Filter number
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A COMPARISON OF FREQUENCY WARPING
FUNCTIONS

1
g 0.8}
E 0.6
E
g 0.4+
———  Bark scale
— — mel scale
0.2 - - - - bilinear transform 4
0

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)

o Follow thislink for more information on the bilinear
transform.
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LECTURE 05: PERCEPTION AND MASKING

Return to Main

Objectives

Masking:
Tone-Masking Noise
Noise-Masking Tone
Perceptual Noise-Weighting

Other Phenomena:
Echo and Delay

Adaptation
Timing

Summary:
Digital Models

On-Line Resour ces:
Auditory Masking
Cochlear Models
McGurk Effect

LECTURE 05: PERCEPTION
AND MASKING

o ODbjectives.

0 Freguency and temporal
masking

1 Introduce other impairments
such as echo and appreciate
how they impact speech
processing systems

0 Appreciate how we can exploit
properties of masking in
speech analysis

0 Summarize our digital
model s/approximations

Note that this lectureis primarily

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/index.html (1 of 2) [6/15/2002 10:41:50 AM]
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LECTURE 05: PERCEPTION AND MASKING

based on material from the course
textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

In addition, information from:

D. O'Shaughnessy, Soeech
Communications: Human and
Machine, |EEE Press, |ISBN:
0-7803-3449-3, 2000.

has been used.
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LECTURE 05: PERCEPTION AND
MASKING

o ODbjectives:
0 Frequency and temporal masking

0 Introduce other impairments such as echo
and appreciate how they impact speech
processing systems

0 Appreciate how we can exploit properties
of masking in speech analysis

0 Summarize our digital
model s/approximations

Note that this lecture is primarily based on
materia from the course textbook:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_00.html (1 of 2) [6/15/2002 10:41:50 AM]
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X Huang A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

In addition, information from:

D. O'Shaughnessy, Soeech Communications:
Human and Machine, |EEE Press, |SBN:
0-7803-3449-3, 2000.

has been used.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_00.html (2 of 2) [6/15/2002 10:41:50 AM]
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TONE-MASKING NOISE

o Freguency masking: one sound cannot be
nerceived If another sound close in frequency
nas a high enough level. The first sound
masks the second.

« Tone-masking noise: noise with energy Ey

(dB) at Bark frequency g masks atone at
Bark frequency b if the tone's energy is below
the threshold:

TT(b) — EN - 6.025 - 02759 + Sm(b'g)
(dB SPL)

where the spread-of-masking function S,(b)
ISgiven by:
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'S (b) = 15.81 + 7.5(b+0.474)-17.5* sqrt(1
+ (b+0.474)2) (dB)

o Temporal Masking: onsets of sounds are
masked in the time domain through a similar
masking process.

Key points:

o Thresholds are freguency and energy
dependent.

« Thresholds depend on the nature of the sound
aswell.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_01.html (2 of 2) [6/15/2002 10:41:50 AM]
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NOISE-MASKING TONE

o Noise-masking tone: atone at Bark
frequency g energy E+ (dB) masks noise at

Bark frequency b if the noise energy is below
the threshol d.:

Tn(b) = Ep - 2.025 - 0.17g + Sy(b-g) (dB
SPL)

o Masking thresholds are commonly referred to
as Bark scale functions of just noticeable

differences (JND).

S, (b-g) 4

|

|

|

g b (Barks) 3

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_02.html (1 of 2) [6/15/2002 10:41:50 AM]
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Key points:
o Thresholds are not symmetric.

o Thresholds depend on the nature of the noise
and the sound.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_02.html (2 of 2) [6/15/2002 10:41:50 AM]
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PERCEPTUAL NOISE WEIGHTING

o Noise-welghting: shaping the spectrum to
hide noise introduced by imperfect analysis
and modeling techniques (essential in speech
coding).

o« Humans are sensitive to noise introduced in
low-energy areas of the spectrum.

« Humans tolerate more additive noise when it
falls under high energy areas the spectrum.
The amount of noisetolerated is greater If it Is
spectrally shaped to match perception.

o We can smulate this phenomena using
"bandwidth-broadening":

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_03.html (1 of 3) [6/15/2002 10:41:51 AM]
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Original Spectrum

~
. -
Bandwidth-broadened spectrum  “ .

frequency

o Simple Z-Transform interpretation:

which can be implemented by evaluating the

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_03.html (2 of 3) [6/15/2002 10:41:51 AM]
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Z-Transform around a contour closer to the
origin in the z-plane: H,,(z) = H(az).

Key points:

o Used in many speech compression systems
(Code Excited Linear Prediction).

o Analysis performed on bandwidth-broadened
speech; synthesis performed using normal
speech. Effectively shapes noise to fall under
the formants.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_03.html (3 of 3) [6/15/2002 10:41:51 AM]
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ECHO THE LOMBARD EFFECT, AND
TIME DELAY

o Humans are used to hearing their voice while
they speak - real-time feedback (side tone).

« When we place headphones over our ears,
which dampens this feedback, we tend to
speak louder.

o Lombard Effect: Humans speak louder In
the presence of ambient noise.

« When thisside-tone isdelayed, it interrupts
our cognitive processes, and degrades our
speech.

o Thiseffect begins at delays of approximately

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_04.html (1 of 2) [6/15/2002 10:41:51 AM]
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250 ms.

o Modern telephony systems have been
designed to maintain delays lower than this
value (long distance phone calls routed over
satellites).

« Digital speech processing systems can
Introduce large amounts of delay dueto
non-real-time processing.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_04.html (2 of 2) [6/15/2002 10:41:51 AM]
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ADAPTATION

o Adaptation refersto changing sensitivity in
response to a continued stimulus, and is likely
a feature of the mechanoel ectrical
transformation in the cochlea.

o Neurons tuned to afreguency where energy Is
present do not change their firing rate
drastically for the next sound.

« Additive broadband noise does not
significantly change the firing rate for a
neuron in the region of aformant.

o TheMcGurk Effect isan auditory illusion

which results from combining aface
pronouncing a certain syllable with the sound
of adifferent syllable. Theillusion is stronger

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_05.html (1 of 2) [6/15/2002 10:41:51 AM]
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for some combinations than for others. For
example, an auditory 'ba’ combined with a
visual 'ga Is perceived by some percentage of
people as'da. A larger proportion will
percelve an auditory 'ma with avisual 'ka’ as
'na. Some researchers have measured evoked
electrical signals matching the "perceived"
sound.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_05.html (2 of 2) [6/15/2002 10:41:51 AM]
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TIMING

Temporal resolution of the ear is crucial.

Two clicks are perceived monoaurally as one
unless they are separated by at lest 2 ms.

17 ms of separation is required before we can
reliably determine the order of the clicks.

Sounds with onsets faster than 20 ms are
percelved as "plucks' rather than "bows".

Short sounds near the threshold of hearing
must exceed a certain intensity-time product
to be perceived.

Humans do not perceive individual

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_06.html (1 of 2) [6/15/2002 10:41:51 AM]



"phonemes" In fluent speech - they are simply
too short. We somehow integrate the effect
over intervals of approximately 100 ms.

o Humans are very sensitive to long-term
periodicity (ultralow freguency) - has
Implications for random noise generation.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_06.html (2 of 2) [6/15/2002 10:41:51 AM]
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DI GI TAL MODELSFOR PERCEPTION

o Logarithmic processing of energy.

o Energy normalization.

o Nonlinear warping of the frequency scale.
o Filter bank analysis (wavelets).

o Cochlear models have not been extremely
effective.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_05/lecture_05_07.html [6/15/2002 10:41:51 AM]



LECTURE 06: PHONETICS AND PHONOLOGY

Return to Main

Objectives

Definitions:
Phonetics and Phonol ogy

English
Transcription Standards

Comparison

Phonetics:
The Vowel Space

Formant Frequencies
Bandwidth

Summary:
Acoustic Theory

Consonants

On-Line Resour ces:
L adefoged: Sounds

L adefoged's Home Page
Phonlab
Peterson-Barney Data
HLT Centrd

LECTURE 06: PHONETICS
AND PHONOLOGY

o ODbjectives.
0 Linguistics 101

0 Understand the relationship
between acoustic models of
speech production physiology
and linguistic models of
language

0 Introduce potential acoustic
units for our speech
recognition system

0 Understand how linguistic
structure influences our
approaches to speech

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/index.html (1 of 2) [6/15/2002 10:41:52 AM]
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http://www.hltcentral.org/page-824.0.shtml

LECTURE 06: PHONETICS AND PHONOLOGY
recognition

Note that this lectureis primarily
based on material from the course
textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

|n addition, information from:

J. Deller, et. a., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

has been used.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/index.html (2 of 2) [6/15/2002 10:41:52 AM]
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LECTURE 06: PHONETICSAND
PHONOLOGY

o ODbjectives.

[]

[]

http://www.isip.msstate

Linguistics 101

Understand the relationship between
acoustic models of speech production
physiology and linguistic models of
language

Introduce potential acoustic units for our
speech recognition system

Understand how linguistic structure
Influences our approaches to speech
recognition

.edu/~gao/net/2002_spring/lecture_06/lecture_06_00.html (1 of 2) [6/15/2002 10:41:52 AM]
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Note that thislectureis primarily based on
material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

In addition, information from:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publisning Co.,
|SBN: 0-7803-5386-2, 2000.

has been used.
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PH ONEMICS (PHONOLOGY) AND
PHONETICS

Some basic definitions:
o« Phoneme

0 anideal sound unit with acomplete set of
articulatory gestures.

0 the basic theoretical unit for describing
how speech conveys linguistic meaning.

0 In English, there are about 42 phonemes.

0 Typesof phonemes. vowels, semivowels,
dipthongs, and consonants.

o Phonemics:. the study of abstract units and
their relationships in alanguage

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_01.html (1 of 3) [6/15/2002 10:41:52 AM]
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o Phone: the actual sounds that are produced in
speaking (for example, "d" in letter
pronounced "l ed er).

o Phonetics: the study of the actual sounds of
the language

o Allophones: the collection of all minor
variants of agiven sound ("t" in eight versus
Iltll in lltopll)

o Monophones, Biphones, Triphones:
seguences of one, two, and three phones.
Most often used to describe acoustic models.

Three branches of phonetics:

o Articulatory phonetics. manner in which the
speech sounds are produced by the

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_01.html (2 of 3) [6/15/2002 10:41:52 AM]
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articulators of the vocal system.

o Acoustic phonetics. sounds of speech

through the analysis of the speech waveform
and spectrum

o Auditory phonetics. studies the perceptual

response to speech sounds as reflected In
listener trials.

| SSUes;

« Broad phonemic transcriptions vs. narrow
phonetic transcriptions

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_01.html (3 of 3) [6/15/2002 10:41:52 AM]
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ENGLISH PHONEMES

Vowels and Diphthongs

Consonantsand Liquids

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_02.html (1 of 2) [6/15/2002 10:41:53 AM]

Phonemes Word Description Phonemes Word Description
Examples Examples
ly feel eve, me front close b big, able, tab voiced bilabial
unrounded plosive
. P front close voiceless bilabial
ih fill, hit, lid unrounded (lax) p put, open, tap plosive
front open o voiced alveolar
aa father, ah, car |back open rounded voiceless aveolar
Dok t talk, sat plosive
open mid-bac
ah cut, bud, up rounded g gut, angle, tag  |voiced velar plosive
20 dog, lawn, open-mid back t meter alveolar flap
caught round 9 gut, angle, tag  [voiced velar plosive
. . diphthong with voiceless velar
ay tie ice, bite o Ality: aa+ ih k cut, ken, take | v
central close mid i
ax ago, comply . voiceless
(schwa) f fork, after, It | ahiodental fricative
front close-mid voiced |abiodental
ey atel da.y, tape unrounded (tense) V Vat, over, ha\/e frlcatlve
front open-mid . voiceless alveolar
eh peL berl’y, ten unrounded S Sit, cast, toss fricative
central open-mid voiced alveolar
er turn, fur, meter unrounded yi zap, lazy, haze Fricative
ow go, own, town beck d(;gse- mid th thin, nothing, |voiceless denta
roun truth fricative
a foul. how, our |9 p;_thqng wm;] dh then, father,  [voiced bilabial
quality: aa+ u scythe plosive
. diphthong with . voiceless
oy toy, coin, oll quality: ao + ih sh she, cushion, postalveolar
. wash .
back close-mid fricative
uh book, pull, good ded (1 .
unrounded (lax) h erre. azure | VOice postalveolar
uw tool, crew, moo |back close round genre, fricative
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http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_02.html (2 of 2) [6/15/2002 10:41:53 AM]

| lid aveolar |aterd
approximant
| dbow, sail  |Velar lateral
approximant
r red, part, far retroflgx
approximant
palatal sonorant
y yacht, yard glide
W with. aw |abiovelar sonorant
» avay glide
hh help, ahead, voiceless glottal
hotel fricative
m mat, amid, am |biliabial nasa
n no, end, pan alveolar nasal
ng sing, anger velar nasal
ch chin, archer, voiceless alveolar
march affricate: t + sh
h o ile edae voiced alveolar
J 10y, agil€, Q€ | ttricate: d + zh
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TRANSCRIPTION STANDARDS

Major governing bodies for phonetic alphabets:

| nter national Phonetic Alphabet (I PA): over 100 years of history
ARPADet: developed in the late 1970's to support ARPA research
TIMIT: TI/MIT variant of ARPADbet used for the TIMIT corpus

Worldbet: developed by Hieronymous (AT& T) to deal with multiple
languages within asingle ASCII system

Unicode: character encoding system that includes IPA phonetic symbols.

Hereis achart classifying sounds using the I PA:

THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993)
CONSONANTS (PULMONIC)

Bilabial | Labiodental| Dental | Alveolar | Postalveolar| Retroflex Palatal Velar Uvular | Pharyngeal| Glottal

Plosive D b t d f d C ¥ k (8 a G i ?|

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_06/lecture_06_03.html (1 of 3) [6/15/2002 10:41:56 AM]




LECTURE 06: PHONETICS AND PHONOLOGY

"""" £ i v VT 9 e ) e

Nasal m 1) n n n N |

Trill B I R % |
Tap or Flap r r v ;
i | D PBIE vIBBls Zif 3!8 Z|C | klhf|hA
Lot i

Approximant ¢ | 1 _] 88} ’a
e 1 1| 4| | EE

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC) SUPRASEGMENTALS SR R
Clicks Voiced implosives ]E.j&cti\rr.s : ! Primary stress e J' : LEVEL CONTOUR
O Bilabial 5 Bilabial as in:  Secondary stress ' e ér -::-r—l Ef;h}m € o A Rising
d - v er 2 =
| Denaa Dental/alveolar |0 Bilabial . g ‘ E e B V.
3 L) T
! (Post)alveolar _.': Palatal t  Dentalalveolar _ Bahiong 9 & - & 7 High rising
3 E g
=|= Palatoal veolar g Yelar k Velar TR TR e = _I i /I
” . 2 . Syllablebreak Ji.2eKt c Low € Low rising
Alveolar lateral Uvular Alveolar fricative : -, Exic W
|| Minor (foot) group € i B ] pendine
VOWELS Il Major Gntonation) group 4 Downstep A Global rise
Front Centml Back w Linking (absence of a break) 1 Upstep “  Global fall

Close 1 T T u :
[y DIACRITICS Diacritics may be placed above a symbol with a descender, e.g. I]
voiceless N1 d Breatpyieed 1) Dental t d
Close-mid € —O 00— ¢ 0 s S EEE s il
A mnrmaad q t Mennlrar wend ms h ﬂ P, f d

http://www.isip.msstate.edu/~gao/net/2002_sprmg/lecture_06/Iecture_06_03.htmI (2 of 3) [6/15/2002 10:41:56 AM]
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2

Open-mid £ CE—EI\G—A * D

&L E
Open d*(E —\‘— de D

Where symbols appear in pairs, the one to the right

represents a rounded vowel.
OTHER SYMBOLS
M\ Veaiceless labial-velar fricative G Z Alvealo-palatal fricatives

Voiced labial-velar approximant -I Alveolar lateral flap
Voiced labial-palatal approximant ﬁ Sinmltanems.r and X

Voiceless epiglotial fricative Affricates and double arlicula-
tions can be represented by two

TS g

Voiced epiglottal fricative symbols joined by a te bar if
Necessary.
Epiglottal plosive FrT
kp ts

o LY e =T s # oL TAR Y VAL z I;:. u ﬁpil.iil B ‘Ei‘
h h Ah
s T gt £ ot Lol
b i - = [ =} | =1
w et e
, More rounded :;) Labialized Sl i Nasalized c
i Less rounded ;" ] Palatalized t‘l d'] < Nasal release dﬂ
, Advanced l} Y elaized ty dv ! Lateral release d1
W g' E‘ E ha | =
_ Retracted 1 Pharyngealized L d Nisadible e 3
Centralized € ~  Velarized or pharyngealized 1
b 4 b4
Mid-centralized © | Raised l? (= voiced alveclar fricative)
| Syllabic .} , Lowered t; (ﬁ = voiced bilabial approximant)
& Non-syllabic g : Advanced Tongue Root ?
* Rhoticity v . Retracted Tongue Root F;':

For a more detailed discusion of phone mappings across languages, see
|anguage independent acoustic modeling.
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THE VOWEL SPACE

o Each fundamental speech sound can be categorized
according to the position of the articulators. Thisis
often known as the study of Acoustic Phonetics.

 PHONEMES —

i -

- — /! . _“—________
'x-‘f'wr-*'l_;_—_-_ ) / Consonants
.-'J-. I T F, 2 .
= g # 4R
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o We can characterize avowel sound by the locations of

the first and second spectral resonances, known as
formant frequencies:
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« Some voiced sounds, such as diphthongs, are
transitional sounds that move from one vowel location
to another.
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THE RANGE OF FORMANT FREQUENCIES
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THE RELATIONSHIP BETWEEN
FORMAT FREQUENCIESAND
BANDWIDTHS
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AN ACOUSTIC THEORY FOR VOWEL
PRODUCTION
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Return to Main

Objectives

Words:

Syllables
Words

Lexica Part of Speech

Morphology
Word Classes

Syntax and Semantics:
Phrase Schemata

Clauses and Sentences
Parse Trees

Semantic Roles
Lexical Semantics

Logical Form

Summary:

Integration
Word Prediction

On-Line Resour ces:
WordNet

Switchboard

Linguistic Data Consortium

LECTURE 07: SYNTAX AND
SEMANTICS

o ODbjectives:

0 Understand the role of higher
level knowledge in speech
recognition

0 Introduce how we can exploit
knowledge about the structure
of language to improve speech
recognition performance

0 Galn an appreciation for the
fields of linguistics and natural
language processing

0 Introduce alternate choices for
acoustic units
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LECTURE 07: SYNTAX AND SEMANTICS

Note that thislecture is primarily
based on material from the course
textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guideto Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

A good reference textbook on these
topicsis:

D. Jurafsky and J.H. Martin,
SPEECH and LANGUAGE
PROCESSNG: An Introduction
to Natural Language Processing,
Computational Linguistics, and
Soeech Recognition,
Prentice-Hall, ISBN:
0-13-095069-6, 2000.
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LECTURE 07: SYNTAX AND SEMANTICS

o ODbjectives:

0 Understand the role of higher level
Knowledge in speech recognition

0 Introduce how we can exploit knowledge
about the structure of language to improve
speech recognition performance

0 Gain an appreciation for the fields of
linguistics and natural language processing

0 Introduce aternate choices for acoustic
units

Note that this lecture is primarily based on
materia from the course textbook:
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X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

A good reference textbook on these topicsis.

D. Jurafsky and J.H. Martin, SPEECH and
LANGUAGE PROCESSNG: An Introduction
to Natural Language Processing,
Computational Linguistics, and Speech
Recognition, Prentice-Hall, | SBN:
0-13-095069-6, 2000.
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SYL LABLES PRIMARY DOMAIN OF
COARTICULATION?

o Acoustically
distinct.

e Thereareover
10,000 syllables
In English.

e Thereisno
universal
definition of a

syllable.

o Can be defined
from both a
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productlon and
perception )
viewpoint. G

o Centered around MCipliers
vowelsin English. ..

® Conmnants Often Quadphon esﬂﬁtphn es, etc.
spantwo syllables  {+

("ambisyllabic" - o)
"bottle").

e Threebasic
parts. onset
(Initial
consonants),
nucleus (vowsel),
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and coda
(consonants
following the
nucleus).

Syllable
Onset Rime
Nucleus Coda
, l l
str eh nx th s
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WORDS OBSERVABLE UNITSOF A
LANGUAGE?

o Loosely defined asalexical unit - thereisan
agreed upon meaning in a given community.

« |In many languages (e.g., Indo-European),
easlly observed in the orthographic (writing)
system since it Is separated by white space.

« Inspoken language, however, thereisa
segmentation problem: words run together.

e Syntax: certain facts about word structure
and combinatorial possibilities are evident to
most native speakers.

o Paradigmatic: propertiesrelated to meaning.
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o Syntagmatic: properties related to constraints
Imposed by word combinations (grammar).

o« Word-level constraints are the most common
form of "domain knowledge" in a speech
recognition system.

o N-gram models are the most common way to
Implement word-level constraints.

« N-gram distributions are very interesting!
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LEXICAL PART OF SPEECH:

L exicon: alphabetic arrangement of words and their definitions.
A term often used to describe the list of allowable words for a
speech recognition system.

Lexical Part of Speech: A restricted inventory of word-type
categories which capture generalizations of word forms and
distributions ("dog" and "cat" are nouns and animals).

Part of Speech (POS): noun, verb, adjective, adverb,
Interjection, conjunction, determiner, preposition, and pronoun.

Proper Noun: names such as"Velcro" or "Spandex". Pose a
very challenging problem for speech recognition because of the
lack of pronunciation rules (e.g., "Nyugen", " Sorbet").

Open POS Categor ies.

Tag DescriptionFunction Exampl

Named
N Noun entity

cat
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' Event or
V Verb .
condition

Ad] Adjective Descriptiveyelow

Adv Adverb  Mannerof
action

forget

quickly

Interjection Reaction

o Closed POS Categories. some level of universal agreement on
the categories (e.g, conjunction, determiner, preposition).

o Penn Treebank: the LDC's Penn Treebank is one of the most
ambitious projects to date in which large amounts of data have
been categorized.

o Wordnet: Princeton's Wordnet is another very important and
ambitious project to develop an on-line lexical reference
system.
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MORPHOLOGY IMPORTANT IN
SPECIALIZED SUB-LANGUAGES

M or pheme: adistinctive collection of
phonemes having no smaller meaningful parts
(e.g, "pin” or "s' in "pins’).

Morphemes are often words, and in some
languages (e.g., Latin), are an important
sub-word unit. Some specific speech
applications (e.g. medical dictation) are
amenable to morpheme level acoustic units.

| nflectional M orphology: variations in word
form that reflect the contextual situation of a
word, but do not change the fundamental
meaning of the word (e.g. "cats' vs. "cat").

Derivational M orphology: agiven root word

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_07/lecture_07_04.html (1 of 2) [6/15/2002 10:42:02 AM]



LECTURE 07: SYNTAX AND SEMANTICS

may serve as the source for new words (e.g.,
"racia" and "racist” share the morpheme
"race", but have different meanings and part
of speech possibilities). The baseform of a
word Is often called the root. Roots can be
compounded and concatenated with
derivational prefixesto form other words.
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WORD CLASSES: A STATISTICAL
APPROACH

o« Word Classes. Assign wordsto similar
classes based on their usage in real text
(clustering). Can be derived automatically
using statistical parsers.

o Typically more refined than POS tags (all
words in a class will share the same POS tag).
Based on semantics (meaning).

o Word classes are used extensively In
language model probability smoothing.

o Examples:

0 {Monday, Tuesday, ..., weekends}
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0 {great, big, vast, ..., gigantic}

0 {down, up, left, right, ..., sideways}
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PHRASE SCHEMATA

o Syntax: Syntax isthe study of the formation of sentences
from words and the rules for formation of grammatical
sentences.

o Syntactic Constituents. subdivisions of a sentence into
phrase-like units that are common to many sentences.
Syntactic constituents explain the word order of a
language ("SOV" vs. "SVO" languages).

o Phrase Schemata: groups of words that have internal
structure and unity (e.g., a"noun phrase" consists of a
noun and its immediate modifiers).

o Example: NP -> (det) (modifier) head-noun
(post-modifier)

Head
NPDetMod Noun Post-M od
1 the authority &'
government
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CLAUSES AND SENTENCES

o A clauseisany phrase that has both a subject
(NP) and averb phrase (VP) that has a
potentially independent interpretation.

o A sentencelisasuperset of aclause and can
contain one or more clauses.

o Sometypical types of sentences.

Type Example
Declarative | gave her
a book.
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vesNo
Question book?

What did
Wh-Question you give

her?

Did you
Alternative give her a
Question book or a

knife?

Y Ou gave
Tag Question it to her,

didn't you?
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She was
Passive given a
book.

It must
have been
a book that
she got.
Hasn't this
been a
great
birthday!

Cleft

Exclamative

. Give me
mperative the book.
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PARSE TREES

o Parse Tree: used to represent the structure of a
sentence and the relationship between its constituents.

o Markup languages such as the standard generalized
markup language (SGM L) are often used to represent a
parse tree in atextual form.

o Example:

S
IL 15! xuhj|
Ty .
NP
[case: uhr|
['h.t N W Det ""4
Orthographic: The doctor examined 1hL patient’s knees.
o Al m . I
Phonetic: dhexd A k t exrl z a m | nddhexpHelsh | nts n 1 z
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SEMANTIC ROLES

o Grammatical rolesare
direction of action (e.g.,

often used to describe the
subject, object, indirect object).

e« Semanticroles, aso known as caserelations, are used to
make sense of the participantsin an event (e.g., "who did

what to whom").

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_07/le

Role Description
Agent cause or Inhibitor of
J action
. undergoer of the
Pat] ent/ThemeaCti on
nstrument how the action IS
accomplished
to whom the action
Goa s directed
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Result

result or outcome of
the action

[]

L ocation

location or place of
the action

Example:

"The doctor examined the patient's knees"

S

Syntactic: \.-"P

|case: uh_||

NP
[case:obj]

Det v Det
Orthographic: ”'JL doctor examined 1hL patient’s knees.

N A EM N <
Phonetic: dhexd A kit exrl gz a ml nddhexpHedlsh I nts n i z
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LEXICAL SEMANTICS

o Lexical Semantics. the semantic structure associated with aword,
as represented in the lexicon.

o Taxonomy: orderly classification of words according to their
presumed natural relationships.

o Examples:
0 IsA Taxonomy: acrow isahbird.
0 Has-a Taxonomy: acar has awindshield.

0 Action-lnstrument: aknife can cut.
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« Words can appear in many relations and have multiple meanings and

USES.

o There are no universally-accepted taxonomies:

/lecture_07_10.html (2 of 3) [6/15/2002 10:42:03 AM

]

Family Subtype Example

ContrastsContrary old-young
Contradictory alive-dead
Reverse buy-sell
Directional front-back
Incompatible happy-morbid
AsSymmetric hot-Cool
contrary



LECTURE 07: SYNTAX AND SEMANTICS

Attribute smilar rake-fork
Case  Agent-action artist-paint
RelationsA gent-instrument farmer-tractor
Agent-object baker-bread
Action-recipient Sit-chair

Action-instrument cut-knife
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LOGICAL FORMS

o Logical form: ametalanguage in which we
can concretely and succinctly express all
linguistically possible meanings of an
utterance.

o Typically used as arepresentation to which
we can apply discourse and world knowledge
to select the single-best (or N-best)
alternatives.

o An attempt to bring formal logic to bear on
the language understanding problem
(predicate logic).

o Example:
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0 If Romeo is happy, Juliet is happy:
Happy(Romeo) -> Happy(Juliet)

0 "The doctor examined the patient's knees'

W I R b
Type: caregiwer [trpe caregive] type: patient. ty¥pe: bodypart
argd: obj
[rpe bodypart]

Orthogy aphic: The  doctor exarnined the paflent's knees.
FPhonemic Adhi# dAaktex # Izzawmexn+d #Jdhi# peshexnt+z # ni+z #

AT ZEAASA LTV /0
Phonetic: dhexd A& Kkt ezl gz 2 mlnoddexpHeIsh I otz o i
Phanetic: dhexd A Kt exxI gz 3¢ mlnddhexpHe-Izsh I nts o i z

Tine (zecs)
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INTEGRATION OF SPEECH AND NATURAL
LANGUAGE

S
Syntactie: /’/\ VP
|case: HIJhJ]
|Lﬂ..HL obj]
v
Orthographie: The  doctor examined the patient’s knees.
Phonetic: dhexd A kit exr] gz ae m!| nddhexpHe-lsh | nts n 1 z

5kHz
4 kHz

3 kHz

2 kHz
I kHz

0 kHz

0 0.5 l 1.5 2
Time (secs)
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WORD PREDICTION PLAYSA KEY
ROLE

(G, Cr_1, ..

Recognized Symbols: P3| O = argmﬁx|THFW;
i

Langnage hodel: FﬂWi} T

‘ . PO, [WoPWy | Prediction
Bearch Algonthms: F{W | D,) =

FIO)
}

3

| P ;
Partern hdatching: [WI, Filde, Qe 1, |WE}] -
Signal Model: Pile|(W, _ 1, W, W,, 1) -—

}

—— ot~
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LECTURE 08: SAMPLING

Return to Main

Objectives

Overview:

Components
Typica Front End

Sampling:
Theorem
Derivation
Graphical
Reconstruction
Bandlimited
Aliasing
Overlapping Frames
Conditioning

On-Line Resour ces:
Signal Modeling
Applet
Theorem

LECTURE 08: SAMPLING

o ODbjectives:

[]

Introduce a typical front end
Understand sampling issues

Understand the impact of
allasing

Appreciate the need for signal
preprocessing

Understand frame-based
processing

A good reference textbook on these
topicsis:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/index.html (1 of 2) [6/15/2002 10:42:05 AM]


http://www.isip.msstate.edu/publications/journals/ieee_proceedings/1993/signal_modeling/
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http://mathworld.wolfram.com/SamplingTheorem.html

J.G. Proakis and D.G. Manolakis,
Digital Sgnal Processing:
Principles, Algorithms, and
Applications, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-373762-4,
1996 (third edition).
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LECTURE 08: SAMPLING

LECTURE 08: SAMPLING

o ODbjectives:
0 Introduce atypical front end
0 Understand sampling Issues
0 Understand the impact of aliasing

0 Appreciate the need for signal
preprocessing

0 Understand frame-based processing
A good reference textbook on these topicsis.

J.G. Proakisand D.G. Manolakis, Digital
Sgnal Processing: Principles, Algorithms,

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_00.html (1 of 2) [6/15/2002 10:42:05 AM]
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and Applications, Prentice Hall, Upper Saddle
River, New Jersey, USA, ISBN:
0-13-373762-4, 1996 (third edition).

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_00.html (2 of 2) [6/15/2002 10:42:05 AM]



LECTURE 08: SAMPLING

SIGNAL PROCESSING COMPONENTS
IN SPEECH RECOGNITION

Speech Digital Signal Processing

Spectral
Shaping

Conditioned Signal

Spectral
Analysis

Spectral Measurements

Spectral
Modeling

Spectral Parameters

Parametric
Transform

{1

Observation Vectors Speech Recognition

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_01.html [6/15/2002 10:42:05 AM]
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A TYPICAL SPEECH RECOGNITION FRONT END

. ”‘I“"“' !J“‘H‘”' I:Il> ffr Incorporate knowledge of the
Transform
Input Speech

nature of speech sounds in
{Measure features 100 Cepstral
times per sec. Analysis

measurement of the features.
+ Use a 25 msec window for

frequency domain analysis.

« Utilize rudimentary models of
human perception.

Perceptual Time Time
Weighting Derivative Derivative

Energy Delta Energy Delta-Delta Energy
+ + +
Mel-Spaced Cepstrum Delta Cepstrum Delta-Delta Cepstrum

+ Include absolute energy and
12 spectral measurements.

+ Time derivatives to model
spectral change.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_02.html [6/15/2002 10:42:06 AM]
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THE SAMPLING THEOREM

Theorem: If the highest frequency contained in
an analog signal x(t) is F,5 = B, and the signal
IS sampled at a frequency F¢ > 2B, then the

analog signal can be exactly recovered from its
samples using the following reconstruction
formula

L

_ e . sm((w/T)(f—nT))
x (1) Z x, (nT) (n/T)(t—nT)

H = —oa

Note that at the original sample instances (t =
nT), the reconstructed analog signal 1s equal to
the value of the original analog signal because
the sinc functions take on values of zero at
multiples of the sample period. At times between
the sample instances, the signal is the weighted
sum of shifted sinc functions.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_03.html [6/15/2002 10:42:06 AM]
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DERIVATION OF THE SAMPLING
THEOREM

Recall a discrete-time signal is given by:

:L{.rr}=;t”f.-:r?']._ —oo < ff < oo
Analog x A0 x(n) i) Y2 x' (1)
Signal
Pre- Digital Post-
Filter G Processor D/A Filter

If x () is an aperiodic signal with finite energy, its spectrum is given by:
X0 = | x (e ™ ay

— i}

The signal can be recovered from the inverse Fourier transform:

The spectrum of the discrete-time signal is given by:
X(w) = E ximye '
e —
or, equivalently,
X(H = Y xme’™
fl = —oa
The signal can be recovered from its spectrum:
T
) = EJFIJ.X[ T e )
—T
1/2
= | xne*ar
1,2
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Recallthat r = nT = _.r'r- This allows us to write the inverse transform as:

F_II_
x(m)=x (nT) = Txuw'}e""m“{’rf‘p*}dﬁ'
From this, we can conclude that -
172
J‘ X{LJ}E"‘T“’”’;.{;' _ J-:’[},{P'JE'HM{HF’}E-’J”
152 —na

We know that f = ;—- We can make a change of variables and write:

5

Fo/l2
I N f.Ff"F] 2n(F/F,
J X[ ; g 4] JI (Fe 2l F/ JI.[H"
—F /2 : —oa
We can express the integral on the right as a sum of integrals:
5 w  (k+1/2)F,
. finFsF, . fimm{F/F)
J X (F)e aFr= Y J X (F)e dF

k= o0 (k—1/2)F,
By interchanging the order of integration and summation, and invoking the
periodicity of the complex exponential, we can write:
F /2 F /2

F ,rEII:.re{FfFJ-
j IE-—J j {
_F2 " _F 2Lk

By equating terms inside the integral, we have:

2 FrF
Y X (F-kF }’M ¥

—

't

F . e
x:;:j = F, E X (F—kF)

K= _on

What does this imply about the spectrum of the sampled signal?
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GRAPHICAL INTERPRETATION OF THE
SAMPLING THEOREM

Original Signal

A X/ f.= 2B
Sufficiently Sampled

< P ad Nl s M,

-4B -3B -2B -B B 2B 3B 4B
e f, =258
Oversampled & X(f)
s @) | /\h/\ ! ! /\/\ ks
4B -3B -2B -B B 2B 3B 4B
| f, =158
Undersampled (Aliasing) b XU
- L 1| AM\/\ G
-3B -2B - 3B 4B
kX
R M m L | [ m A
4B -3B -2B -B B 2B 3B 4B

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_05.html [6/15/2002 10:42:07 AM]



LECTURE 08: SAMPLING

RECONSTRUCTION VIA SINC(X)
INTERPOLATION

Recall our equation for reconstruction:

L

_ » o sm{(w/T)(f—nT))
x (1) Z x, (nT) (n/T)(t—nT)

H = —oa

This can be viewed as an interpolation process
using shifted and delayed Sinc(x) functions:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_06.html (1 of 2) [6/15/2002 10:42:07 AM]
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1.0

0.5

0.0 k

_{:|5 1 L L . 1 A b 1 i 1 F A h " 1 . . \ \
-10.0 -5.0 0.0 5.0 10.0

0.0 5.0 T R

Note that these Sinc functions are exactly zero at
the original sample instances.
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AN INTUITIVE EXPLANATION OF THE
SAMPLING THEOREM FOR
BANDLIMITED SIGNALS

Consider the following system:

b X,
AN VAN
.‘lu[.ﬂ W) -B, -B, B, B,
b Y(f)

cos2 ud o /\ /\ /\
- fir-

We can sample a bandpass signal at a frequency lower than its “Nyquist
rate" by converting it to a lowpass signal.

In general, we suspect we can directly sample the signal, but we to select a
sample frequency such that folding does not cause aliasing.

A general guideline is:

2B<F_ <48
A more rigorous equation is:
F, = 2B
where
.~ F +8/2
o= B
anl
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r = L' ] (greatest integer less than or equal to r)

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_07.html (2 of 2) [6/15/2002 10:42:08 AM]



TYPICAL SAMPLING FREQUENCIES
IN SPEECH RECOGNITION

o 8kHz: Popular in digital telephony. Provides
coverage of first three formants for most
speakers and most sounds.

o 16 kHz: Popular in speech research. Why?
e 6.67 kHz: Why?

o Sub 8 kHz Sampling: Can aliasing be useful
In speech recognition? Hint: Consumer
electronics.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_08.html (1 of 2) [6/15/2002 10:42:08 AM]
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Orthographic: The  doctor examined the patient’s knees.

5 kHz

4 kH=

3 kH=

2 kHz

| kHz

0 kHz

Time {s2c5)
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A FRAME-BASED ANALYSISIS
ESSENTIAL

o Consider the problem of performing a
piecewise linear analysis of asignal:

frame frame,,
il il =
WINndow
ARSI IAII A 7
R RN NN
Shared|Data Mew Dala
1 |
— Y
-~ ] ] ] ] ] ] ] ] .
B L =R = o= | o L
;::;" }51i | a-"":,.a
7 < Xa(n) «-"ﬁ
;::;" }53:' i a-"":,.a
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o Thisismost often implemented in hardware
using acircular buffer.

o If weassumethe signal is piecewise
stationary, we can analyze the signal using a
sliding window approach. Two key
parameters are:

10 Frame Duration: how often we perform
the analysis.

0 Window Duration: how many samples
we use for the analysis.

o Recall weintroduced ssimilar parameters for
the spectrogram. Typical values are a10 ms
frame duration and 25 ms window duration.

Why?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_09.html (2 of 3) [6/15/2002 10:42:08 AM]
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o Important questions:

0 How does the window duration impact the
spectral resolution?

0 Why so much overlap?

0 Why do we use a 10 ms frame duration?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_08/lecture_08_09.html (3 of 3) [6/15/2002 10:42:08 AM]
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SIGNAL CONDITIONING COMPENSATES

FOR
MICROPHONE AND CHANNEL
CHARACTERISTICS

Frorm Microphons Ta Speciral Analyzer
Analog ASD Corveerlsai Digital
Arili-Aliasirg — - | (LinearMonlinear) — Filter —
Fitesr Filter | Preem phasia)
Frequency Response of a CODEC Preemphasis Filter
Magnitucs (8|

Aterualion (H8)
100

o J‘(’H
By =414 ‘:fﬁ-"

=100
201 J‘,r

By = 1S -._._f
=400 //
T

A =-10
et A | /"/
T /

" 7 { il
i [1] TH] LA TOHH) | 10 o0 1080 L0000

Frecumncy |Log - He}
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LECTURE 09: RESAMPLING

Return to Main

Objectives

Direct Forms:
| nterpol ation

Ratios of Integers

Conjugate Filters:
Two-Band

Design

Example:
Speech Waveform

Filterbank

On-Line Resour ces.
Signal Modeling
Multirate
Software

LECTURE 09: RESAMPLING

o ODbjectives.

L earn how to change the
sample rate of asignal

Understand how this can be
Implemented using time
domain interpolation (based on
the Sampling Theorem)

Understand how this can be
Implemented efficiently using
digital filters

Introduction to digital filter
banks

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/index.html (1 of 3) [6/15/2002 10:42:09 AM]
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LECTURE 09: RESAMPLING

A good reference textbook on these
topicsis.

J.G. Proakisand D.G. Manolakis,
Digital Sgnal Processing:
Principles, Algorithms, and
Applications, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-373762-4,
1996 (third edition).

The course textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

has a detailed explanation of filter

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/index.html (2 of 3) [6/15/2002 10:42:09 AM]



LECTURE 09: RESAMPLING

banks (sections 5.6 and 5.7).
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LECTURE 09: RESAMPLING

o ODbjectives:

0 Learn how to change the sample rate of a
signal

0 Understand how this can be implemented
using time domain interpolation (based on
the Sampling Theorem)

0 Understand how this can be implemented
efficiently using digital filters

0 Introduction to digital filter banks
A good reference textbook on these topicsis.
J.G. Proakisand D.G. Manolakis, Digital

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_00.html (1 of 2) [6/15/2002 10:42:09 AM]



Sgnal Processing: Principles, Algorithms,
and Applications, Prentice Hall, Upper Saddle
River, New Jersey, USA, | SBN:
0-13-373762-4, 1996 (third edition).

The course textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

has a detailed explanation of filter banks
(sections 5.6 and 5.7).

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_00.html (2 of 2) [6/15/2002 10:42:09 AM]
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INTERPOLATION USING THE
SAMPLING THEOREM

How do we change the sample frequency of a signal:

Method 1: Use the sampling theorem (Lecture No. 3)

Define ¥ as the original sample frequency, and F}j as the new
¥ A

1
F.
sample frequency. Recall our interpolation function, where 8 = —.-Ji
sin( 2wl
Nl = ————————
&) bt

.1{1:} may be expressed as:
.
A

A{i}:} = E A{%}gi%—%]-
F & £ F

Y ft ™= —oo X 5 b3

What are the disadvantages of this method?

Method 2: Downsampling a signal by dropping samples

Consider the signal x(n). What is the spectrum of win) = x(Ln)?

viH)

X(n)

M M M M M
¢ ¢ ¢ ¢ ¢

)
) o
L

S
o

Recall the frequency-scaling property:

=%

Flm) = E 1_(,m]f—;mm
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i —ig

E (Ln)e joonl

it —

= X{w/L)
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INTERPOLATION AND DECIMATION
USING RATIOSOF INTEGERS

o

=

l.w{u.’c."}[ﬁ]

F s mew)

x(n) Zero-Stuff: vin) L[%F z(n) DEG;TE'T'E y(n)
Fs(old) e Fs(oia) D Samples Fsinew)
A(f) V() l new sample frequency
R "; I ] g
-'Ir.'.'frJ."c.'“_I -"r.-.'f-en'.:.l'1 -'F.*.{r.l.’d}“
Z(f) Y{(f)

-'III.'.'frJ."c.""_I -'F-.ﬁ.ir.'.rc.f}"r’r
D

-'III.'.'frJ."c.""_I ’r'p {uf.-.."j-{’ll

Mote that the LPF is run at the decimation rate of D!

Questions:
* Under what conditions will this introduce no distortion?

* How do we implement this -E!fﬁC:iEl'lTJy’?
* How should we convert from 8 kHz to 6.4 kHz??
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- What about the infamous 44.1 kHz CD sample frequency?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_02.html (2 of 2) [6/15/2002 10:42:11 AM]
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DIGITAL FILTERBANKSBASED ON
RESAMPLING

Consider the two-band filterbank shown below:

xm)
x{ﬂ) - fn{ﬂ] +2 o — - *2 g“{ﬂ'j
X[n]
+
x,[m]
> fin) v2 [ T 42 g,(n)
Analysis ; Synthesis

where f(n) and g(n) are complementary low pass and
high pass filters:
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3
CA
1

Jolm) fi(n)
8,(1) g,(n)
Lowpass filter Highpass filter
Y .
0 n/2 Frequency T

« To0 achieve perfect reconstruction of x(n), we need
Ideal filters, which are not realizable.

o Isit possibleto build afilterbank that has perfect
reconstruction?

o Why might such afilterbank be useful for speech
recognition?
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DESI GN OF CONJUGATE QUADRATURE
MIRROR FILTERS

If we specify f1(n), gg(n), and g,(n) as afunction
of fy(n), we can derive a compact design
procedure:

1. Designa(2L - 1) tap half-band linear phase
ow-pass filter p(n) (use Parks-McClellan or
Kalser Window approach).

2. Factor P(z) = F,(2) Fy(z'1) by finding roots.

3. Compute the remaining filter impulse
responses as follows:

f1(n) = (-1)"fo(L-1-n)
Jo(n) = Tp(L-1-n)
g1(n) =1f,(L-1-n)

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_04.html (1 of 2) [6/15/2002 10:42:16 AM]
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What are the advantages of this approach?

There are several popular approachesto
Implementing such digital filterbanks. This
genera area of research is known as multirate
signal processing. What are the merits of a
frequency domain approach?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_04.html (2 of 2) [6/15/2002 10:42:16 AM]
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EXAMPLE OUTPUT FROM A DIGITAL

1.0

1.0

0.1

0.1

FILTER BANK

=3, 537
0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0
Time (secs)

o Digital filter bank outputs for a speech signal
shown in (&), consisting of the word speech.
In (b), the output from a filter with a center
frequency of 250 Hz and a bandwidth of 100
Hz is shown. In (c), the output from afilter

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_05.html (1 of 2) [6/15/2002 10:42:18 AM]
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centered at 2500 Hz i1s shown.

« Note that the amplitude of the output for each
filter varies depending on the nature of the
sound. The final ch sound, for example, Is
mainly composed of high frequency
Information.
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A DIGITAL FILTERBANK

S(f)

Note that an FFT yields frequency samples at
(K/N)fe.

o Oversampling provides a smoother estimate
of the envelope of the spectrum.
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o Other efficient techniques exist for different
frequency scales (e.g., bilinear transform).

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_09/lecture_09_06.html (2 of 2) [6/15/2002 10:42:18 AM]



LECTURE 10: ACOUSTIC TRANSDUCERS

Return to Main

Objectives

Microphones:
Condenser

Electret

Directionality:
Omnidirectional
Bidirectional
Unidirectiona
Other

Adaptive Filtering:
Echo Cancellation

Arrays

On-Line Resour ces:
Microphone Basics

Echo Cancellation Software
CAIP Arrays

LECTURE 10: ACOUSTIC

TRANSDUCERS

o ODbjectives.

[]

Introduce the basic types of
microphones

Understand microphone
Impedance and other physical
parameters

Learn how these influence the
speech signal

Introduce the concept of
adaptive filtering to improve
signal quality

| ntroduce advanced
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technology such as
microphone arrays

This material follows the course
textbook closely:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guideto Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

This textbook contains an excellent
discussion of these topics. Another
good reference source for this
materia is:

G.S.K. Wong and T.F.W.
Embleton (Eds.), AlP Handbook
of Condensor Microphones:
Theory, Calibration, and
Measurements, American

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_10/index.html (2 of 3) [6/15/2002 10:42:19 AM]
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Institute of Physics, New Y ork,
New York, USA, ISBN:
1-56396-284-5, 1995.

Thisisone of the definitive
publications on condensor
microphones.
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LECTURE 10: ACOUSTIC TRANSDUCERS

o ODbjectives:
0 Introduce the basic types of microphones

0 Understand microphone impedance and
other physical parameters

0 Learn how these influence the speech
signal

0 Introduce the concept of adaptive filtering
to Improve signal quality

0 Introduce advanced technology such as
microphone arrays

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_10/lecture_10_00.html (1 of 2) [6/15/2002 10:42:19 AM]
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This maten a follows the course textbook
closaly:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

"his textbook contains an excellent discussion of
these topics. Another good reference source for
this material Is:

G.S.K. Wong and T.F.W. Embleton (Eds.),
AlP Handbook of Condensor Microphones:
Theory, Calibration, and Measurements,
American Institute of Physics, New Y ork,
New York, USA, ISBN: 1-56396-284-5,
1995.

Thisisone of the definitive publications on
condensor microphones.
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CONDENSER MICROPHONES

A condensor microphone has a capacitor
consisting of a pair of metal plates separated by
an insulating material called adielectric:

19

- | -

One of Its platesis free to move In response to
changes in sound pressure. The sensitivity of the
microphone isrelated to its polarizing voltage
and distance of separation between these plates.

Key design eguations for this type of
microphone are:
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C = Eﬂnhzm
0-=cv,
VV = Vhv,_ /h

Thus, the sensitivity depends on the polarizing
voltage, V .., which explains why many

microphones operate at large voltages (often
100V or more).
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ELECTRET MICROPHONES

o An electret microphone is a specific type of
condenser microphone that does not require a
special polarizing voltage because its
diaphram or back plate is permanently
charged.

o Electret microphones are small, cheap,
durable, and offer good performance at high
frequencies. Most modern tel ephone handsets
use el ectrets.

o Theédectrical equivalent circuit for a
microphoneis:
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Microphone Preamplifier
Zy R,
[ }—o o -

0 O DS

0O 0

Bridging refers to maximizing the output
voltage by increasing the |load impedance
and/or decreasing the microphone impedance.

o Low Impedance microphones have an
Impedance of 100 to 300 Ohms (more
expensive); high impedance microphones
have an impedance of 600 to 1000 Ohms (less
expensive).

o Condenser microphones require a DC bias,
balanced cables (XLR) are prefered over
unbalanced lines (1/8" mini plugs) because
the cables are more resistant to thermal and
RF noise.
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o Digital and wireless microphones are popular
alternatives.
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OMNIDIRECTIONAL SENSITIVITY
PATTERNS

A microphone's directionality pattern can be
described in terms similar to what we use for
antennae. Its sensitivity can be measured as a
function of direction. Microphones can be
classified as omnidirectional (nondirectional)
and directional (e.g., bidirectional and
unidirectional).

The polar response of an ideal omnidirectional
microphones.
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A cross-sectional view of the microphone:

Mike opening

Diaphragm

reveals that the diaphragm is designed to be
sensitive to signals emanating from any
direction.
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BIDIRECTIONAL SENSITIVITY
PATTERNS

A bidirectional microphone is a noise-cancelling
microphone (such as the Sennheiser HD 414
close-talking microphone that is so popular In
speech research).

A bidirectional microphone uses properties of a
gradient microphone to achieve noise
cancellation. Sound pressure never arrives at the
front and the back of the microphone at the same
time. However, noise, which arrives from the
side, does, and hence is cancelled.
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Speech sound wave
from the front

I
[ e
1 S
|
|
|
|
|
|

- ——

Noise sound wave
from the side

These microphones have directional sensitivity
patterns:

Such microphones are very sensitive to
placement, and cannot be used interchangeably
with recognition systems (microphone
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Independence?).
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UNIDIRECTIONAL SENSITIVITY
PATTERNS

Unidirectional microphones, which are popular

INn computer applications involving desktop

microphones, are similar to close-talking
microphones:

Speech sound wave
from the front

T EN O — —
. g T

MNoise sound wave
from the side

These are often referred to as cardiod
microphones. They have the following
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sensitivity pattern:
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PIEZOELECTRIC AND OTHER TYPES OF
MICROPHONES

Microphones can be classified in terms of how
they create an electrical signal:

o Electromagnetic: Ribbons (thin metal ribbon
suspended between magnets), dynamic
(moving coil)

Output
voltage

Magnet

A Diaphragm

Coil

o Electrostatic: condensers, electrets, etc.

o Piezodectric: based on variations of electric

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_10/lecture_10_06.html (1 of 2) [6/15/2002 10:42:22 AM]



LECTURE 10: ACOUSTIC TRANSDUCERS

resistance of their sensor induced by changes
IN sound pressure. Carbon button
microphones (old AT& T handsets) and
desktop "far-field" microphones are popular
examples of these. Lower sensitivity, more
distortion, and non-flat frequency responses
are characteristics of these microphones.
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ECHO CANCELLATION

Echo cancellers are often required in speech
recognition systems due to analog impairments
present in the telephone system:

W Wire
Hybrid —@
ot 54N}

[ cue for speaker 10y

e

Automatic Speech a4
p = () . sing + (& () hin})
Recognizer - |Echo Canceller
For Speaker 10

These are Implemented using simple FIR
adaptive filtering techniques:
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Beslevnims Snal y O e | 128 1ap FR Filter |70
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Residual Emor
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x (i} . Near-end Signal
r i}, Echo

The coefficients of these filters are computed
using aleast mean-squared error approach
(LMS). Such systems are used to allow usersto
speak during a prompt (barge-in), whichisa
very important feature of a practical recognition
system. A reference implementation of a
standard FIR echo canceller is available on-line,
along with many educational resources and

conference papers on applications to speech
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recognition.
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MICROPHONE ARRAYSAND BEAM
STEERING

Question: Can we improve performance using
multiple microphones?

The goal of amicrophone array isto localize a
sound source by directing a group of
microphones to be most sensitive in a specific
direction. The procedure is completely

anal ogous to analog antennatheory.

’__f\j_idﬁ_ggangy array
L] L >—8 9 & » & ®

High-frequency armray

| 1_ | |

Low-frequency array

Seering of the array has several uses: increase
SNR, direct video in teleconferencing, enhance
the human interface (hands-free).
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Seering the array amounts to adjusting the
delays in each microphone. The most common

Implementation is the delay and sum
beamformer:

G

< =X
)

-

=

=<

-t

M,

An example of asensitivity pattern for thistype
of array Is.

Figure 10.23 Polar pattern of a microphone array with steering angle of @ =0, five micro-

phones spaced 5 cm apart for 400, 880, 4400, and 8000 Hz from lefi to right, respectively, for
a source located at 5 m.

A 3D array can be used to localize sound to a
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single point in aroom (direction and distance).
2D arrays are most commonly used to enhance
SNR. Unfortunately, performance increases
slowly as afunction of the number of
microphones (1 dB rule). Hence, this technol ogy
IS Impractical for many consumer applications.

Two microphone versions of this idea based on

adaptive filtering are popular in automotive
applications for noise suppression.
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Return to Main

Objectives

Short-Time M easur ements:;
Energy
Sums and Filters

Examples

Windows;

Spectrograms

Rectangular Windows
Frequency Response
Popular Windows
Recursive

Control Systems

On-Line Resour ces:
Signal Modeling
The HTK Book
Windows

LECTURE 11: TEMPORAL
ANALY SIS

o ODbjectives,

0 Understand the relationship
between sums and filters

0 Understand the relationship
between temporal resolution
and frequency resolution

0 Introduce common window
functions

0 Explain their use in speech
processing

0 Understand how we compute
our first recognition feature:
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energy

One of the best explanations of this
material can be found in:

_.R. Rabiner and B.W. Juang,
~undamental s of Speech
Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA,
ISBN: 0-13-015157-2, 1993.

This textbook is unfortunately out of
print. Another excellent references:

J. Déller, et. d., Discrete-Time
Processing of Speech Sgnals,
MacMillan Publishing Co., |ISBN:
0-7803-5386-2, 2000.
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LECTURE 11: TEMPORAL ANALYSIS

o ODbjectives:

0 Understand the relationship between sums
and filters

0 Understand the relationship between
temporal resolution and frequency
resolution

0 Introduce common window functions
0 Explaintheir use in speech processing

0 Understand how we compute our first
recognition feature: energy
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One of the best explanations of this material can
be found in:

L.R. Rabiner and B.W. Juang, Fundamentals
of Spoeech Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA, |SBN:
0-13-015157-2, 1993.

Thistextbook is unfortunately out of print.
Another excellent referenceIs:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publisning Co.,
|SBN: 0-7803-5386-2, 2000.
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ENERGY AND POWER

Energy:

Average Power:

Finite Energy:

Comments:

(1) If a signal's energy is finite, » = 0.

(2) If a signal's energy is infinite, its power may or may not be zero.
(3) RMS value is the square root of the power.

Examples:

(1) The average power of a sinewave is AT
(2) What does the following compute?
En) = E(n-1)+ m‘z{n}
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FINITE SUMSAND FILTERS

o Consider asimplified equation for energy:

N-1
g,
E = Z |x(n)|” n=01,..

n=1
« Wecanwritethisasadiqital filter:

x(n) = xzmj

E(n) = x(n=(N=1)+x(n=(N=2))+ ... + x(n)
N—1
2
- Z |x(n — k)|
k=10
By
Hiy= T opp ~we, g e

o What isthe frequency response of thisfilter?
(Hint: FIR)

o Arethere other ways we can implement such
afilter? (Hint: IIR)
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Consider these three approaches:

En)=FEn-1)=-x(n-(N-1))+x(n)
En) = oaFE(n—-1)+x(n)
E(n) = aE(n—-1)+PE(n-2)+x(n)
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EXAMPLES OF ENERGY
COMPUTATIONS

Amplids

f'e=3ms

i T, 10} ms
e =10 ms

ib) I 20 ms

"

T'e= 20 ms

:I -‘r-“ 30 ms
I'e= 20 ms

id) :Ir-'n 30 ms
“Hamming Window"
Ie= 20 ms

) I, = o ms
“Hamming Window"
Recursive

:‘I 50 Hz LPF

) Speech Signal

imee [gecs)
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RECANGULAR WINDOWS

Let {x(n)} denote a sequence to be analyzed. Let’s limit the duration of
{x(n)} to L samples:

n) = x(n)wim)
where w(n) is a rectangular window and is defined as

1. D=n<l-1

(, otherwise

W) =

The Fourier transform of win) is given by:

sin{m{f_ﬁl}]E— jaa (L —11/2)
sin{m/2)
The transform of 1(n) is given by:

Wiw) =

X(m) = %I Wim—w )+ Wlo+w)].

This introduces frequency domain aliasing (the so-called picket fence
effect):
f.=8000 Hz, f;=1511 Hz, L=25, N=2048

40.0
30.0 — :
20.0 — —
10.0 ! —
0.0 ! ]

-10.0

-20.0 .

-30.0 g

-A0).0)
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0.0 2000.0  4000.0 6000.0  8000.0
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TEMPORAL/FREQUENCY RESPONSE

(a} Temporal Response
Amplitude
2.0
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POPULAR WINDOW FUNCTIONS

k| < N

atherwise

1
1. Rectangular: wik) = {n‘

2. Generalized Hanning:  w (k) = w[,f:][u+ (1- mjcm(%ﬂ,&ﬂ D<a<l

= (.5 Hamming window

= 0. f} Hanning window
3. Bartlett wﬂ{.‘t] = u{i][l - ——l-"—‘-l—-}
N+1

[ 2
4. Kaiser Welk) = u-{ﬂ-}.’u(m 1—‘—3 j;’fﬂ{c{}

H'N[.&] = 2{.1'; -1 }H'N_ l{k}

5. Chebyshev: ;
+xplwy A= 1)+wy B+ 1)]—wy 5(k)
exp [—%kl tan (—-EEH |k| < N
6. Gaussian welk) = 8,
Wl N - 1};'[ N sin (?)] k< N
0 k| > N

There are many others. The most important characteristics are the width of the
main lobe and the attenuation in the stop-band (height of highest sidelobe). The
Hamming window is used quite extensively.
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RECURSIVE-IN-TIME APPROACHES

Define the short-term estimate of the power as:

N1

N Ny :
Fln) = :‘E zn (w[m].&{n -3 + m}]
Cm

We can view the above operation as a moving-average filter applied to the

E
sequence s (n).

This can be computed recursively using a linear constant-coefficient
differeance equation:

N, N,

: . .

Plr) = — 2 E.FPH,{F']F[H—E} + 2 .‘JFHJ[;}.*; (#— f)
-] .

i f=l

Common forms of this general equation are:

Pin) = aP(n- 1}+.~;E[n} (Leaky Integrator)

P(n) = aP(n— 1)+ (1 —o)s’(n) (First-order weighted average)

Py = oP(n- 1)+ BP(n-2) —_h'EI{H] + szm - 1) {E"d—nrder Integrator)

Of course, these are nothing more than various types of low-pass filters, or
adaptive controllers. How do we compute the constants for these
equations?

In what other applications have we seen such filters?
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RELATIONSHIP TO CONTROL SYSTEMS

The first-order systems can be related to physical quantities by observing
that the system consists of one real pole:

Hiz) = ]

—1
1 — ez

o. can be defined in terms of the bandwidth of the pole.

For second-order systems, we have a number of alternatives. Recall that a
second-order systermn can consist of at most one zero and one pole and their
complex conjugates. Classical filter design algorithms can be used to design
the filter in terms of a bandwidth and an attenuation.

An alternate approach is to design the system in terms of its unit-step
response:

There are many forms of such controllers (often known as

P(n)

Owvershoot
gk T
1.0 -- ----;-E--_!-’ﬁ_-'-,-_-_-“- u(n)
f final response threshold
!
0.5
A
0 ~ =
rise times SE-‘T.T.”I"IQ time
M & rise time

: Equivalent impulse response

servo-controllers). One very interesting family of such systems are those
that correct to the velocity and acceleration of the input. All such systems
can be implemented as a diaital filter.
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Return to Main

Objectives

Fourier Transform:
Z-Transform

Discrete Fourier Transform
Fast Fourier Transform

Discrete Cosine Transform:
Definition
Types

Filterbanks:
Non-linear Frequency Warping
Overlapping Filters

Oversampling

Summary:
Signal Modeling

Phase

On-Line Resources:
Spectrum Analysis

Software
FFTW
DCT

LECTURE 12: FREQUENCY
DOMAIN ANALYSIS

o ODbjectives:

0 Understand the Fourier
Transform

0 Introduce the Discrete Cosine
Transform

0 Understand frequency domain
filterbanks

0 Justify the use of oversampling

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
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Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and information found 1n most
standard DSP textbooks, including:

J.G. Proakis and D.G. Manolakis,
Digital Sgnal Processing:
Principles, Algorithms, and
Applications, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-373762-4,
1996 (third edition).
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LECTURE 12: FREQUENCY DOMAIN
ANALY SIS

o ODbjectives.
0 Understand the Fourier Transform
0 Introduce the Discrete Cosine Transform
0 Understand frequency domain filterbanks

0 Justify the use of oversampling

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
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—IaII Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

and information found in most standard DSP
textbooks, including:

J.G. Proakisand D.G. Manolakis, Digital
Sgnal Processing: Principles, Algorithms,
and Applications, Prentice Hall, Upper Saddle
River, New Jersey, USA, | SBN:
0-13-373762-4, 1996 (third edition).

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_12/lecture_12_00.html (2 of 2) [6/15/2002 10:42:37 AM]



LECTURE 12: FREQUENCY DOMAIN ANALYSIS

Z-TRANSFORM

The z-transform of a discrete-time signal Is
defined as;

s

X(z)= Z x(n)z o xin) _Ifrr;é,‘[{z}z” - i.-:."_?
4,

f] = —eoa

Its properties include:
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Property Time-Domain z-Domain
MNotation xin) Xiz)
ey #4142
?‘52':*‘3:' 3‘:2':3:'
Linearity and
Superposition @)+ o) 2 Xy (Z) + @ X HiE)
Time-Shifting %l — &) R (s
=caling in the i
z-tomain a win Xig 2
Time reversal xi—n) Kl:z_i:l
Conjugation :-;*{rz} }i*{z*}
Real part Re ()] %[J{{z} FX 2]
Imag part Fmag [x(7) ] L -x" 2]

We typically assume the signal is time-limited,
and compute the z-transform using a finite sum:

N-1

A(Z) = Z x(n)z 4

=10

Note that the process of truncating a signal using
afinite sum is essentially a windowing process,
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and hence, frequency domain aliasing is
Introduced.

For amore detailed discussion of the
z-transform, see DSP notes.
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DISCRETE FOURIER TRANSFORM

The Fourier transform of x(n) can be computed
from the z-transform as:

N-1
X = X@)| D e

=10

The Fourier transform may be viewed as the
time-limited (finit) z-transform evaluated around
the unit circle:

Imag

4 z-plane
f=1fy/2 f=0Hz

""\ = Re

unit circle H(f) = H(z)

& ¢
(z=1)
Y

The Discrete Fourier Transform (DFT) is
defined as a sampled version of the (continuous)
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Fourier transform shown above:

N -1
X(k) Z xin)e 'fim”fﬁl* k Q1Y N —]

n=1u

The inverse Discrete Fourier Transform (IDFT)
ISgiven by:

N -1
x(n) = mew‘z“’r‘”’”’"’._ i Dl

n=4

The DFT obeys the same properties one would
expect for any linear transform (linearity,
superposition, duality, etc.).

Note that these are not the only transforms used

IN speech processing (wavelets, Wigner
distributions, fractals, etc.).
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FAST FOURIER TRANSFORMS

The Fast Fourier Transform (FFT) is nothing
more than a computationally efficient version of
the Discrete Fourier Transform (DFT):

N-1
i __.-'J r
-1-{|':I'} - E j'{“‘]f. JI‘-I[I‘:H. .|r'. -‘: = U-. I-. E.. A Jﬂ'|'l p— 1
I
ar,
N1
Xk =¥ A{nm’ﬁ', k=012 .. N-1
it = 0
—f ¥ o rhkn s N
Where H-",'.I = @ f2ms and J:'Ffl:l:r = £ ,rEr}.rIf -

' . s
Note that H-’; are just samples on the unit circle:

3 [—i7 1 l _."; B .L
For example, ¥ N2 _ SRR _ SRR R

N=4 Only four unigue values!
k=0,12,3
n=0,1,23

K

We note two important symmetry properties of W',
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k+ N2 &

W = —Wy (symmetry about the imaginary axis)
K+ N k o
W = Wy {periodicity)
This symmetry allows the number of computations for a DFT to be reduced
significantly.

The most common approach to achieving this
efficiency isto use a decimation-in-time strategy
that benefits from the non-linear computational
complexity of the transform:
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(2} #E6)
(0 x4 . x{M-2)

x(1} MN/2-Point DET

Fa(N/2-1)

HK(N/2-1)

2-Point DFT

KNIZY X(MI241) X(N-1)
= (0
20) —e-=|  2ppint ——m= (0)
®(4) —m- DFT I— I X(1)
Combine e — -
2-Point
OFTs = = X(2)
X(2) —m-  opgint |—— =
®(6) —[  DFT |

Combine [ *(3)
4-Point
DFTs = X(4)

X(1) —=|  2-pgint [——=

X(5) ——m- DFT | [
Combine - ——- (5]
2-Point
DFTs s = X(6)
X(3) —m=[ o ppint ——m I
4 | — DFT |
= X7
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The Radix-2 and Radix-4 algorithms are
extremely popular due to thelr computational
efficiency and relatively smple
Implementations.

g
=
&)
L]
4}]
A
o
=
)

=

E
4
=

=

F
=
=)

o

k=

+5
=
2
=
Ly
LA

A definitive work on the computational
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complexity of FFT algorithms, including
benchmarks and software, can be found at
parallel FFTs.
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DISCRETE COSINE TRANSFORMS

The Discrete Cosine Transform (DCT) issimply
a computationally efficient version of the DF1
for signalsthat are real and even (x(n) = x(N-n)):
reduces to:

N-1

X(k) = Z x(n)cos(2mkn/ N) 0<k<N
n=10
N-1

x(n) = 71. Z X(k)cos(2mkn/N) 0=n<N
k=10

The DCT-II, which 1s one of two common

Implementations of the DCT used in speech
processing, Is defined as.

N-1
C(k) = Z x(n)cos(mkin+1/2)/N) 0<k<N
n=1{
| N-1
x(n) = —]-~:' Ciih+2 Z C(k)cos(mkin+1/2)/N) O<n< N
N|
| k=1
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The DFT and DCT are related by the following
equations:

ntk/2N

X(k) C(k) 0<k<N

XON-k) = 272Ny 0<k<N

Theforward DCT is used in a speech recognition
front end to convert samples of the log
magnitude spectrum to cepstral coefficients.
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PERIODIC EXTENSION AND THE DCT

There are four common ways to extend areal signal
to make it both periodic and have even symmetry:

o [rooflfrertlTeer @ [TrestlIlTreeell]

oo, ol @[Tt Il
&LL LJ_)&: &

*’LLLLLJQ

which correspond to DCT types|, I, III, and IV
respectively.

Types |l and 111 are most commonly used in speech
processing because they tend to offer the most
energy compaction resulting in representing the
signal in the fewest number of coefficients.
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OVERSAMPLING IMPROVES
PERFORMANCE

The gpectrum Is oversampled to avoid biased
estimates and to reduce variation in the
measurements due to quantization of the

frequency scale (for example, formants with
narrow bandwidths):

Magnitude (dB)

Center Frequancy

x5 Owersampling

‘7

Signal Speactrum

1975 2150 2325
Frequency (Hz)

For example, consider the parameters of a
typical front end:
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f °=8 kHz
requency

frame
duration
window _25 msec (200
duration points)
FFT length=256 points
sample

maX:frequency /| 2
frequency _ 4 kM7

=10 msec
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max
max mel _frequency In
frequency mel = 2146.1
mel

number of
mel frequency=24 bins
scale bins
max mel
mel frequency _frequency /
resolution (24 + 1) =
85.84 mel

f CONEr_ « g5.84 me
requency
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This approach generates the table shown below:

Continuous Frequency  |Discrete Frequency
_ Start | Center Stop Range
Bin#|(Hz/Md) |(HzZ/M€) |[(HzZ/M€)) (Index)

1 0.0 55.4 115.2 0-3
0.0 85.8 171.7

2 55.4 115.2 179.7 2-5
85.8 171.7 257.5

3 115.2 179.7 249.3 4-7
171.7 257.5 343.4

4 179.7 249.3 324.5 6-10
257.5 343.4 429.2

5 249.3 324.5 405.5 8-12
343.4 429.2 515.1

6 324.5 405.5 493.0 11-15
429.2 515.1 600.9

7 405.5 493.0 587.5 13-18
515.1 600.9 686.7

8 493.0 587.5 689.4 16 - 22
600.9 686.7 772.6

9 587.5 689.4 799.3 19-25
686.7 772.6 858.4

10 689.4 799.3 918.0 23-29
772.6 858.4 944.3

11 799.3 918.0| 1046.1 26 - 33
858.4 944.3| 1030.1

12 918.0| 1046.1| 1184.2 30-37
944.3| 1030.1| 1116.0

13| 1046.1| 1184.2| 13334 34-42
1030.1| 1116.0f 1201.8

14| 1184.2| 1333.4| 1494.3 38 - 47
1116.0| 1201.8| 1287.6

15| 1333.4| 1494.3| 1668.0 43-53
1201.8| 1287.6| 13735
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16| 1494.3[ 1668.0 1855.4 48 - 59
1287.6| 13735 14593

17[ 16680 18554 2057.6 54 - 65
13735 1459.3| 15452

18 18554 2057.6] 22759 60 - 72
1459.3| 1545.2| 1631.0

19] 2057.6] 22759 25114 66 - 80
15452| 1631.0| 1716.9

20[ 22759 25114 27656 73-88
1631.0| 1716.9| 18027

21[ 2511.4[ 27656 3039.9 81-97
1716.9| 1802.7| 18885

22[ 27656 3039.9] 3335.9 89 - 106
1802.7| 18885| 1974.4

23] 3039.9] 3335.9[ 3655.3 98- 116
1888.5| 1974.4| 2060.2

24 33359 3655.3] 4000.0 107 - 127
1974.4| 2060.2| 2146.1

Finally, these 24 points are used to compute a
forward DCT (extended to be a 48-point periodic
and even sequence). Thefirst 12 coefficients are
retained.

Theforward DCT Is used because of its energy
compaction property (aproperty shared by many
orthogonal transforms). This transform allows us
to approximate the data with fewer coefficients,
since the coefficients are more concentrated at
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lower indices. Hence, we truncate the
representation to 12 coefficients and retain most
of the important information, as well as ensure
that the coefficients are orthogonal to one
another.
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ALTERNATIVE METHODSFOR
FREQUENCY DOMAIN ANALYSIS

We have now established two different waysto
perform afilterbank analysis of the speech signal
(temporal and spectral):

Digital
— - Igil'.ﬂ:hz —= | Power Estimation —i~
an
— - Filter Bank —-
Speach Fourier
— = | Transform
— - Cepstrum —
i
- Linear — - Filter Bank -
Prediction
e Cepstrum s

Filter Bank Amplitudes

Fourier Trangform (FT) Derived
Filter Bank Amplitudes

Fourier Tranzsform (FT) Derived
Cepstral Coefficients

Linegar Prediction (LF)
Linear Pradiction (LF) Denved
Filter Bank Amps.

Linear Prediction (L) Derved
Cepsfiral Coefiicients

The most popular front ends are those that use
cepstral coefficients dervied from the Fourier
transform. Why?
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ISPHASE IMPORTANT IN SPEECH
RECOGNITION?

An FIR filter composed of all zeros that are
Inside the unit circle is minimum phase. There
are many realizations of a system with agiven
magnitude response; one Is a minimum phase
realization, one Is a maximum-phase realization,
others are in-between. Any non-minimum phase
pole-zero system can be decomposed Into:

H(z) = H . () (z)

min ap

It can be shown that of all the possible
realizations of |H(f)|, the minimum-phase version
IS the most compact in time. Define:

H
E(n) = Z (k)|

k=10

Then, E,;in(n) >= E(n) for all nand all possible
realizations of |H(f)|.
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Why I1s minimum phase such an important
concept In speech processing?

We prefer systems that are invertible:
H(z) H'1(z) =1

We would like both systems to be stable. The

Inverse of a non-minimum phase system is not
stable.

We end with avery ssmple question: is phase
Important in speech recognition?
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Return to Main

Objectives

The Real Cepstrum:
Homomorphic

Definitions
Pole-Zero
Linear Prediction

Applications:
Vowel Cepstrum
Source-Filter
Frequency Warping
Mel-Frequency

Liftering

Summary:
Signal Modeling
Typica Front End

On-Line Resources:

Cepstrum
Hunt, ASRU'99 (pdf)

Hunt, ASRU'99 (ppt)
Ben Gold Oral History

LECTURE 13: CEPSTRAL
ANALYSIS

o Objectives:

0 Introduce homomorphic
transformations

0 Understand the real cepstrum

0 Introduce alternate waysto
compute the cepstrum

0 Explain how we compute
mel-freguency "cepstrum”
coefficients

This lecture combines material from
the course textbook:
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X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and information found 1n most
standard DSP or speech textbooks:

J. Déeller, et. a., Discrete-Time
Processing of Speech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.
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LECTURE 13: CEPSTRAL ANALYSIS

o ODbjectives:
0 Introduce homomorphic transformations
0 Understand the real cepstrum

0 Introduce alternate ways to compute the
cepstrum

0 Explain how we compute mel-frequency
"cepstrum' coefficients

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
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Al gorlthm and System Devel opment, Prentice

Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

aincC

Information found 1N most standard DSP or

speech textbooks:

J. Deller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.
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HOMOMORPHIC TRANSFORMATIONS

A homomor phic transformation converts a
convolution into a sum:

x(n) = e(n)® h(n)
x(n) = e(n)+ ﬁ{u]

Consider the problem of recovering afilter's
response from a periodic signal (such as avoiced
excitation):

u(u} x(n) x(n) h(n) hin)

”{”} ffﬂ

The filter response can be recovered if we can
separate the output of the homomorphic
transformation using a simple filter:

|H| < N

tny = {1
W = |0 n| = N

Note that the process of separating the signalsis
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essentially awindowing processing. Is this useful for
speech processing?
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THE REAL AND COMPLEX CEPSTRUM

Thereal cepstrum of adigital signal x(n) is
defined as;

;EDH

e(n) = — j In|X(m)|e

T

and the complex cepstrum s defined as:

I

#(n) = —.j InX(m)e

;n

where the complex logarithm is used:

X(®) = hX(w) = n|X ()] + j6(w)
B(w) = arg(X(w))

Note that the real cepstrum, c(n), isthe even part
of complex cepstrum:
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(n) + X(—n)

X
c(n) = 5

The word cepstrum was coined by reversing the
first syllable in the word spectrum. The cepstrum
exists in adomain referred to as quefrency

(reversal of the first syllable in frequency) which
has units of time.
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THE CEPSTRUM OF POLE-ZERO
FILTERS

Consider a minimum phase system with a
rational transfer function:

0
1_[ | - F::kz_l

H(z) = 2

- Hkﬁ
k=1

Taking the complex logarithm:

0 p
Hz = Y log(1-bz )- Y log(1-apz )
k=1 k=1

Taking an inverse z-transform:

0 n<0
P 0

z aﬁ_”;’n Z f};fﬁr n>0

k=1 k=1

f?(n} =
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It IS easy to see that the cepstrum Is a decaying
function of time (compact). Why isthis
desirable?

Recalling that the real cepstrum can be
computed from the even part of the complex
cepstrum, the complex cepstrum can also be
easl |y determined from the real cepstrum, c(n),
as follows:

0 n<0
;:r(n} = 2 ¢(n) n=1~00
2¢(n) n>10
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LINEAR PREDICTION AND THE
CEPSTRUM

Consider an all-polefilter:

G

H 1 - akz_l

k=1

H(z) =

The cepstrum can be determined by the
following recursion:

0 n<(
InG n=2~0
n— 1 .
;?(FI) e I Z (E]h{ff}an_k O<n<p
k=1
n—1
ik
z E {}ﬂﬂ—ff H}F
k=n—p

Note that If there are afinite number of filter
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coefficients, there are still an infinite number of
cepstral coefficients. However, the series decays
to zero and can be truncated.

The proof of thisresult is shown below for
compl eteness:

Given an all-pole filter:
G

P

H 1 - EI;E_I
=1
We can take the complex logarithm:

H(z) =

P - =
ff{:} = In(r - lr{ Z 1 - ﬂ;:_l]E Z fa:{ff}z_k
i=1 k=—w
Taking the derivative of both sides with respect to z:
P
b !
i z ”aﬁ'” oo
n=1 - - Y k"
P2

- P
Multiplying both sides by —z[ Z 1- a!z_lj, we obtain:
t=1
P oo P

Z Hﬂ'ﬁ.‘:_ﬁ = z H:f}{.ﬁ:}z_”— Z z kﬁz{k}ﬂfz_k_‘r

n=1 n= —oo [=1k=—0o
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After replacing I = n -k, and equating terms in z ", we obtain:

n—1

na, = Hf;(ﬂj - z kﬁ{k}a”_k O<n=p
k=1
n-1
0 = nfx{n}— 2 kﬁ[k]an iy H>p
k=n-P

Hence, the complex cepstral cepstrum can be obtained directly from the
all-pole filter coefficients:

0 n<A(
IHG = [}
n-1 .
ﬁi(ﬂ] L 2 (;jhm}ﬁ'” ¢ O<ns=p
k= :
n—1
ik
z n (K)a, _, n>p
k=n—p

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_13/lecture_13_04.html (3 of 3) [6/15/2002 10:42:48 AM]



LECTURE 13: CEPSTRAL ANALYSIS

AN EXAMPLE OF THE CEPSTRUM FOR
A VOWEL

Below Isan example (from Noll) that

demonstrates atypical cepstrum sequence for a
vowel. The cepstrum is computed every 10

IMSEC.
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From this example, we can see two important
things:

o At theonset of the vowel, wherethe signal is
not quite periodic, the peak in the cepstrum at
the fundamental freguency Is not
well-formed. The amplitude of this peak
grows as the signal becomes more regular
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(periodic). The same phenomenaistrue for
the autocorrelation function.

o ltisclear that the low order coefficients of the
cepstrum contain information about the vocal
tract, while the higher order coefficients
contain primarily information about the
excitation. (Actually, the higher order
coefficients contain both types of
Information, but the frequency of periodicity
dominates.)

Hence, for speech signals, it seems the vocal
tract response and the excitation signal can be
separated using simple windowing in the
guefrency domain.
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SOURCE FILTER SEPARATION VIA THE
CEPSTRUM

An example of source-filter separation using voiced
speech:

(a)
Windowed
Signal

(b) Log
Spectrum

(C)
Filtered
Cepstrum

(n < N)

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_13/lecture_13 06.html (1 of 4) [6/15/2002 10:42:54 AM]



LECTURE 13: CEPSTRAL ANALYSIS

a} 2 - ) 5 :
e g
(d) " 'zu 5:0 100 150 200 sig 'zn 10002000 353{:_49::4}
Smoothed |~ - N
Log [EJ'”-E'U s H:ﬂ il | (f in mm m :mu i
““"ﬁ*ﬂﬂ% dB8 0 iy
ok - 4 _;']'“l“'"l‘?'f“m"””p T

time Frequency (Hz)

e
Excitation
Signal

(f) Log
Spectrum
(high
freg.)

An example of source-filter separation using
unvoiced speech:
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(a)
Windowed
Signal

(b) Log
Spectrum
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Spectrum

The reason thisworks is smple: the fundamental
frequency for the speaker produces a peak in the
cepstrum sequence that is far removed (n > N) from
the influence of the vocal tract (n < N). You can also
demonstrate this using an autocorrelation function.
What happens for an extremely high-pitched female
or child?
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FREQUENCY WARPING USING ALL-PASS
TRANSFORMATIONS

Recall the bilinear transform:

which implements a nonlinear warping of the
frequency axis:

osin( ) )

()} = @+ 2arct
are Ew’":l — oLcos(m)

This can be implemented as a series of all-pass
transformations:.

c[-n]

> l > (1-a*)z™ S z' -a . 2" -« e
1-cz” 1-az™ 1-oz™ -0z
n=( / n=0 / n=(0 / n=0 /
w[0] w( 1] w(2] w|3]
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The cepstral coefficients are input and the output
are frequency-warped cepstral coefficients. Thisis
an interesting way to implement speaker-specific
warpings (e.g., male vs. female speakers).
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MEL-FREQUENCY CEPSTRUM

Recall our filterbank, which we construct in
mel-frequency domain using a
triangularly-shaped weighting function applied
to mel-transformed |og-magnitude spectral
samples:.

A
H\[K] Hy[k) Hy[k] HJk] Hjk]  Hk]

A0l A1l A21 A3] A4 AS] f16] N7l

After computing the DFT, and the log magnitude
spectrum (to obtain the real cepstrum), we
compute the filterbank outputs, and then use a
discrete cosine transform:
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M—1
? ( ( 1 B
c(n) = Z S(m)cos|tn|lm—= |/ M)
; S - J
m =

where

N-1
”
S(m) = 11*1[ Z ‘Xﬂ{f{]‘“h‘rm(ﬁ:]}j O<m<M
k=10

to compute the mel-frequency cepstrum
coefficients. Note that the triangular weighting
functions are applied directly to the magnitude
spectrum, and then the logarithm is taken after
the spectral samples are averaged. The resulting
coefficients are an approximation to the the
cepstrum, and in reality ssimply represent an
orthogonal and compact representation of the log
magnitude spectrum.

We typically use 24 filterbank samples at an 8

kHz sampling frequency, and truncate the DCT
to 12 MFCC coefficients. Adding energy gives
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us atotal of 13 coefficients for our base feature
vector.
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LIFTERING: WINDOWING CEPSTRAL
COEFFICIENTS

o Low order cepstral coefficients are sensitive
to spectral slope, glottal pulse shape, etc.

« High order cepstral coefficients are sensitive
to the analysis window position and other
temporal artifacts.

o For speaker independent recognition, it is best
to minimize such speaker-dependent
variations in the features prior to recognition.

o We can reduce the variations in these
coefficients by using araised sine window
that emphasizes coefficients at the center of
the window:
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| + hsin((nr)/L)  1<n<L |

0 elsewhere }

win) = G

o L Isthe number of cepstral coefficients
(typically 24), and G is a constant normally
designed to make the energy of the window
equal to 1.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_13/lecture_13_09.html (2 of 2) [6/15/2002 10:42:56 AM]



LECTURE 14: EXAM NO. 1

Return to Main LECTURE 14 EXAM NO 1

Home

Exam Database

o B Thefirst exam can be found here.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_14/index.html [6/15/2002 10:42:56 AM]


http://www.isip.msstate.edu/~gao/exams/
http://www.isip.msstate.edu/~gao/exams/current
http://www.isip.msstate.edu/~gao/exams/current

LECTURE 14: EXAM NO. 1

LECTURE 14: EXAM NO. 1

Thefirst exam can be found here.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_14/lecture_14 00.html [6/15/2002 10:42:56 AM]


http://www.isip.msstate.edu/~gao/exams/current

Return to Main LECTURE 14: EXAM NO. 1

Home The first exam can be found here.

Exam Database

First Exam



Return to Main

Introduction:

01: Organization
(html, pdf)

Speech Signals:

02: Production
(html, pdf)

03: Digital Models
(html, pdf)

04: Perception
(html, pdf)

05: Masking
(html, pdf)

06: Phonetics and Phonol ogy
(html, pdf)

07: Syntax and Semantics
(html, paf)

Signal Processing:

08: Sampling
(html, pdf)

09: Resampling
(html, pdf)

10: Acoustic Transducers
(html, pdf)

11: Tempora Analysis
(html, pdf)

12: Frequency Domain Analysis
(html, pdf)

13: Cepstral Analysis
(html, pdf)

14: Exam No. 1
(html, pdf)

15: Linear Prediction
(html, pdf)

16: L P-Based Representations
(html, pdf)

Parameterization:

17: Differentiation
(html, pdf)

18: Principal Components
(html, pdf)

s

ECE 8463: FUNDAMENTALS OF SPEECH
RECOGNITION

Professor Joseph Picone
Department of Electrical and Computer Engineering
Mississippi State University

email: picone@isip.msstate.edu
phone/fax: 601-325-3149; office: 413 Simrall
URL: http://www.isip.msstate.edu/resources/courses’ece 8463

Modern speech understanding systems merge interdisciplinary technologies from Signa Processing,
Pattern Recognition, Natural Language, and Linguisticsinto aunified statistical framework. These
systems, which have applications in awide range of signal processing problems, represent a revolution
in Digital Signal Processing (DSP). Once afield dominated by vector-oriented processors and linear
algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical
models implemented using a complex software paradigm. Such systems are now capabl e of
understanding continuous speech input for vocabularies of hundreds of thousands of wordsin
operational environments.

In this course, we will explore the core components of modern statistically-based speech recognition
systems. We will view speech recognition problem in terms of three tasks: signal modeling, network
searching, and language understanding. We will conclude our discussion with an overview of state-of-
the-art systems, and areview of available resources to support further research and technology
development.

Tar files containing a compilation of all the notes are available. However, these files are large and will
require a substantial amount of time to download. A tar file of the html version of the notesis available
here. These were generated using wget:

wget -np -k -m http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current

A pdf file containing the entire set of lecture notes is available here. These were generated using Adobe
Acrobat.

Questions or comments about the material presented here can be directed to hel p@isip.msstate.edu.
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ECE 8463 EXAM NO. 1 SPEECH RECOGNITION

Number:
Problem Points Score
1(a) 10
1 (b) 10
1(c) 10
1 (d) 10
2 (a) 10
2 (b) 10
2 (c) 10
3 (a) 10
3 (b) 10
3(c) 10
Total 100
Notes:
1. The exam is closed books and notes. You are allowed one 8 1/2” x 11" double-sided sheet of

notes.

Please indicate clearly your answer to the problem by some form of highlighting
(underlining).

Your solutions must be legible and easy to follow. If | can’t read it or understand it, it is
wrong. Random scribbling will not receive credit.

Please show ALL work. Answers with no supporting explanations or work will be given no
credit.

Several problems on this exam are fairly open-ended. Since the evaluation of your answers is
obviously a subjective process, we will use a market place strategy in determining the grade.
Papers will be rank-ordered in terms of the quality of the solutions, and grades distributed
accordingly.
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1. Deep sea divers breath a mixture of air and helium called Heliox to avoid several problems
associated with breathing compressed air under water. Heliox is lighter than air — its density
is 75% lower than air. Speech produced while breathing Heliox sounds distorted (a classroom
demonstration is provided).

(a) Predict the effect breathing Heliox has on the formant frequencies. Justify this answer using
our linear acoustics model.

(b) Does the excitation signal change? Explain.
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(c) For what value of the density (relative to air) would the speech become unintelligible to a
human listener?

(d) Design a system that would descramble the diver's speech and produce a normal sounding
speech signal. Is such a system physically realizable?
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2. Consider a language which has a phoneme set that only contains four English condmpnants:
p,d,t

(a) Describe the similarities and differences between these sounds in as much linguistic detail as
possible.

(b) Do the assumptions we make to justify frame-based processing in speech recognition of
spoken English hold for this type of signal? Explain.

(c) Consider a voiced sound in this language produced with a fundamental frequency of 100 Hz.
Would a listener perceive the 5th and 6th harmonics to be closer in frequency than the 20th
and 21st harmonics? Explain.
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3. Consider the system shown below:

S(t) — | Microphone|—»| 'd€al | | Downsample | o s(n)

A/D (3:4)
fs=8 kHz Up: 3 Down: 4
(a) Suppose the microphone can be modeled by this equatioh= ax(t) + sz(t) . Typically,

o > 3. Sketch the spectrum of the output signal, s(n), over the frequency range [0, 8 kHz] for
an input that consists of a sinewave at 1 kHz.

(b) Sketch the spectrum of the output signal for a white noise input (flat spectrum). Assume both
the A/D and the downsampler use ideal low pass filters.
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(c) Suppose the input signal is the sum of a 1 kHz and 1.5 kHz sinewave. Sketch the spectrum of
the output signal. Explain the influence of the microphone on this result. What aspect of the
microphone would you improve? Why?
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Return to Main
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Signal Modeling
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LECTURE 15: LINEAR
PREDICTION

o ODbjectives:

[]

Introduce the theory of linear
prediction

Develop autocorrelation and
covariance techniques for
solution

Understand ssimilarities with
regression

Explain the relationship to
windowing and maximum
entropy
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LECTURE 15: LINEAR PREDICTION

0 Add anew technique to our
signal modeling block diagram

Thereis aclassic textbook on this
subj ect:

J.D. Markel and A.H. Gray,
Linear Prediction of Speech,
Springer-Verlag, New York, New
York, USA, ISBN:
0-13-007444-6, 1976.

This lecture also includes material
from two other textbooks:

J. Déller, et. a., Discrete-Time
Processing of Joeech Sgnals,
MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

and,
L.R. Rabiner and B.W. Juang,
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Fundamentals of Joeech
Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA,
ISBN: 0-13-015157-2, 1993.
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LECTURE 15: LINEAR PREDICTION

o ODbjectives:
0 Introduce the theory of linear prediction

0 Develop autocorrelation and covariance
techniques for solution

0 Understand similarities with regression

0 Explain the relationship to windowing and
maximum entropy

0 Add anew technique to our signal
modeling block diagram

Thereisaclassic textbook on this subject:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_15/lecture_15_00.html (1 of 2) [6/15/2002 10:42:59 AM]
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J. D Markel and A.H. Gray, Linear Prediction
of Soeech, Springer-Verlag, New Y ork, New
York, USA, ISBN: 0-13-007444-6, 197/6.

This lecture aso includes material from two
other textbooks:

J. Ddller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
SBN: 0-7803-5386-2, 2000.

ana,

_.R. Rabiner and B.W. Juang, Fundamentals
of Spoeech Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA, ISBN:
0-13-015157-2, 1993.
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LINEAR PREDICTION - A SIMPLE
DERIVATION

Let us define a speech signal, s(n). Consider the problem of predicting the

current value from the previous value, s(n) = osin— 1). This prediction will
be in error b}l‘ some amount:

eln) = s(n)—s(n) = s(n)—os(n—1)
We would like to minimize the error by finding the best, or optimal, value of
. Let us define the short-time average prediction error:

E = Eez[n}

i

= 2{ s(n) — ousin — l]}E

i

We can minimize the error w.r.t oo by differentiating £ and setting the result
equal to zero:

E = Z{.&'E[H] — 2os(n)s(n— 1)+ {:{2.5'2[?1 - 1))
N

Differentiating w.rt o,

o T i F  Er L
== 0 E 2e(m)s(n— 1)+ 20" (n— 1)
R
or,
Z.s{n}.ﬁ-{n —1) = HE.‘.‘E{H— 1)
i [
which implies:
Z.‘i{ﬂ}.‘.‘[” —1)
- =f.’{],ﬂ]=i'{_|}
Z""E[”_ 1) cll, 1) #H0)
i

Notes:
« related to the correlation structure of the signal (ce< 1)
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+ independent of the energy level of the signal

What short-term technique do we use to compute correlation/covariance?
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LINEAR PREDICTION - GENERAL CASE

o
Let us define a speech signal, s(n), and a predicted value: i(n) = Z ot s(n — k).
k=]
Why the added terms? This prediction error is given by:

Fo
eéln) = s(nm)—s(n) = s(n) - 2 o, s(n — k)
km ]

We would like to minimize the error by finding the best, or optimal, value of {c, }.
Let us define the short-time average prediction error:

o z-r:z{n}

i

o
= 2 w(n) — 2 o s(n— k)
k=]

i

2

2
P P
= E.H'E{Hj—EJll.ﬁ{n} Z o s(n — k) +2 2 o sl — k)
H ko= B fm]

H

2

P P
_ E_ﬁ-zin}_z z mEEﬁ{H].‘.‘[n—ﬁ] + Z z o, 5(n — k)
i o=l " f k=]

We can minimize the error w.rt o, for each 1</<p by differentiating £ and
setting the result equal to zero:

e
JE
— =0==2 2 sin)sin—N +2 E E o, s(n— k) ps(n—1)
Hf—"—; " R olgwm] .
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THE COVARIANCE METHOD

Rearranging terms:

E.ﬁ'[fi].':-{ﬂ -0 = E H&(Z_ﬂ;n — k)sin — f}]
i k

1 i

or,

&
ell, 0) = erﬁf.-{hf}
km ]

This equation is known and the linear prediction (Yule-Walker) equation.
{w, } are known as linear prediction coefficients, or predictor coefficients.

By enumerating the equations for each value of /, we can express this in

matrix form:
¢ =Ch
where,
g ) ) ) )
I c(l, 1) c(l,2) ... ell, p) al, )
= _ |™ P (2, 1) of2.2) ... ol2: 0) &= |a2.0)
o, e(p, 1) elp, 2) ... elp, p)] e, (]

The solution to this equation involves a matrix inversion:
o= [
and is known as the covariance method. Under what conditions does a:_?"'

exist?

Mote that the covariance matrix is symmetric. A fast algorithm to find the

solution to this equation is known as the Cholesky decomposition (a VD ET

approach in which the covariance matrix is factored into lower and upper
triangular matrices).
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THE AUTOCORRELATION METHOD

Using a different interpretation of the limits on the error minimization —
forcing data only within the frame to be used — we can compute the
solution to the linear prediction equation using the autocorrelation method:

-1

o=4K F
where,
i [ WO) (1) ... Hp—D) (1)
S | B - 1) ri) ... rp-2) . "2)
o, Mp-1)r(p—-2) ... HO) Ll

Mote that 2 is symmetric, and all of the elements along the diagonal are
equal, which means (1) an inverse always exists; (2) the roots are in the left-
half plane.

The linear prediction process can be viewed as a filter by noting:

f2
eln) = s(n) — 2 o s(n — k)
i m ]
and

E(z) = Sz)A(2)
where

2
A2 = 1- Y
k=1

Aiz) i5 called the analyzer; what type of filter is it? (pole/zera? phase?)

_»'IT{IE' is called the synthesizer; under what conditions is it stable?
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LINEAR PREDICTION ERROR

We can return to our expression for the error:
2

o
E = ZEE[H] . z s(H) — E ot s(n — k)
i " k |

and substitute our expression for {ﬂk I and show that:

Autocorrelation Method:

IL

E = - Z o r(k)
|

Covariance Method:

i
E = ¢(0,0)- Z ot (0, k)
kw ]

Later, we will discuss the properties of these equations as they relate to the
magnitude of the eror. For now, note that the same linear prediction
equation that applied to the signal applies to the autocorrelation function,
except that samples are replaced by the autocorrelation lag (and hence the
delay term is replaced by a lag index).

Since the same coefficients satisfy both equations, this confirms our
hypothesis that this is a model of the minimum-phase version of the input
signal.

Linear prediction has numerous formulations including the covariance
method, autocorrelation formulation, lattice method, inverse filter
formulation, spectral estimation formulation, maximum likelihood
formulation, and inner product formulation. Discussions are found in
disciplines ranging from system identification, econometrics, signal
processing, probability, statistical mechanics, and operations research.
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SPECTRAL MATCHING
INTERPRETATION

Magnitude(dB)
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NOISE FLOORING
VIA THE AUTOCORRELATION
FUNCTION

Magnitude(dB)
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LECTURE 16: LINEAR PREDICTION-BASED REPRESENTATIONS

Returnto Main

Objectives

System View:
Analysis/Synthesis
The Error Signal
Gain Matching

Transformations:
L evinson-Durbin

Reflection Coefficients
Transformations
The Burg Method

Summary:
Signal Modeling
Typical Front End

On-Line Resour ces;
AJR: Linear Prediction

LPCI10E
MAD LPC

Filter Design

LECTURE 16: LINEAR
PREDICTION-BASED
REPRESENTATIONS

o ODbjectives:

0 Introduce analysis/synthesis
systems

0 Discuss error analysis and
galn-matching

0 Relate linear prediction
coefficients to other spectral
representations

0 Introduce reflection and
prediction coefficent
recursions
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0 Lattice/ladder filter
Implementations

Thereisaclassic textbook on this
subj ect:

J.D. Markel and A.H. Gray,
Linear Prediction of Speech,
Springer-Verlag, New Y ork, New
York, USA, ISBN:
0-13-007444-6, 1976.

This lecture also includes materi al
from two other textbooks:

J. Déller, et. al., Discrete-Time
Processing of Soeech Sgnals,
MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

and,

L.R. Rabiner and B.W. Juang,
Fundamental s of Speech
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Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA,
ISBN: 0-13-015157-2, 1993.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_16/index.html (3 of 3) [6/15/2002 10:43:07 AM]



LECTURE 16: LINEAR PREDICTION-BASED REPRESENTATIONS

LECTURE 16: LINEAR
PREDICTION-BASED
REPRESENTATIONS

o ODbjectives,
0 Introduce analysis/synthesis systems
0 Discuss error analysis and gain-matching

0 Relate linear prediction coefficientsto
other spectral representations

0 Introduce reflection and prediction
coefficent recursions

0 Lattice/ladder filter implementations

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_16/lecture_16_00.html (1 of 2) [6/15/2002 10:43:09 AM]
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There Isa cI assic textbook on this subject:

J.D. Markel and A.H. Gray, Linear Prediction
of Speech, Springer-Verlag, New York, New
York, USA, ISBN: 0-13-007444-6, 197/6.

This lecture also includes material from two
other textbooks:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
SBN: 0-7803-5386-2, 2000.

ana,

_.R. Rabiner and B.W. Juang, Fundamentals
of Spoeech Recognition, Prentice-Hall, Upper
Saddle River, New Jersey, USA, |SBN:
0-13-015157-2, 1993.
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AN LPC-BASED ANALYSISSYNTHESIS
SYSTEM

We can use the linear prediction model to create
an analysis/synthesis system:

‘ Windowing i—»‘ II-_|[ tl-.eI:r i-» el

A(zy = 1 Z (L2 5
km]

§ln) —mm=|  Preesmphasis

Hiz) | —az : Hamming Window

en) —m- Irw-.—:'?;a | Deemphasis  |—m= 5(1)
LPC Filter
L G H(z) = ———
el | —az

o :
&
| z o,z
[
|

Recall that the linear prediction model, A(z),
takes on the form:
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Thisisan all-zero filter which is minimum
phase. The inverse of thisfilter, which is used to
synthesize the signal, is an all-polefilter. If the
autocorrelation method is used to compute the

L P coefficients, the filter is guaranteed to be
stable.

Note the ssmilarities of this system to our digital
model of speech production:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_16/lecture_16_01.html (2 of 3) [6/15/2002 10:43:10 AM]



LECTURE 16: LINEAR PREDICTION-BASED REPRESENTATIONS

A,

_..®_\.

e

fundamental
frequency
Impulse Glottal
Train —l- Fulse
Generator Madel
Random
Moise
Generator

ug(n)

Vocal Tract
Model
Viz)

_..

Lip
Radiation
Model
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THE LPC ERROR SIGNAL

The LPC error signal can be computed using:

P
. —
E(z) = S(z)A(z) A(z) = 1- Z 0,2
k=1

Below are some examples of the LPC error
signal:
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PREDICTION ERROR

M«M‘%ﬁw R

Fig. 8.5 Examples ol signal (differentiated) and prediction error for
vowels (i, € a, o, u, ¥, (Aler Strube [14].)

The error energy (related to accuracy) can be
computed from the L PC reflection coefficients:

P
=RIDH]_
=l

Note that if the reflection coefficients have a
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magnitude less than one, the error energy Is
monotonically decreasing with the linear
prediction order.
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GAIN MATCHING THE LPC MODEL

Recall the spectral matching interpretation of the
L P mode!:

Magnitude(dB)

-20

-30

Y i

so N Mot [F I T,

Pl ]
——
-
)
é\

z o
——f
|

T i T
70 S A [
| & |
80 sulabl
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Frequency (kHz)

LP analysisisinvariant to energy (the same
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signal at different energy levels produces the
same L P coefficients). How do we match the
spectrum implied by the LP model to the signal.:

o Galn matching:

S(z) = - = ; = R(0) Z o R(k)

A(z) ;
] Z mfcz' k
k=1

o Error energy:

P
2
G=Ry[]1-k
j=1

Either techniques produces the same result. The
latter technique is popular in speech compression
systems.
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LEVINSON-DURBIN RECURSION

The prediction coefficients can be efficiently
computed for the autocorrelation method using
the Levinson-Durbin recursion:

fori=1,2..p
’ | — ] 5
k, = \r{f} Z a. rii-NyE;
\ ),

di=d
forj=1,2 ..., i-1
uf.{r",l — ﬁ:f.
a(jy =a;_(N-ka; (i-J)
!;'ll. = (1 ILI. ]IJ’;'J,. ]

Thisrecursion gives us great insight into the
linear prediction process. Let us examine a
simple example in which we compute a second
order model:
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E, = r(0)
ky = r(1)/r(0) ay2) = ky = f{?fz}r{m —-:‘{I}
a,(1) = k; = r(1)/r(0) F0)-r (1)

azil} - ﬂll[”--kzﬂi{:”

2
E, = (1-k)E, _ r(D)H0) = r(1)r(2)

" 2 (0) ~ (1) F2(0)— (1)
r(0) oy = HEH}
2
K = H2)r(0)y—r (1) o, = ay(2)

rziﬂ} 1'2[ 1)

This reduces the LP problem to O(p) complexity
and saves an order of magnitude in

computational complexity. This calculation also
makes the process amenabl e to fixed-pint digital
signal processors and miCcroprocessors.
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PREDICTION COEFFICIENTS

The LP model can be implemented as a direct
form filter:

s mn— 1% mn— 2 sim—-3

. - g

Aﬁ'

The coefficients of this model are referred to as
prediction coefficients.

This same filter can be implemented using a
|attice filter:
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Sl Jqln)

Sl

The coefficients of thisfilter are referred to as
reflection coefficients. They can be related
directly to the lossless concatenated tube model
for the vocal tract (log arearatios).
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LINEAR PREDICTION COEFFICIENT
TRANSFORMATIONS

The prediction and reflection coefficients can be
transformed back and forth with no loss of
Information:

Prediction to reflection coefficient transformation:
Jori=p, p-1,...,1
Jl:'-:' = "-"'.I“]
o) + krn{‘{:‘ -

9

1 —&;
I

o, (/) = [ €y<i-

Reflection to prediction coefficient transformation:

Jori=12,..,p
n{‘.[:'} = .ﬂ;r
o) = oy _ U =Koy _ 6= ) 1€7<i-1

Also, note that these recursions require intermediate storage for {I.Tll‘l} .

From the above recursions, it is clear that || = 1. In fact, there are several
important results related to £,

(1) |.+’c f| < 1

(2) |ka| = 1, implies a harmonic process (poles on the unit circle).

(3) |£J.| =1 implies an unstable synthesis filter {poles outside the unit circle).

4y E.»F. > = K
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e M e

This gives usinsight into how to determine the
L P order during the calculations. We also see
that reflection coefficients are orthogonal in the
sense that the best order "p" model isalso the
first "p" coefficientsin the order "p+1" LP
model (very important!).

We can also convert L P coefficients to/from
autocorrelation coefficients, cepstral
coefficients, and log area ratios. See Signal
Modeling Techniques for further details.
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THE BURG METHOD

The standard direct-form FIR filter can be
Implemented in alattice structure:

The reflection coefficients can be computed
directly using this equation:
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Y £ iz, =1

i m=10
N -1

[ D (i ym) }[ Z (f;_(m—1))°

m =1 m =1

For thisfilter to be stable, the reflection
coefficients must be bounded by 1.

This equation represents one solution from a
family of solutions based on lattice methods.

One of the most famous lattice formulations in
thisfamily isthe Burg algorithm, originally
Introduced in the mid-60's prior to the
Introduction of LP in speech. There are actually
afamily of lattice solutions of asimilar form.
The Burg algorithm reguires the coefficients to
be computed using:
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N -1
D S ymg;_(m-1)

i m =10
j N—1

m =) m =

e
| - 2 . 2
3 z Ji_y(m) Z fi_m—1)
0

4

T

We see thisis awelghted average of the forward
and backward error terms, and that the reflection
coefficients are FORCED to be bounded.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_16/lecture_16_07.html (3 of 3) [6/15/2002 10:43:13 AM]



LECTURE 17: SPECTRAL TRANSFORMATIONS

Return to Main

Objectives

Perceptual Linear Prediction:
Spectral Matching

Equal Loudness
Overview
Block Diagram

Equations

Vocal Tract Length Nor malization:
Motivation

Bilinear
Direct

Summary:
Signal Modeling

Typica Front End

On-Line Resour ces.
AJR: PLP
Steffen: PLP
JMCD: VTLN

LECTURE 17: SPECTRAL
TRANSFORMATIONS

o ODbjectives:

0 Introduce perceptual linear
prediction

0 Discuss speaker-dependent
frequency scaling

0 Introduce vocal tract length
normalization

0 Review

The original reference for perceptual
linear prediction is:

H. Hermansky, "Perceptual linear
predictive (PLP) analysis of
speech,”" J. Acoust. Soc. Amer .,
vol. 87, no. 4, pp. 1738--1752,
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1990.

Similarly, the original reference for
vocal tract length normalization is
reprinted here:

A. Andreou, T. Kamm, and J.
Cohen, "Experiments in vocal
tract normalization," Proceedings
CAIP Workshop: Frontiersin
Soeech Recognition |1, 1994.

The course textbook and resource
links also contain good explanations
of this material.
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LECTURE 17: SPECTRAL
TRANSFORMATIONS

o ODbjectives.
0 Introduce perceptual linear prediction

0 Discuss speaker-dependent frequency
scaling

0 Introduce vocal tract length normalization

0 Review

The original reference for perceptual linear
prediction Is:

H. Hermansky, "Perceptual linear predictive
(PLP) analysis of speech," J. Acoust. Soc.
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Amer ., vol. 87, no. 4, pp. 1738--1752, 1990.

Similarly, the original reference for vocal tract
length normalization is reprinted here:

A. Andreou, T. Kamm, and J. Cohen,
"Experiments in vocal tract normalization,"
Proceedings CAIP Workshop: Frontiersin
Soeech Recognition 11, 1994.

The course textbook and resource links also
contain good explanations of this material.
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SPECTRAL MATCHING
INTERPRETATION

Recall that the LP modél uses mean-square error
approach to optimize its coefficients. This
Implies:

o ThelLP model attempts spectral flatten the
error signal.

« TheLP modd focuses on the extremely high
or low energy areas of the spectrum -
whatever it takes to makes the error signal
spectrum as flat as possible. Example:
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Magnitude(dB)
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o Note that the eighth-order analysis models the
floor of the spectrum more precisely than the
third formant.
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EQUAL LOUDNESS CURVES

Recall our observation that perceptual loudness
of asound is afunction of its absolute intensity:

E

Intensity Level in dB

¥ ¥ s 58 38 3@

A\

Frequencyin Hz o MY

§

3

i ] 1K

o Thesengtivity of the ear varies with the
frequency content and the quality of a sound.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_17/lecture_17_02.html (1 of 2) [6/15/2002 10:43:15 AM]



LECTURE 17: SPECTRAL TRANSFORMATIONS

« The graph above represents equal loudness
contours adopted by the ISO (1S5S0 226).

o Hearing sensitivity peaks at 4K Hz, and has a
secondary peak at 13K Hz.
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PERCEPTUAL LINEAR PREDICTION
BLOCK DIAGRAM

Critical Band
Analysis

Equal Loudness
Freeamphasis

Intensity-Loundess
Conversion

7 pp—

Inverss
Fourier Transform

HLF-Denved Cepstral Autocorrelation
Cepstrum - COnversion L P Conversion

o« Godls;

0 Apply greater weight to
perceptually-important portions of the
spectrum

0 Avoid uniform welghting across the
frequency band

o Algorithm:
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0 Compute the spectrum viaaDFT

0 Warp the spectrum along the Bark
frequency scale

0 Convolve the warped spectrum with the
power spectrum of the ssmulated critical
band masking curve and downsample (to
typically 18 spectral samples)

0 Preemphasize by the smulated
equal-loudness curve:

s Simulate the nonlinear relationship
between intensity and perceived
loudness by performing a cubic-root
amplitude compression

0 Compute an LP model
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0 Compute an L P-derived cepstrum

Clams:

0 Improved speaker independent recognition
performance

0 Increased robustness to noise, variations in
the channel, and microphones
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EQUAL LOUNDNESS PREEMPHASIS
AND PERCEIVED INTENSITY

o Equal loudness preemphasis is implemented
using:

(0 +56.8x10")a"

20y = -
(®° +63x10°) (0 +0.38x10° ) (@' +9.58x10°°)

o Percelved loudness can be approximated
using:

Bty =itay >

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_17/lecture_17_05.html [6/15/2002 10:43:16 AM]



LECTURE 17: SPECTRAL TRANSFORMATIONS

FORMANT FREQUENCY
DISTRIBUTIONSFOR VOWELS

Recall the Peterson-Barney vowel data:

FZ ( Bark)
] ] ] ] ] ] ] 1 ] 1 I 0@
F1
{ Bark) beat (.
_ boot L
F1
) iHz )
_ bit n
@ bird 40

put

bet @ B
hut

Pm’ L G0
bat .
FT
farther
| 200

AMERICAN EHGLISH [ata: Peterson & Barney 1952 [ oo

T T T T L T T T
008 2509 209 1589 1009 SRl

F2 (Hz]
Mean formant values of 33 male speakers for ten American English vowels. (Data from: G.
Peterson and H.L.Barney, "Control Methods Used In A Study Of The Vowels," Journal of the
Acoustical Society of America, vol. 24, pp. 175-184, 1952. Figure from: Projektit: Vowel Charts.)

o« What causes this natural variation?
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o Isthistype of variation desirable?

o« How can we offset this variation?
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SPEAKER-DEPENDENT FREQUENCY
WARPING

Recall the hilinear transform:

—1
5§ = Q) = ®+ 2arctan(
] -z

osin( ) )
1 —ocos(m)

o Thiswasagood approximation to the Bark
and mel scales:

0 1000 2000 D000 4000 SO0 B000 7000 000
frequisncy (Hz)

« How can we compute the optimal warping
factor?
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DIRECT MEL-SCALE FREQUENCY
WARPING

o We can warp the linear frequency axis

directly. Let */mer * = 1% denote the

center frequencies on the mel scale. We can
warp these frequencies using asimple linear
transformation:

o | (kAf, ;) /2595
fh’f{kﬂ-fmﬁ] = T700(10 1)/ o

o We can also warp the discrete Fourier
transform samples directly using asimilar
linear compression.

o A typical range for the warping factorsis
[0.8, 1.2].

o What arethe relative merits of this approach?
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Return to Main

Objectives

I ntroduction:

Components
Temporal |nformation

Z-Transform
Curve-Fitting
Alternatives

Finite Differences:
First-Order Difference

Freguency Response

Regression:
Mean-Square Error
Central Difference

On-Line Resour ces:
SRSTW: Derivatives

Polynomial Fitting
Finite Differences
STRUT: Post-Processing
Regression Theory
Regression Tutorial
Regression Applet
Autofit

LECTURE 18:
DIFFERENTIATION OF
FEATURES

o ODjectives:

0 Introduce the concept of a
derivative

0 Appreciate the computational
ISsues

0 Derivatives based on finite
differences

0 Derivatives based on linear
regression

Three important references for this
materia are:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_18/index.html (1 of 3) [6/15/2002 10:43:18 AM]


http://www.isip.msstate.edu/conferences/srstw/program/session_04/signal_processing/html/sp_15.html
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/speech/recog19.pdf
http://ccrma-www.stanford.edu/~jos/lumped/Finite_Differences_vs.html
http://tcts.fpms.ac.be/asr/strut/users-guide/html/node27.html
http://elsa.berkeley.edu/sst/regression.html
http://cne.gmu.edu/modules/dau/stat/regression/linregsn/linregsn_frm.html
http://www.stat.sc.edu/~west/javahtml/Regression.html
http://www.lava.net/~seekjc/index.html

LECTURE 18: DIFFERENTIATION OF FEATURES

o F.K. Soong and A.E. Rosenberg,
"On the Use of Instantaneous and
Transitional Spectral Information
INn Speaker Recognition,”
Proceedings of the International
Conference on Acoustics, Soeech,
and Sgnal Processing, Tokyo,
Japan, pp. 877-880, April 1986.

o J.G. Proakisand D.G. Manolakis,
Digital Sgnal Processing (Third
Edition), Prentice-Hall, Upper
Saddle River, New Jersey, USA,
1996.

o A.J. Hayter, Probability and
Satistics For Engineers and
Scientists, International Thomson
Publishing, Cincinnati, Ohio,
USA, 1996.

The course textbook contains
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references to the seminal papersin
thisareaas well.
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LECTURE 18: DIFFERENTIATION OF
FEATURES

o ODbjectives.
0 Introduce the concept of aderivative
0 Appreciate the computational 1ssues
0 Derivatives based on finite differences

0 Derivatives based on linear regression
Three important references for this material are;

o F.K. Soong and A.E. Rosenberg, "On the Use
of Instantaneous and Transitional Spectral
Information in Speaker Recognition,”
Proceedings of the International Conference
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on Acoustlcs Soeech, and Sgnal Processing,
Tokyo, Japan, pp. 877-880, April 1986.

e J.G. Proakisand D.G. Manolakis, Digital
Sgnal Processing (Third Edition),
Prentice-Hall, Upper Saddle River, New
Jersey, USA, 1996.

o A.J. Hayter, Probability and Satistics For

Engineers and Scientists, | nternational
Thomson Publishing, Cincinnati, Ohio, USA,
1996.

The course textbook contains references to the
seminal papersin thisareaaswell.
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ADDING TEMPORAL INFORMATION:
DERIVATIVES

Signa
Measurements
Weighted

i v {0)
Signal : l
Measurements vil) .
fo- Weighting - | d
v (N, - 1)
First S
Derivative vy, +1) .
= | Differentiator - | 2l
v (N, + N, - 1)
Second VN, T N)
Derivative £t _
| | Differentiator o VA VI | N,

Temporal derivatives of the spectrum are
commonly approximated by differentiating
cepstral features using alinear regression.
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ADDING TEMPORAL INFORMATION:
DERIVATIVES

« Wewould like to add information about the
change In the spectrum to our feature vector
to Improve our ability to distinguish between
stationary sounds (vowels) and nonstationary
sounds (consonants).

o Recall the definition of differentiation in the
time domain:

i_r[r‘] & JmX(m)
dt

o Differentiation is an inherently noisy process
since it amplifies high frequencies. Hence, we
must be careful how we compute this. In

practice, we use low-pass filtered derivatives
(the derivative of alow-pass filtered version
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of the signal).

o What wereally want to measure isthe time
derivative of the spectrum:

":i = 779
SIX( M, 1) 27

But derivatives of continuous time signals are
difficult to compute for discrete-time signals.

o Recdl the definition of aderivative:

d .. _ Im x()—x(t-T)

This can be viewed asadigital filter:

x(ny—x{n-1) 17 1
' Hiz = |1 -z
yin) 7 & H(zZ) IH,-'I

L ater we will explore the frequency response
of thisfilter.
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. In practice, we compute . %
temporal derivatives of
feature vectors by
differentiating each e ement
as afunction of time. Since feature vectors
measure the spectrum, thisgives us arealistic
measure of spectral change. These
derivatives, called delta parameters, are
concatenated with the absol ute measurements
to form an extended feature vector that
contains absolute and rate of change
Information.
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GRAPHICAL INTERPRETATION: CURVE
FITTING

o What we seek isthe value of the slope, not
the differentiated signal. This can be directly
estimated using the principle of linear
regression.

o We can cast this estimation problem as a
curve-fitting problem with some special
constraints that result from the signal
processing nature of the problem.

o Consider the estimation problem shown
below:
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y(n)
i

y(n) = ag + asx(n)

o Thesdlopeof asignal can be estimated
directly using alinear regression approach.
More precisaly, we are using aleast mean
square error parameter estimation approach to
finding the equation of aline that best
approximates the signal.

« Note that the slope of the line Is represented
by the parameter a, in the equation shown in

the figure above. Thisisthe parameter of
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Interest in thisanalysis.
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ALTERNATEWAYSTO COMPUTE A
DERIVATIVE

In conventional digital signal processing (DSP) textbooks, derivatives,
E}ﬂ'y[r],—‘ dt, are estimated several ways:

+ simple backward difference (first-order — p=1):

x(nT)-x((n-1)T))
. (2)

+ central difference (first-order — p=1):

vinT) =

x(in+ DN =x((n=1)T)
57 (3)

y(nT) =
+ digital filters:
y(n) = apy(n=1)+ta,y(n=-2)+ ... +byx(n)+b x(n—-1)+ ... (4)
+ higher-order approximations (Taylor Series, Splines):

2
y(nT) = a,+ al%v[uﬁ + F?_IH” Ty+... (5)

o What we must keep clear here isthe difference
between the order of the derivative (k), the
order of the approximation (p), and the length
of the filter or difference eguation used to
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compute the approximation (N).
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PROPERTIES OF A FIRST-ORDER
DIFFERENCE

We can compute the frequency response of a
first-order difference:

yn) = 3lx(n) = x(n 1)}

h{”} — {_%a%}
H(®)= %(1 _ 7

|H(w)| = %|l — COSM + jsin@)

4
- %Ju _ cos®)” + (sin)”

= %J{l —2cosm + {cnsm)z) + (sinf_n:l)2

= %,JE ~2cosm

= iJl — COS@®

A2
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FREQUENCY RESPONSE OF A
FIRST-ORDER DIFFERENCE

A plot of the frequency response for thisfilter is
shown below:

[ 1
wn) = 30x(n) - x(n —1)] Hiw)= 5(1-¢")

|.|"fl:f:]:'| .‘.
1.0

0.8 _

0.6 _

0.4 _|

0.2 _]

0

balE ——
e
3
3

|

I
() T

1

o Becausethisfilter acts as a high-passfilter, it
has a tendency to amplify noise.
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MEAN SQUARE ERROR DERIVATION

 |n gpeech recognition, we prefer to use a
statistical approach to estimating the
derivative. Why?

« Thistechnique uses a statistical method
known as linear regression. In this approach,
we choose the regression coefficients to
minimize the mean squared error:

Ol

E= Y [y(n)-(ay+ax(m)]’

n=—o=

o Thesolution to this equation is well-known
(in DSP literature, thisis known as linear
prediction), and is found by differentiating the
error equation with respect to the regression
coefficients, setting the derivative to zero, and
solving for the regression coefficients. This
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results in the following eguations:

nYy x(m)y(n)— (Y x(n)(Y y(n))
ﬁrzrz[rr] {'ZI{H))E
ap = Eﬁjz'ﬂﬁ) --ﬂl(}z}z_ﬂn}
Thisequation isfairly general. Note that if the

Input data have an average value of zero, the
resulting equations are even simpler.

H|E —
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LINEAR REGRESSION

We can simpify the previous eguation by
Imposing a central difference type
formulation of the problem, as shown below:

y(n)
i

y(n) = ap + asx(n)

' ' H—m= {ime
_N " . _'1 ::] 1 LT 1 ] N

The x-axisisrelabeled in terms of equispaced
sample indices, and centered about zero.

Thissimplifies the calculation to:
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ny x(m)y(n)=0% x(n)) ¥y vin))
nz.r'[ﬂ] - {Z-'L‘fﬂ]]
HZIUJ‘J}*(H}
H:Z.\'E{H]

o Thisequationisthe form wedesire, and is
extremely efficient to compute. The
denominator can be precomputed, and the
Integer multiplications are easlly
Implemented even in fixed-point DSPs.

« Obvioudy, this approach can be extended to
higher order derivatives. However,
historically, second derivatives in speech
recognition have been computed by applying
two first-order derivatives in succession.
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Further, the order of regression used, N, Is
most commonly set to 2, which means a
five-frame sequence of featuresisrequired to
compute the first-order derivative.
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Return to Main

Objectives

Distance M easur es:
Distance

Waeighted Distance

Prewhitening

Relationship
Noise Reduction

Computation

Maximum Likelihood:
Classification
Maximization
Mahalanobis

On-Line Resour ces:
PCA
ICA
Factor Analysis
Statistical Normalization
Pattern Recognition Applet

LECTURE 19: PRINCIPLE
COMPONENTSANALYSIS

o ODbjectives:

0 Introduce the concept of a
distance measure

0 Introduce
statistically-weighted distance
measures

0 Review maximum likelithood
classification

0 Exploretherelationsnip
between welghted distance
measures and maximum
likelithood classification
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0 Introduce the Mahalanobis
distance measure

This material can be found in most
pattern recognition textbooks. This
1S the book we recommend:

R.O. Duda, P.E. Hart, and D.G.
Stork, Pattern Classification
(Second Edition), Wiley
Interscience, New Y ork, New
York, USA, ISBN:
0-471-05669-3, 2000.

and use In our pattern recognition
course. The material in this lecture
follows this textbook closaly:

J. Déller, et. al., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

Each of these sources contain
references to the seminal
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publications in this area, including
our all-time favorite:

K. Fukunga, Introduction to
Satistical Pattern Recognition,
MacMillan Publishing Company,
San Diego, California, USA,
ISBN: 0-1226-9851-7, 1990.
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LECTURE 19: PRINCIPLE COMPONENTS
ANALY SIS

o ODbjectives.

0 Introduce the concept of adistance
measure

0 Introduce statistically-welghted distance
Mmeasures

0 Review maximum likelthood classification

0 Explore the relationship between weighted
distance measures and maximum
likelthood classification

0 Introduce the M ahal anobi s distance

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_19/lecture_19_00.html (1 of 3) [6/15/2002 10:43:22 AM]



LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

This material can be found in most pattern
recognition textbooks. Thisisthe book we
recommend:

R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification (Second Edition),

Wiley Interscience, New Y ork, New Y ork,
USA, ISBN: 0-471-05669-3, 2000.

and use in our pattern recognition course. The
material in thislecture follows this textbook
closaly:

J. Deller, et. a., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.

Each of these sources contain references to the
seminal publications in this area, including our
al-time favorite:

K. Fukunga, Introduction to Satistical
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Pattern Recognition, MacMillan Publishing
Company, San Diego, California, USA,
|SBN: 0-1226-9851-7, 1990.
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DISTANCE MEASURES

What is the distance between pt. a and pt. b?

The N-dimensional real Cartesian space,

denoted %" is the collection of all N-dimensional
vectors with real elements. A metric, or distance
measure, is a real-valued function with three properties:

2.d4x.¥) =0 il and only if X
3. d(X, ¥) = d(x, 2) + d(z, ¥)

=

gold bars

The Minkowski metric of order s, or the .!'_1_ metric, between ¥ and ¥ is:

N
d (%, )=, Z |_1-A,—_1:&|" = ||x-HI,
k=1

(the norm of the difference vector).

Important cases are:
1. I, or city block metric (sum of absolute values),

N
{fl{I, F) = Z |.l&—_}’k|
fom ]

2. 1,, or Euclidean metric (mean-squared error),

2

N
d(%,F) = E |'Tk_-1".-!.-|_
k=i
3. fm or Chebyshev metric,

d_IX. F) = max |-T& _-Fﬁil
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LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

WEIGHTED EUCLIDEAN DISTANCES

We can similarly define a weighted Euclidean distance metric:

d, f5.9) = -5 w

-7
where:
¥ ¥ W11 Wiz - Wy
_ x _ ¥ _ W W cas W
£= %2 ,p=1"2, and w = |"21 V2 2k
K V] Rid L Rl

Why are Euclidean distances so popular?

One reason is efficient computation. Suppose we are given a set of M
reference vectors, ¥, a measurement, ¥, and we want to find the nearest

neighbor:

!

NN = min Ejz[.i'm, ¥)
i

This can be simplified as follows:

We note the minimum of a square root is the same as the minimum of a
square (both are monotonically increasing functions):

& K
s gl 2 2 2
d5(X,,. ¥)" = Z [Iur_,_-"_;'} = E IFH; - E-""mf,"_,-*' ¥
f=1 =1

%" ~28,, ¢ 7+ 117

M
= Fm i {T_l-' = Eim *J
Therefore,

NN = mindyx .9 = C
i

pst [ ] i
Hi E-TFH '1-.

Thus, a Euclidean distance is virtually equivalent to a dot product {(which
can be computed very quickly on a vector processor). In fact, if all reference

s stk L s o TN P - i [ . T T s | S Dmiom e came ™ | Fon i o 1
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VEUIONs nave e sding magnimuae, Gdin oe ignored  (normanged

m
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LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

PREWHITENING OF FEATURES

Consider the problem of comparing features of different scales:

Suppose we represent these points in space in two coordinate systems
using the transformation:

z=Vx
System 1: gold bars
B, = li+0j and B, = 0i+1j i
2 —1 b
<o (0] (1 7 - |10[] 1L/ 4
0 1|1 01|[2
0 i I o
0 1 2
d-(a, b) = m = ] diamonds
System 2:
Y, =-2i+0jandy, = -1i+1j
System 1

- |2 0]|-1 7 - |-20 % System 2
11| 1 L,

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_19/lecture_19_ 03.html (1 of 2) [6/15/2002 10:43:23 AM]



LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

The magnitude of the distance has changed. Though the rank-ordering of
distances under such linear transformations won't change, the cumulative

effects of such changes in distances can be damaging in pattern
recognition. Why?
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LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

WEIGHTED EUCLIDEAN DISTANCES
REVISITED

We can simplify the distance calculation in the transformed space:

dy(VE, V) = JIVE- V51 [V - 5]
- Jiz-51" ¥ vz - 51
= dy %, 7)

This is just a weighted Euclidean distance.

Suppose all dimensions of the vector are not equal in importance. For
example, suppose one dimension has virtually no variation, while another is
very reliable. Suppose two dimensions are statistically correlated. What is a
statistically optimal transformation?

Consider a decomposition of the covariance matrix {which is symmetric):

C = GAD

where & denotes a matrix of eigenvectors of C and A denotes a diagonal
matrix whose elements are the eigenvalues of C. Consider:

e ﬂ_lfzf_ﬂi'

The covariance of z, C. is easily shown to be an identity matrix (prove this!)
We can also show that:

S - Y A ==
fjgtz]::"-g] = Jlx]_lgl E.‘[‘ |-1']_-1'2|

Again, just a weighted Euclidean distance.

+ If the covariance matrix of the transformed vector is a diagonal matrix,
the transformation is said to be an orthogonal transform.

« If the covariance matrix is an identity matrix, the transform is said to be
an orthonormal transform.
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LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

+ A common approximation to this procedure is to assume the dimensions
of ¥ are uncorrelated but of unequal variances, and to approximate C by

a diagonal matrix, A. Why" This is known as variance-weighting.
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LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

NOISE REDUCTION

The prewhitening transform, z = A~/ “@x, is normally created as a k = k
matrix in which the EigEﬂﬁ'uEE are ordered from |EFQESI to smallest:

[ ] l—l,fz B B B [ Ir

Z 1 T Y Yz - Y3 R
, 12 L .

ol = | 2 g ¥ T ||Va Ve o Vgl [ Fa
2 a2 g || R B SbEny

| 7] 9 9 0 ;,L;”? Vi Yz - Vi) |

where

I-'Ll}l.,::: ..-}}Lk.

In this case, a new feature vector can be formed by truncating the

transformation matrix to /< & rows. This is essentially discarding the least
important features.

A measure of the amount of discriminatory power contained in a feature, or
a set of features, can be defined as follows:

!
2
1

Yo var = ="—T---
PR
j=1
This is the pement of the variance accounted for b‘}l’ the first | features.

Similarly, the coefficients of the eigenvectors tell us which dimensions of the
input feature vector contribute most heavily to a dimension of the output
feature vector. This is useful in determining the "meaning” of a particular
feature (for example, the first decorrelated feature often is correlated with
the owverall spectral slope in a speech recognition system — this is
sometimes an indication of the type of microphone).
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COMPUTATIONAL ISSUES

Computing a “noise-free” covariance matrix is often difficult. One might
attempt to do something simple, such as:

N-1 N-1

¢y = z {xﬂ-—p!-}{xj—pljj and pu; = z X;
it = {) i

On paper, this appears reasonable. However, often, the complete set of

feature vectors contains valid data (speech signals) and noise (nonspeech

signals). Hence, we will often compute the covariance matrix across a

subset of the data, such as the particular acoustic event (a phoneme or

word) we are interested in.

Second, the covariance matrix is often ill-conditioned. Stabilization
procedures are used in which the elements of the covariance matrix are
limited by some minimum value (a noise-floor or minimum SNR) so that the
covariance matrix is better conditioned.

But how do we compute eigenvalues and eigenvectors on a computer?
One of the hardest things to do numerically! Why?

Suggestion: use a canned routine (see Numerical Recipes in C).

The definitive source is EISPACK (originally implemented in Fortran, now
available in C). A simple method for symmetric matrices is known as the
Jacobi transformation. In this method, a sequence of transformations are
applied that set one off-diagonal element to zero at a time. The product of
the subsequent transformations is the eigenvector matrix.

Another method, known as the QR decomposition, factors the covariance
matrix into a series of transformations:

C=0Rr

where g iIs orthogonal and R is upper diagonal. This is based on a

transformation known as the Householder transform that reduces columns
of a matrix below the diagonal to zero.
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MAXIMUM LIKELIHOOD
CLASSIFICATION

Consider the problem of assigning a measurement to one of two sets:

]

fa&e=10)

What is the best criterion for making a decision?
Ideally, we would select the class for which the conditional probability is highest:

ct = argmax  £((C = C)[(x = '%'ﬂ
I

However, we can't estimate this probability directly from the training data. Hence,
we consider:

c* = aregmax P(X = -%}|[f' =¢))

L

By definition

P{(c=&)}|(x=X)) =

and

P((c = &),(% = %))

i e A =
F((% = ¥)|(c = &) Fee B

from which we have

Pl(e=&)(x=3)) =

P((x = ©)|(c = éNPle = &)
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SPECIAL CASE: GAUSSIAN
DISTRIBUTIONS

Clearly, the choice of ¢ that maximizes the right side also maximizes the left side.
Therefore,

ot

argmax [P((X = ¥)|(c = &))]
L

argmx [ P((X = ¥)|(¢ = &))P(c = &)]
i
if the class pmbahilities are equal,
c* = argmx[P((X = X)|(c = &))]
:

A quantity refafed to the probability of an event which is used to make a decision
about the occurrence of that event is often called a iikelihood measure.

A decision rule that maximizes a likelihood is called a maximum likelihood
decision.

In a case where the number of outcomes is not finite, we can use an analogous
continuous distribution. It is common to assume a multivariate Gaussian

distribution:
S gl ©) = _!'Ili__{ﬂf:]
T {_l:__ roe }
T A e e

We can elect to maximize the log, l“'-f'.ﬂ:-"lﬂ”' rather than the likelihood (we refer
to this as the log likelihood). This gives the decision rule:

il s o 5ol ome s vl
c* = argmin |:[5t‘—l~lf|;-]' E.‘[‘|r [‘T_”_%L-]'_]n“{—'-flf" ]:|

[k

(Mote that the maximization became a minimization.)
Wia ran Aafina a Aistanmcas maaenira hacad Aan thie ae-
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THE MAHALANOBISDISTANCE

Mote that the distance is conditioned on each class mean and covariance.
This is why “generic” distance comparisons are a joke.

If the mean and covariance are the same across all classes, this expression
simplifies to:

(F-fg )

T . T
dpfX. g ) = (F—Hg ) G

=%|e

This is frequently called the Mahalanobis distance. But this is nothing more
than a weighted Euclidean distance.

This result has a relatively simple geometric interpretation for the case of a
single random variable with classes of equal variances:

|

J'rflr'[fl (c=2))

[ Fl(e=1)

The decision rule involves setting a threshold:
Hy +H, . .
e ( | L] oo O ln(#n. 2}]
2 Hy—Hy Plc=1)

if r<da xelc=1)

and,

else xe (¢=2)

If the variances are not equal, the threshold shifts towards the distribution
with the smaller variance.

What 2 an avamnlae of an annlicatinn whara  the rclacess are it
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ORI s wa b R e i T e R A R R WA B LA Er o 1 e et Rt N o

equiprobable?
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LECTURE 20: LINEAR DISCRIMINANT ANALYSIS

Return to Main

Objectives

Maximum Likelihood:
Classification
Maximization
Mahalanobis

Discrimination:
2D Gaussian
Support Region
Decision Regions
Approach
Scatter

Example

On-Line Resour ces;
LDA Tutoria

ICA

Statistical Normalization
Pattern Recognition Applet
LNKNET Software

LECTURE 20: LINEAR
DISCRIMINANT ANALYSIS

o ODbjectives.

0 Review maximum likelihood
classification

0 Appreciate the importance of
welghted distance measures

0 Introduce the concept of
discrimination

0 Understand under what
conditions linear discriminant
analysisis useful

This material can be found in most
pattern recognition textbooks. This
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LECTURE 20: LINEAR DISCRIMINANT ANALYSIS

1S the book we recommend:

R.O. Duda, P.E. Hart, and D.G.
Stork, Pattern Classification
(Second Edition), Wiley
Interscience, New Y ork, New
York, USA, ISBN:
0-471-05669-3, 2000.

and use In our pattern recognition
course. The material in this lecture
follows this textbook closaly:

J. Déller, et. al., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

Each of these sources contain
references to the seminal
publications in this area, including
our all-time favorite:

K. Fukunga, Introduction to
Satistical Pattern Recognition,
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MacMillan Publishing Company,
San Diego, California, USA,
ISBN: 0-1226-9851-7, 1990.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_20/index.html (3 of 3) [6/15/2002 10:43:27 AM]
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LECTURE 20: LINEAR DISCRIMINANT
ANALY SIS

o ODbjectives.
0 Review maximum likelithood classification

0 Appreciate the importance of weighted
distance measures

0 Introduce the concept of discrimination

0 Understand under what conditions linear
discriminant analysisis useful

This material can be found In most pattern

recognition textbooks. Thisisthe book we
recommend:
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R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification (Second Edition),

Wiley Interscience, New Y ork, New Y ork,
USA, ISBN: 0-471-05669-3, 2000.

and use In our pattern recognition course. The
material in this lecture follows this textbook
closaly:

J. Deller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.

Each of these sources contain referencesto the
seminal publications in this area, including our
al-time favorite:

K. Fukunga, Introduction to Satistical
Pattern Recognition, MacMillan Publishing
Company, San Diego, California, USA,
|SBN: 0-1226-9851-7, 1990.
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TWO-DIMENSIONAL GAUSSIAN
DISTRIBUTIONS

The equation of multivariate Gaussian
distribution is as follows:

—1 T
L SEY - (@) - W)

z=plxy) = e
em® %

where %y % | 1Sthe covarlance matrix and d
1S the dimension of the distribution.

1D Gaussian distribution 2D Gaussian distribution
Q. (L5

e
. N . |

pdf values
i

-
el =)

5
x-values 3

5 y-values
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SUPPORT REGION: A CONVENIENT
VISUALIZATION TOOL

« A support region isthe surface defined by the intersection
of a Gaussian distribution with aplane.

« The shape of a support region iselliptical and depends on
the covariance matrix of the original data.

« A convenient visualization tool in pattern recognition.

1.5+

0.4

pdf values
S B
LI

=
_I I+

=
=

Some examples demonstrating the relationship between the
covariance matrix and the 2D Gaussian distribution are shown
below:
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DISTANCE MEASURES AND DECISION

REGIONS

o Case I: Distributions
with equal variances

o Decision surface
boundary is a line
separating the two
distributions (general
case Is a hyperplane).

o Case Il: Distributions
with unequal variances

e Direction of greatest
variance is not the
direction of
discrimination.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_20/lecture_20_03.html [6/15/2002 10:43:29 AM]

L b FEMALE

50 . . -
4 5 5 7
height {ft.)
m{l
] %
& 1507 T . MALE
= +
'-g] 100 Py
FEMALE
| | ."
4 5 8 7
height (ft.}



GOAL: MAXIMIZE SEPARABILITY

Principal
Component
Analysis:
Transform
featuresto anew .\
space in which '
the features are
uncorrelated.

L inear
Discriminant
Analysis.
Projection of

5 height (ft.)



d-dimensional
dataonto aline;

Dimensionality .

reduction by
mapping L
distributions to
(L-1)-dimensional
subspace;
maximize class
separability.

MALE

FEMW

I
BF\
-
_-_.-"

5 6
height (ft.)

riin=
7



LECTURE 20: LINEAR DISCRIMINANT ANALYSIS

OPTIMIZATION CRITERIA BASED ON
SCATTER

o Within-class scatter defines the scatter of
samples around their respective means.

L
s, - __zlPiE[tX— uE )’ |

o Between-class scatter defines scatter of
expected vectors around the global mean.

L
Sp = 2 Fi[(”i‘”o](”i‘”nﬂ
i-1

o Mixture-class scatter isthe overall scatter
obtained from the covariance of all samples:

s - E[[X—HO][X—HO]T} S+ S,

where %o Isthe overall mean.

o Optimizing criteria used to obtain the
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transforms is a combination of within-class
scatter, between-class scatter and overall

scatter.

r(S,) o
criterion = criterion = Sb—u(b}‘w—ﬂ)
tr(sS,,)
criterion = inv(Sw)be criterion = inv(Sm)xSh

o Transformation matrix isgiven by:

'=40

where ¢ are the eigenvectors corresponding
to non-zero eigenval ues.
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A COMPARISON OF PCA AND LDA

Original Data

Class-Independent
PCA

Class-Independent
LDA

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_20/lecture_20_06.html [6/15/2002 10:43:31 AM]



LECTURE 21: DYNAMIC PROGRAMMING

Return to Main

Objectives

Overview:

Technology
Optimal Search

Description:
Optimality
Example
Variants
Discussion

On-Line Resour ces:
Trick: Tutorial

Cassidy: Dynamic Time-Warping
DTW Applet

LECTURE 21: DYNAMIC
PROGRAMMING

o Objectives:

0 Historical significance of
dynamic programming

0 Introduce afixed-endpoint
solution

0 Understand optimality
constraints

0 Explain usein speech
recognition

This material can be found in most
older speech recognition textbooks.
Thisis the book we recommend:
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J. Déller, et. d., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

For a more detailed description of
the use of thistechnology in speech
recognition, see:

H.F. Silverman, D.P. Morgan,
"The Application of Dynamic
Programming to Connected
Speech Recognition,” |IEEE
Acoustics, Speech, and Sgnal
Processing Magzine, vol. 7, pp.
6-25, July 1990.
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LECTURE 21: DYNAMIC
PROGRAMMING

o ODbjectives.

0 Historical significance of dynamic
programming

0 Introduce afixed-endpoint solution
0 Understand optimality constraints
0 Explain use in speech recognition

This material can be found in most older speech
recognition textbooks. Thisisthe book we
recommend:
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J. 'Deller, et. a., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.

For a more detailed description of the use of this
technology In speech recognition, see:

H.F. Sllverman, D.P. Morgan, "The
Application of Dynamic Programming to
Connected Speech Recognition,” |EEE
Acoustics, Speech, and Sgnal Processing
Magzine, vol. 7, pp. 6-25, July 1990.
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DYNAMIC PROGRAMMING: FAST BUT
OPTIMAL SEARCH

o The search space for vocabularies of
hundreds of words can become unmanageable
If we allow any word to follow any other
word (often called the no-grammar case).

o Our rudimentary knowledge of language tells
usthat, in reality, only asmall subset of the
vocabulary can follow a given word
hypothesis, but that this subset is sensitive to
the given word (we often refer to thisas
"context-sensitive").

o Inreal applications, user-interface design is
crucia (much like the problem of designing
GUI's), and normally results in a specification
of alanguage or collection of sentence
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patterns that are permissible.

« A simple way to express and manipulate this
Information in a dynamic programming
framework Is avia a state machine:

o For example, when you enter state C, you
output one of the following words: { daddy,
mommy} .

If:
state A: give
state B: me
state C: { daddy, mommy}
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state D: come
state E: here

With such a state machine, we can generate
phrases such as;

Daddy give me
transitions. Start -> C -> A -> B -> Stop

o We can also use this technology to compare
feature streams from two signals:
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node(m, n)

Signal 2 node(L, 1)

/ i . Signal

node(0, 0)

o Thelatter exampleissimilar to an early
approach to speech recognition denoted
dynamic time-war ping. Why might this be
useful for speech recognition?
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BELLMAN'SPRINCIPLE OF
OPTIMALITY

o Consider the discrete space (grid) shown
below:

&
4 * i
f‘["" i L
3|
) , 1 !
i

R B2 i3} Sy el LI L BFi

o Define apath from node (s,t) to (u,v) asan
n-tuple:
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(S0, (I1J1), (12)2), -y (UV)

Define a distance in moving from node

Ik-1Jk-1 1O Ik.J @S

A[(ki) | (k-1dk-D] = drliadic) | (k-1dk-2)]

+ dn (k)
o Define an overall path cost as.

K
DG, j) = Y, dlj| Gy g )]
k=1

o Belman'sPrinciple of Optimality:
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(5,8 = (u,v) = (5, 0) = (w,x) B (w, x) = (1, v)

forany s, f,u,v,w,and x suchthat 0<s,w,u</land 0<t,x,v<J,
where @ denotes concatenation of path segments.

« Thistheorem has remarkable conseguences.
We do not need to exhaustively search for the
best path. Instead, we can build the best path
by considering a sequence of partial paths,
and retaining the best local path:

?O*

« The savingsin computations are enormous:
O(KVL) vs. O(KVL).

o For thisreason, dynamic programming IS one
of the most widely used algorithmsin
computing. It has been applied to many areas
of speech recognition including language
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modeling (search) and scoring (string edits).
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EXAMPLE: STRING SIMILARITY

o Consider the problem of measuring the
distance between two strings below:

« [Transtion Penalty: Any non-diagonal
transition has a penalty of 1 unit.
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o Node Penalty: Any two dissimilar letters that
are matched at a node incur a penalty of 1.

« How much memory do we need if we just
want to keep the best score?

o When would we want to retain the
backpointers at each node?

« How can we constrain the search space to

make this algorithm more efficient for speech
processing?
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COMMON VARIANTSOF THE DYNAMIC
PROGRAMMING FRAMEWORK

« Previoudly, we demonstrated fixed-endpoint
DP.

« Relaxed endpoint and free endpoint solutions
are also possible:

Tle

e ——
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right, we can impose "slope constraints' to

Improve performance and decrease
computation:

f / region
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« The dlope constraints are implemented by
limiting the search space and imposing
transition penalties.

« What aspects of the speech signal influence the
design of the slope constraints?
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DISCUSSION: HOW DO WE APPLY
DYNAMIC PROGRAMMING TO SPEECH
RECOGNITION?

o Theoptimal solution isonly as good asthe
cost function. What Is an appropriate cost
function for speech recognition? What
features should we use?

« How should wetrain our reference models
("templates')?

o How can we attempt continuous speech
recognition using this approach?
(Hints: Word Spotting, Level Building, Bridle
Algorithm)
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LECTURE 22: FUNDAMENTALS OF MARKOV MODELS

Return to Main

Objectives

I ntroduction:

Example
Calculations

Definitions:
Hidden States
Doubly Stochastic
Basic Model Elements
Matrix Solutions
Likelihood

On-Line Resources:
OGI: HLT Survey

Cambridge: HTK
MS State: ASR

Berkeley: Matlab HMM  UIUC: Multimodal

LECTURE 22
FUNDAMENTALSOF
MARKOV MODELS

o Objectives:

[]

| ntroduce a Markov model

Understand the difference
between an observable and a
hidden Markov model

Appreciate the reason we use
Markov models. to model
temporal evolution of the
spectrum (important in speech
recognition!)

Demonstrate basic calculations

Demonstrate the infeasibility
of these basic calculations for
real problems
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LECTURE 22: FUNDAMENTALS OF MARKOV MODELS

This material can be found in most
speech recognition and pattern
recognition textbooks. These notes
follow material presented in:

J. Déller, et. al., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

Another useful referencels:

L.R. Rabiner and B.W. Juang,
Fundamental s of Speech

Recognition, Prentice-Hall,
|ISBN: 0-13-015157-2, 1993.

The course textbook also follows
these traditional references closaly.
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L ECTURE 22: FUNDAMENTALS OF
MARKOV MODELS

o ODbjectives.
0 Introduce a Markov modea

0 Understand the difference between an
obsarvable and a hidden Markov model

0 Appreciate the reason we use Markov
models: to model temporal evolution of the
spectrum (Important in speech
recognition!)

0 Demonstrate basic calculations

0 Demonstrate the infeasibility of these basic
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calculations for real problems

This material can be found In most speech
recognition and pattern recognition textbooks.
These notes follow material presented In:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.

Another useful referenceis:

L.R. Rabiner and B.W. Juang, Fundamentals
of Spoeech Recognition, Prentice-Hall, ISBN:
0-13-015157-2, 1993.

The course textbook also follows these
traditional references closaly.
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A SSIMPLE MARKOV MODEL
FOR WEATHER PREDICTION

What is a first-order Markov chain?
Plg, = _,l'|[:1rr_] =hd,_a=%..)] = Plg,= j|q:_] = {]

We consider only those processes for which the right-hand side is
independent of time:

aj = Pla,=Jja,_ =il 1<ij<N

with the following properties:

Z a; = 1 Vi

The abowve process can be considered observable because the output
process is a set of states at each instant of time, where each state
corresponds to an observable event.

Later, we will relax this constraint, and make the output related to the states
0.4 0.6

by a second random process.

Example:A three-state model of
the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
state 3: sunny

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_22/lecture_22_01.html [6/15/2002 10:43:35 AM]



LECTURE 22: FUNDAMENTALS OF MARKOV MODELS

BASIC CALCULATIONS

Example: What is the probability that the weather for eight consecutive
days is "sun-sun-sun-rain-rain-sun-cloudy-sun"?

Solution:
0 = sun sun sun rain rain sun cloudy sun
. 3 3 1 1 3 2 .

P{E_Jl."l-fm.‘e!'}

P[3)P[3|3])P[3|31PIL|3IPIL|T]FPL3|1]PI2|3])P[3]|2]
T183393191193932%;

— 1.536% 10~

Example: Given that the system is in a known state, what is the probability
that it stays in that state for d days?

O=i i | | j
P{ﬁ|aﬁfﬁ£f&'f,q] =1 = ;J[r:_;r,ql = i| Model)/ P(q, = i)

= jt.:.r..d_l{l—u..],.-"rr.
I il I [
ad—1

= dy {1_“."."}

= pid)

MNote the exponential character of this distribution.

We can compute the expected number of observations in a state given
that we started in that state:

= _ - d—1 |
d; = Z dp(d) = E da;’ " (1-ay) = 7—
g m ] g =]

— .,
il

Thus, the expected number of consecutive sunny days is (1/1-0.8)) = 5;
the expected number of cloudy days is 2.5, etc.

What have we learned from this example?
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"HIDDEN" MARKOV MODELS

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

0 = (HHTTTHTTH...H)
What is a reasonable model of the system?

P(H) 1-P(H)
) 1-P(H) } 1-Coin Model
g (Observable Markov Model)

»__ P(H) O=HHTTHTHHTT H..
Heads Tails s=11 2 2 1 2 1 1 2 2 1
22 2-Coins Model

) (Hidden Markov Model)
O=HHTTHTHHTT H..
S=1 1 2243 2194 2.2 1
P(H) = P4 P(H) = P
P(T) = 1-P, P(T) = 1-P,

3-Coins Model

(Hidden Markov Model)
O=HHTTMHTMHHTT H..
S=3 1 2 3 311 2 313
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P(T): 1-Py 1Pz 1-Pj
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DOUBLY STOCHASTIC SYSTEMS

The Urn-and-Ball Model

P(red) =b4(1) P(red) = bs(1) P(red) = b4(1)
Pigreen) = by(2) P{green) = Dbs(2) P{green) = Dba(2)
Piblue)  =b,(3) P(blue)  =by(3) P(blue)  =b4(3)
P(yellow) = b4(4) P(yellow) = bs(4) P(yellow) = bq(4)

& = {green, blue, green, yellow, red, ..., blue}

How can we determine the appropriate model for the observation
sequence given the system above?
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BASIC ELEMENTSOF A HIDDEN
MARKOV MODEL

L ]

N — the number of states

L

M — the number of distinct observations per state

L

The state-transition probability distribution 4 = {uf—}-}-

L ]

The output probability distribution & = {b (k)}

L

The initial state distribution = = {n }

We can write this succinctly as: 4 = (4, 8. )

MNote that the probability of being in any state at any time is completely
determined by knowing the initial state and the transition probabilities:

iy =4 'm

Two basic problems:
(1) how do we train the system?

(2) how do we estimate the probability of a given sequence
{recognition)?

This gives rise to a third problem:

If the states are hidden, how do we know what states were used to
generate a given output?

How do we represent continuous distributions (such as feature vectors)?
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MATRIX CALCULATIONSFOR
DISCRETE HMMS

The discrefe observation HMM is restricted to the production of a finite set
of discrete observations (or sequences). The output distribution at any state
i5 given by:

Bk, i) = P(p(n = ﬂ-|;{:} = i)
The observation probabilities are assumed to be independent of time. We
can write the probability of observing a particular observation, y(r), as:

b} i) = POty = w0 |x(8) = i)

The observation probability distribution can be represented as a matrix
whose dimension is K rows x S states.
We can define the observation probability vector as:

_F[,Lﬂ] = 1.‘1_
pey = |POO=D| o po = Br(r) = BA' 'n(1)
PO = X))

The mathematical specification of an HMM can be summarized as:
M = {S,ml), A, B, {y,1£k<K}]

For example, reviewing our coin-toss model:

§=73
1/3
ml) = 41/3
1/3
211 %2 93
A = |ay) a5 ayy
831 43 A3y
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B, R
B = . -‘
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RECOGNITION USING DISCRETE HMM S

Denote any partial sequence of observations in time by:

I
¥y B A 1+ 200

The forward partial sequence of observations at time 1 is

¥ = DADA2),. . 0]

The backward partial sequence of observations at time ¢ is
T o
Voa 1 2{M+ 1)+ 2),.. (1}
A complete set of observations of length T is denoted as y;_;-;r.

What is the likelihood of an HMM?

We would like to calculate P(M|y =y} — however, we can't. We can
(see the introductory notes) calculate F(y = y|M}. Consider the brute
force method of computing this. Let 4 = {i,.4,..... i} denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

P(y|0.M) = b(1)|i )BA2)[i5).. . BOAT) |i )
The probability of the state sequence is
POO|M) = P((1) = i) datiy|falis|iy).atip)iz )
Therefore,
P(y.(8]M)) = P(x(1) = i))aliy i alis|iy)...alip|iz_ )
x bOAD|iBOA2Yi5).. . BOAT) |ig)

To find P(y| M), we must sum over all possible paths:

P(y| M) = Y P(y.($] M)
i

This requires m;z:r'.ﬁ']r] flops. For § = 5 and I" = 100, this gives about
e 1:&""’2 1

[ R PP L e e e N Y W )
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.0y 1 COMmMpuianons per mnina
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LECTURE 23: PARAMETER ESTIMATION

Return to Main

Objectives

Review:
Elements

Calculations:
HMM Evaluation

The Forward Algorithm
The Viterbi Algorithm
The EM Algorithm

On-Line Resour ces:
Parameter Estimation

Baum Welch
Expectation Maximization (EM)

LECTURE 23: PARAMETER

ESTIMATION

o ODjectives:

[

Review the components of a
hidden Markov model

Forward probability
calculation

The Viterbi algorithm

The Expectation Maximization
(EM) algorithm

Understand the use of these
techniques in HMM training
and decoding

This lecture combines material from
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the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and information found 1n most
standard speech textbooks:

J. Déller, et. a., Discrete-Time
Processing of Speech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.
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 LECTURE 23: PARAMETER
ESTIMATION

Objectives:

0 Review the components of a hidden
Markov model

0 Forward probability calculation
0 TheViterbi algorithm

0 The Expectation Maximization (EM)
algorithm

0 Understand the use of these techniques in
HMM training and decoding
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This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

and information found in most standard speech
textbooks:

J. Deller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publishing Co.,
|SBN: 0-7803-5386-2, 2000.
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ELEMENTSOF AN HIDDEN MARKOV

MODEL

Recall the e ements of a hidden Markov Moddl:

* N — the number of states
* M — the number of distinct observations per state

+ The state-transition probability distribution 4 = {a,}
+ The output probability distribution 8 = {b (&)}
+ The initial state distribution © = {m,}

We can write this succinctly as: L = (4, 8.

There are three problems we must solve:

The Evaluation Problem: Given a model and
a set of observations, what was the

probability that the model produced these
observations?

o The Decoding Problem: What was the most

likely state sequence in the model that
produced a given set of observations?
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o TheLearning Problem: Given amodel and a
set of observations, how can we adjust the
model parameters to increase the probability
of the observations (data) given the model?
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HMM EVALUATION (EXHAUSTIVE
SEARCH)

Denote any partial sequence of abservations in time by:

s
Y 2O+ Dot + ) 1) }

The forward partial sequence of observations at time 1 is

¥1 = DADHAD),... 10}

The backward partial sequence of observations at time ¢ is
T s
Yep1 =0+ D+ 2}, W1}
A complete set of observations of length T is denoted as yz_r]r.

What is the likelihood of an HMM?
We would like to calculate F{Lw = ¥} — however, as we will explain
later, we can't. Instead, we can calculate P(y = y|l}. Consider the brute

force method of computing this. Let & = {i,,i5. ... i} denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

Ply|dA)y = BOALNi B2 ]i,). . AT ) i)
The probability of the state sequence is
P(B3|A) = Plx(1) = I jaGy|#)aty |iy)...alip)iz )
Therefore,
Py A)) = Plx(l) =f'];rﬂ{fg|r'|]u[i'3|i'3}---ﬂ{f;r|fr_1J
x b B 2Y o) BT ) i g)

To find F(y|4) , we must sum over all possible paths:

P(y|A) = Zm-,{ )
i

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_23/lecture_23_02.html (1 of 2) [6/15/2002 10:43:39 AM]



LECTURE 23: PARAMETER ESTIMATION
This requires t‘J{H‘a‘f’J flops. For N = 5 and T" = 100, this gives about

1.6% 10" computations per HMM!
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THE FORWARD ALGORITHM

The forward algorithm beging by defining a “forward-going” partial
probability sequence:

Let us next consider the contribution to the owverall sequence probability
made by a single transition:

J)

Wi—1) W) Wi+ 1)

.r | ] I3
oy, o) = oy P+ 1) = flx( = i) x

Pyt + 1) = pr + H|J_n{r +1)=j}

= ayali| b+ )| )

summing over all possibilities for reaching state "™
:..r
i+1

aly] ) = Z n-_U-'; Ahai flibe + 1) )
im=]

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_23/lecture_23_03.html (1 of 2) [6/15/2002 10:43:39 AM]



LECTURE 23: PARAMETER ESTIMATION

The recursion is initiated by setting:
a(yy.)) = P(a(1) = b))
We still need to find Piy|A):

: y T .
Py x(n) = ;|}|,} = :1[1:; ,r]n[i{y“ | i)

for any state /. Therefore,
N
P(y|A) = E nzu-ilr,ﬂ
i=1
These equations suggest a recursion in which, for each value of r we iterate

over ALL states and update o(y).j). When r = T, P(y|k) is computed by
summing over ALL states:

The Forward Algorithm
Step 1: Initialization

1 . : :
alyy.f) = 1 b)) 1<f<N
Step 2: Induction

N
1
oy, ) = |;E oy ,;').:.-.:ﬂ;']};[_m vy
= ]
Step 3: Termination

N

P(y|d) = Z m{}'lri}
im]

The complexity of this algorithm is r:;l'[;'l.-'zr}, orfor N=5 and T = 100,

approximately 2500 flops are required (compared to 10 flops for the
exhaustive search methad).

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_23/lecture_23_03.html (2 of 2) [6/15/2002 10:43:39 AM]



LECTURE 23: PARAMETER ESTIMATION

THE VITERBI (BEST PATH)
ALGORITHM

The Viterbi algorithm can also be used to find the best state sequence. Note
that the principal difference is that we model the overall sequence
probability by the probability of the single best path:

JA)

Wi—1) W) Wi+ 1)
The Viterbi Algorithm
Step 1: Initialization
V(i) = rtlf:[_ﬁlll_f'i
==X
g,.) =10
Step 2: Induction
V(i Max y ; g :
Al 12:‘2.-'-.;" e 1ta 16O,
1<j<N 211
. Argmax, :
APPSR LT
Step 3: Termination
Max Areniax,
A — ¢ I . — L= ¥
FP(y|A) IEEEN“T[I}] ¥, IE;’ENIET{”I
Step 4: Backtracking
""rj': = B, I{_w*“ ) 5% = {.11,.*..5'*:,,_], ..... § ']*]
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LECTURE 23: PARAMETER ESTIMATION

Note that the complexity for the Viterbi algorith

is O(N2T). Often it is much less than this
because the topology being scored is extremely
restrictive (left-to-right models).
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LECTURE 23: PARAMETER ESTIMATION

THE EXPECTATION MAXIMIZATION
(EM) ALGORITHM

- The Expectation Maximization (EM) algorithm can be viewed as a
generalization of maximum likelihood parameter estimation (MLE) when the

data observed is incomplete. We observe some data v, and seek to maximize
P(Y = y|L). However, in order to do this, we need to know some hidden data x.

« We assume a parameter vector A and estimate the probability that each x
occurred in the generation of v. In this way, we can assume we observed the
pair (x. y) with probability P(X = x.Y = y|4).

» To compute the new A, we use the maximum likelihood estimate of 4.
= Does this process converge?

According to Bayes' rule:
P(X=xY=y|h) = P(X=x|Y = yA)P(Y = y|&)
The log likelhood can be expressed as:
logP(Y = y|&) = logP(X = x,¥ = y|Ah) - log P(X = x|¥ = y,)
We take the conditional expectation of logP(¥ = y|A) over X:

E, [logP(Y = y|R) |_,l.| P Z{P{X = x|¥ = yA))ogP(Y = y|A)
x

= logP(Y = y|A)
Combining the previous two expressions:
logP(Y = ¥|A) = EjllogP(X.Y = ¥|M)]yy o, — EyllogP(X|Y = v Mgy

.1-
= O(h, A)—H(A A)

The convergence of the EM algorithm lies in the fact that if we choose & such

that Q(A. L) = Q(4, ), then log P(¥ = y|R) = logP(Y = y|1).

This follows because we can show that H{A, L)< H({A, &) using a special case

b | i
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LECTURE 23: PARAMETER ESTIMATION

of Jensen's inequality {lp{i Mogpix)= l,r;{:t Moggix)).
A x

A summary of the procedureis:.

The EM Algorithm
Step 1: Choose an initial estimate A

Step 2: E-step: Compute auxiliary O -function Q(A, &) (which is also the
expectation of the log likelihood of the data) based on A.

Step 3: M-step: Compute A = arg max (A, &) to maximize the auxiliary
() -function.

Step 4: lteration: Set 4 = i, and repeat from Step 2 until convergence.
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Retuan to Main LECTURE 24:. HMM TRAINING
Objectives

Review:
Three Fundamental Problems The Forward Algorithm

o Objectives:

Forward Backward:
Probability Calculations
Transitions
Application of EM

Reesimaion Equaions 0 Pose parameter reestimation as
€ Forward-backwar gorithm . .

L e Recourcoc an unsupervised learning
HLTSurvey: HMM probl am

Cassidy: SR
Software: Discrete HMMs

0 Introduce the Baum-Welch
(Forward-Backward)
Algorithm

o Apply EM agorithm to
reestimate parameters

0 Describe Viterbi training

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System

Devel opment, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_24/index.html (1 of 2) [6/15/2002 10:43:40 AM]



http://cslu.cse.ogi.edu/HLTsurvey/ch1node7.html
http://www.shlrc.mq.edu.au/masters/806/slp806/
http://www.isip.msstate.edu/projects/speech/software/legacy/discrete_hmm/index.html

LECTURE 24: HMM TRAINING

2001.

and information found in most
standard speech textbooks:

J. Déller, et. a., Discrete-Time
Processing of Speech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.
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'LECTURE 24: HMM TRAINING

Objectives:

0 Pose parameter reestimation as an
unsupervised learning problem

0 Introduce the Baum-Welch
(Forward-Backward) Algorithm

0 Apply EM agorithm to reestimate
parameters

0 Describe Viterbi training

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
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Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice

Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

aincC

Information found in most standard speech

textbooks:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publisning Co.,
|SBN: 0-7803-5386-2, 2000.
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THREE FUNDAMENTAL PROBLEMS

Recall there are three fundamental problems we
must solve:

o The Evauation Problem: Given amodel and
a set of observations, what was the
probability that the model produced these
observations?

o The Decoding Problem: What was the most
likely state seguence in the model that
produced a given set of observations?

o TheLearning Problem: Given amodel and a
set of observations, how can we adjust the
model parameters to increase the probability
of the observations (data) given the model?

In this lecture, we will focus on the third
problem.
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LECTURE 24: HMM TRAINING

PROBABILITY CALCULATIONS

Just as the forward algorithm computed probabilities recursively:
Jlll'r
+1 s :
ayy o) = [E oy ,:;ruulf:r}hw 1))
fm ]

we can similarly define a “backward-going" probability calculation:

T ) T T :
By, + Ne=Py, . ,=Y ]‘;U} = LA}

This probability can be computed recursively:

N
_ T :
D= POy, 1|_IJ'“U|f}h’?[H='—|J|.H
J=1
This recursion is initialized by:

E'U’.url 1

T 1/N, if' i 15 a legal final state
Blypl= {

0, otherwise

We can now compute P(y|A) interms of o and [3:

: Ly
P(y.x(f) = i|d) = ncu-'] DB, 1D
for any state i. Therefore,
er
e
PirId) = Y ol 0BOY 4
fml

i)

The calculation can be visualized below:
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LECTURE 24: HMM TRAINING

L ]

%

n[[_rrl i) ﬁ'[-"'IL ) / \ @

Wi—1) W) Wr+1)

Mote that these computations consider all possible state transitions that
could have generated the output sequence. This is why this calculation is

more expensive than the Viterbi algorithm.
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LECTURE 24: HMM TRAINING

TRANSITION PROBABILITY
CALCULATIONS

Define v,(f|i) as the probability of taking the transition from state i to state j
at time 1 given the model and abservation sequence:

" . e o
YUl = Ps, | =Ls = j|_L'l, A)
i e |
_ Pf.*p'l_ | LS8, M)
.
Py (&)

ovy ™ a1y B, « )
N
E [:{f_r;r. k)
km]

This computation is illustrated below:

O @G

oy ) oy ) ﬁ[_l"I' J) |3-[_1:l. )
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APPLICATION OF THE EM ALGORITHM

According to the EM algorithm, the maximization process is equivalent to

maximizing:

_ JPulLslvy o

C(h, L) = Z *""'-'-]':'""'-]Dgf"[_}f'l,.?|;'l.,}
i=1 PO
where:
-
r
Py, ,5|J|L} = T ats,|s,_ by
I

and

T T
logP(yy, S|h) = og(ats,[s,_ )+ Y log(hy))

fm ] !

This can be rewritten as:
O(h, k) = O, (A, @)+ Q,(b)
where:

=f 5 __.f|?'-:|

.'. {
0. (A d) = z z z at

logal i)

P{_J-| A)

and:

T ,
.IP[_]-':[...‘:' = l||'|.|-||l..-}

]ﬁg.ﬁ}{.ﬁ']

gmm—zz 5 ol
r ¥l

leﬁ i

These terms can be maximized separately under the constraints:

Y a(jliy =1 and Y obik) =1 Valli,j
= ]
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LECTURE 24: HMM TRAINING

ESTIMATION EQUATIONS

The functions in our auxiliary functions  are of the form F(x) = z ylogx,
where Zxr. = 1. Using Lagrange multipliers, this function can be shown to
have a maximum value at x, = v,/ Z_v;. The model reestimation equations

i

that result from this nptirnizatinn are:

.
f"{t,_ =gk s
s FU.|MZ o o 1= IZ] ¥ i)
L —E
Pty —H|M) ¥, (k)
P(y ]|L}z ’P' J IZHZl AKX

This is just the ratio of the expected number of transitions from state / to
state j and the expected number of transitions from state 7.

Similarly,
| T F M
T n
T EPU], _,rll]ﬁ{_!‘u] E ET:UM
. Py, |’h}: | e i
hj{k} = = = .
] r -~
T 2, PO = J|M) 0
Py, |:'"~]'; l tmliml

This is the ratio of the number of times the k™ observation vector was
emitted from state ; and the number of times any observation vector was
emitted from state ;.
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LECTURE 24: HMM TRAINING

THE FORWARD-BACKWARD
ALGORITHM

The Forward Backward Algorithm
Step 1: Initialization: Choose an initial estimate 4.

Step 2: E-step: Compute auxiliary function O(A.) based on &.

Step 3: M-step: Compute A according to the equations for @ and bto
maximize the auxiliary ¢-function.

Step 4: Iteration: Set & = A and repeat steps 2 and 3 until convergence.

The previous derivation assumed one data sequence. To train an HMM from
M data sequences, we simply maximize the joint likelihood:

fit
H Py rj|;~,}
{m]

We can define a partial update for the ' data sequence:

R r
Y Vi
Fm]ym]

R 7

N
P IR AL
rmltmltm]

The latter equation is important since we can use it to implement HMM
training in parallel. We simply run (R/N) files on N processors, and
accumulate the sums inside the first summation. After all N jobs complete, we
can combine the outputs for the final estimates of the new parameters.

alj|in =
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LECTURE 25: CONTINUOUS MIXTURE DENSITIES

Return to Main

Objectives

Review:
The EM Algorithm
Reestimation Equations

Mixtures:
Continuous Densities

Mixture Densities

Probability Calculations

Application of EM
Reestimation Equations

On-Line Resources:
Mixture Modeling

Semicontinuous HMM's
Ten Years of HMMs

LECTURE 25: CONTINUOUS
MIXTURE DENSITIES

o ODbjectives.
0 Review the EM algorithm

0 Introduce continuous mixture
densities

0 Understand why they are
useful 1n speech recognition

0 Develop reestimation
equations for the parameters of
amixture density

This lecture combines material from
the course textbook:
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X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and information found 1N mMost
standard speech textbooks:

J. Déller, et. dl., Discrete-Time
Processing of Speech Sgnals,

MacMillan Publishing Co., |SBN:
0-7803-5386-2, 2000.
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LECTURE 25: CONTINUOUS MIXTURE DENSITIES

LECTURE 25: CONTINUOUSMIXTURE
DENSITIES

o ODbjectives.
0 Review the EM algorithm
0 Introduce continuous mixture densities

0 Understand why they are useful in speech
recognition

0 Develop reestimation equations for the
parameters of a mixture density

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
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Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice

Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

aincC

Information found in most standard speech

textbooks:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publisning Co.,
|SBN: 0-7803-5386-2, 2000.
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LECTURE 25: CONTINUOUS MIXTURE DENSITIES

CONTINUOUS PROBABILITY DENSITY
FUNCTIONS

The discrete HMM incorporates a discrete probability density function,
captured in the matrix 8, to describe the probability of outputting a symbol:

Bk ] £y .
output distribution for state k

AR

1 3 4 5 6+++Kk

Signal measurements, or feature vectors, are continuous-valued
MN-dimensional vectors. In order to use our discrete HMM technology, we
must wvector quantize (VQ) this data — reduce the continuous-valued
vectors to discrete values chosen from a set of M codebook vectors. Initially,
most HMMs were based on VQ front-ends. However, for the past 15 years
or so, the continuous density model has become widely accepted.

The likelihood of generating observation yp(1) in state ;7 is defined as:
DL = £y, (X0)1)

Mote that taking the negative logarithm of & ) will produce a log-likelihood,

or a Mahalanobis-like distance. But what form should we choose for f( )7
Let’s assume a Gaussian model, of course:

Sy 1) = {—~{y = (- u}}

1
."Err|EI-|
Mote that this amounts to assigning a mean and covariance matrix to each
state — a significant increase in complexity. However, shortcuts such as
variance-weighting can help reduce complexity.

Also, note that the log of the output probability at each state becomes

precisely the Mahalanobis distance (principal components) we studied at
the beginning of the course.
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LECTURE 25: CONTINUOUS MIXTURE DENSITIES

MIXTURE DENSITIES: A POWERFUL
MODELING TOOL

Of course, the output distribution need not be Gaussian, or can be
multimodal to reflect the fact that several contexts are being encoded into a
single state {maleffemale, allophonic variations of a phoneme, etc.). Much
like a VQ approach can model any discrete distribution, we can use a
weighted linear combination of Gaussians, or a mixture distribution, to
achieve a more complex statistical model.

bly|/) three mixtures

composite (offset)

—_— -

]
1
1 I, by

Mathematically, this is expressed as:
M
Jrlll{‘yll} N E Cim E'[J'j:"J‘.-.-r:’EfrJ-aj

|

In order for this to be a valid pdf, the mixture coefficients must be
nonnegative and satisfy the constraint:

M

Zf'- =1, 1€i<8
i

Hiom ]

Mote that mixture distributions add significant complexity to the system: m
means and covariances at each state.
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LECTURE 25: CONTINUOUS MIXTURE DENSITIES

PROBABILITY CALCULATIONS

Consider a Gaussian mixture density function
M

M
b9 = 2. by = 3, R0y Zy)
k=1 k=1
M
Recall that the mixture weights are constrained to sum to 1: Z cu = 1.
k=1
We can write the joint probability of the data and states given the model as:

F I

M M M l
p(E Sy = Ll b= 2, 2w 2a Ll o abanls)esy, |

=1 ky=1ky=2 kp=1]1=1
This can be considered the sum of the product of all densities with all possible
state sequences, S, and all possible mixture components, K:
F{ v S, ﬁr"}"] B H.'i.',u 1s -“:h-"rﬁ.'{y-".l}f-?fkr
and

p(XR) =Y Y p(¥,8 K|\

S Ke Q'
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APPLICATION OF EM: OPTIMIZATION

We can write the auxiliary function:

= p(¥,S, K|L)
O(A|X) z ZT FTADS log(p(¥, S, K|L))
S KeQ

which has the expected decomposition:

T )
log(p(Y, 8, K[1)) = Y loga, + Y loghyy(y)+ Y logé, .
t=1 r=1 t=1

The auxiliary function has three components:

B N N M N M
QM) = ¥ Q)+ Y, Y 0 Wb+ Y Y 0, (i)

i=1 j=1k=1 f=1k=1

The first resembles the term we had for discrete distributions. The remaining
two terms are new:

.
Q.-g.ﬂ_{:"h E’_;L-] = z pls, = hk, = Jf| lrﬂliluugf:rjﬂylr]
t=1
and
r
0, (i) = D pls, = jik, = K| ¥ M)logé
t=1
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REESTIMATION EQUATIONS

Maximization of O, _q{l, ﬁ_ ;1) requires differentiation with respect to the

parameters of the Gaussian: [u ik r jﬁ] . This results in the following equations:

I T
1 = 7 = a
SOV 3 p(¥.s,= ik =Ky, Y LGRy,
T L= _ =1
I'I'_Iflk 1 'j" T
p(Y|h) ZF“’- S = Js ky = k| M)y, Z &, k)
=1 o
| &
S e e e o s
T t=1
ik 7
I 4
PTVES z p(Y¥,s,= j. k, = k|h)y,
¢=1

T
z 'Zf[.lr-:- HU’; o ﬁjﬁ}{flr = Iflﬂ![ }-:-
gl

T
> LUk
=1
where C,(/, k) is computed as:
N

i=1

piY,s,=j k= .fr|;'l.}
pl¥|h)

G,k =

N
2 o7

=1
Similarly, we can reestimate the mixture coefficients using a similar equation:
€
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LECTURE 26: PRACTICAL ISSUES

Returnto Main

Objectives

Topolgy:
Transition Matrix

DTW Anaogy
Alternatives

Duration Modeling:
State Duration Probabilities
Number of States

Training Schedules:
Simple Schedule

More Complex Schedules
Complex Models

On-Line Resour ces:
Training Workshop

Using HMMs
The HTK Book

LECTURE 26: PRACTICAL
| SSUES

o ODbjectives

0 Discuss common model
topologies

0 Provide model design
guidelines

0 Introduce typical training
schedules

This lecture combines materia from
this paper:

J. Picone, "Continuous Speech
Recognition Using Hidden
Markov Models', IEEE ASSP
Magazine, vol. 7, no. 3, pp.
26-41, July 1990.
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and information found in this
workshop:

Soeech Recognition System
Training Workshop, Institute for
Signal and Information
Processing, Mississippi State
University, Mississippl State,
Mississippl, 39762, USA, January
2002.
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LECTURE 26: PRACTICAL ISSUES

o ODbjectives:
0 Discuss common model topologies
0 Provide model design guidelines

0 Introduce typical training schedules
This lecture combines material from this paper:

J. Picone, "Continuous Speech Recognition
Using Hidden Markov Models', IEEE ASSP
Magazine, vol. 7, no. 3, pp. 26-41, July 1990.

and information found in this workshop:

Soeech Recognition System Training
Wor kshop, Institute for Signal and
Information Processing, Mississippl State
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University, Mississippi State, Mississippi,
39762, USA, January 2002.
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THE DTW ANALOGY

HMM Recognition Using The Viterbi Algorithm

© ;

Dynamic Time Warping Using The Viterbi Algorithm
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Input Utterance (Frame)
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o Notethe similarity to DTW with slope
constraints
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ALTERNATIVE MODEL TOPOLOGIES

. B8888...

Figure 8{a). A simple progressive HMM topology. In general, the duration probability densi-
ty function at a state has an exponental behavior.

L —— e = & e

L L

Figure B(b). The Bakis topalogy (a progressive model with skip stares).

Figure 8(c). A finite duration topology. This wpology is most analogous to DTW.

35 8 8
i i e e

Figure 8(d). A fenonic baseform topology. The dashed line indicates a transition that produe-
Es No output.

Figure 8(e). A modified fenonic bascform with tied transitions. Transitions in the same
group share output probabilities.
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o Notethe similarity to DTW with slope
constraints
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STATE DURATION PROBABILITIES

Recall that the probability of staying in a state was given by an
exponentially-decaying distribution:

P(D|Model,g, = i) = P(D.q, = i|Model)/Plg, = i) = a, "' (1-a,)

This model is not necessarily appropriate for speech. There are three
approaches in use today:

» Finite-State Models (encoded in acoustic model topology)

Macro State

B,
() "

{(Mote that this model doesnt have skip states; with skip states, it
becomes much more complex.)

2N
DN
9

» Discrete State Duration Models (D parameters per state)
Pd,=d) = 1, l<=d<D

» Parametric State Duration Models {one to two parameters)

: 1 - 2|d
Hdy) = —n—-—-—-—cpr—n“'&CL-l

Reestimation equations exist for all three cases. Duration models are often
important for larger models, such as words, where duration variations can
be significant, but not as important for smaller units, such as
context-dependent phones, where duration wvariations are much better
understood and predicted.
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DURATION CONSIDERATIONS AND
CLUSTERING

o For word model-based systems, we often will
consider the duration of the word when
assigning the initial number of statesin the

model:

O X O <

0 200 4(N) 600 ®X)

Duration {msec)

o Clustering approaches can be used to learn
pronunciation variants.
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Duranion (mMsec)

0 L (KD 204 3000

First Cluster:

AT of Tokens
95% Female
3% Male

Shght T Release

340 msec

Second Cluster:
MrE of Tokens
W% Male
1% Female
Slight "T" Release

3N msec

Third Cluster
20% of Tokens
(% Male

Y Female
Unreleased "T"
Sl msec

Fourth Cluster:
16% of Tokens
Bi% Male
15% Female
Strong T Relcase
320 msec
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TYPICAL TRAINING SCHEDULES

Initialization
-| Seed Model Ennstruntinnl
- -| Build Grammar I

Recognize

Supervised
Training

Backtrace/Update

Next Utterance

Last Utterance?

MNext lteration

Convergence?

| Replace Parameters I

Mote that a priori segmentation of the utterance is not required, and that the
recognizer is forced to recognize the utterance during training (via the build
grammar operation). This forces the recognizer to learn contextual
variations, provided the seed model construction is done “properly.”

What about speaker independence?
Speaker dependence?

Speaker adaptation?

Channel adaptation?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_26/lecture_26_05.html [6/15/2002 10:43:49 AM]
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MORE EXTENSIVE TRAINING
SCHEDULES

gty Create Models Flat Start Monophone

and Phone Maps Training

Fumber of

mtates

Trained ) Context Dep.
. = Training

Aconste =

klodels

o Phone-based HMM systems require a more
extensive training process.

o Mixture generation isusually donelast, and is

performed using a cluster-splitting approach.

o Retraining after mixture generation is
Important.
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MODEL COMPLEXITY

Tied Mixtures

Clustered States Continuous Density
Mixture Distributions

Tied States

Semi-Continuous HMMs

Discrete Density
Vector Quantization

Increasing Performance?

Increasing Storage

Increasing Number of Free Parameters

Increasing CPU

Increasing Memory

* Numerous technigques to robustly estimate model parameters; among the
most popular is deleted interpolation:

A Er"qr+“_Er}‘4u

B

EEEI Tl= E:]Eu
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LECTURE 27: DECISION TREES

Return to Main

Objectives

M otivation:
Classification
Parameter Count

Basic Concepts:
Terminology
Operation
Splitting
Growing
Pruning
CART

Applications:
Acoustic Modeling

Pronunciation Modeling

On-Line Resour ces:
AAAI: Decision Trees

Zhao: Tutorial
Ngan: Applications
Le: Applications
Software

LECTURE 27: DECISION
TREES

o ODbjectives.

0 Why do we need a smart
algorithm to reduce the
number of parameters? On
what type of information
should this smart algorithm
operate?

0 Basic concepts of
classification and regression
trees (CART)

0 How do we apply them to
acoustic modeling? What are
the benefits?
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LECTURE 27: DECISION TREES

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and these M S project presentations;

o J. Ngan, "Information Theory
Based Decision Treesfor Data
Classification," Master of Science
Soecial Project Presentation,
December 10, 1998 (available at
Ngan: M S project presentation)

« A.Le "Bayesian Decision Tree
for Classfication of Nonlinear

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/index.html (2 of 3) [6/15/2002 10:43:50 AM]


http://www.isip.msstate.edu/publications/seminars/masters_oral/1998/decision_tree_c4/index.html

LECTURE 27: DECISION TREES

Signal Processing Problems,”
Master of Science Soecial Project
Presentation, November 12, 1998
(avallable at Le: MS project
presentation)
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EEEEEEEEE : DECISION TREES

.LECTURE 27: DECISION TREES

o ODbjectives:

0 Why do we need a smart algorithm to
reduce the number of parameters? On what
type of information should this smart
algorithm operate?

0 Basic concepts of classification and
regression trees (CART)

10 How do we apply them to acoustic
modeling? What are the benefits?

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
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Al gorlthm and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

and these M S project presentations.

o J. Ngan, "Information Theory Based Decision
Treesfor Data Classification,” Master of
Science Special Project Presentation,
December 10, 1998 (available at Ngan: MS
project presentation)

e A.Le "Bayesian Decision Treefor
Classification of Nonlinear Signal Processing
Problems,"” Master of Science Special Project
Presentation, November 12, 1998 (available
at Le: MS project presentation)
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LECTURE 27: DECISION TREES

DECISION TREES: A POWERFUL
DATA-DRIVEN CLASSIFICATION
ALGORITHM

« When PCA falls;

o« and LDA fails;

e We can imagine amore powerful datadriven
approach:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_01.html (1 of 2) [6/15/2002 10:43:51 AM]
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3510

2.5F

1.2
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CONTROLLI NG PARAMETER COUNT
ISAN IMPORTANT REALITY

o Acoustic "’““EE —_—
modelsencode [BiF e
the temporal
evolution of
the features
(Spectrum).

o Gaussian
mixture
distributions
are used to
account for
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variationsin
speaker,
accent, and
pronunciation.

o Phonetic
model
topologies are
simple
left-to-right
structures.

e Sharing
model
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parameters Isa
common
strategy to
reduce
complexity
and avoid
undertraining:

(39 features +
39 covariance
values +
1 mixture
weight) x
16 Gaussian
per state x

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_02.html (3 of 4) [6/15/2002 10:43:51 AM
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3 states/phone
X

80,000 CD
phones =

~300 x 10°
parameters!
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e A
decision X

CONSIStS Of s @ s w
nodes and

|leaves,

with each

| eaf

denoting a

class.

o Classes



LECT
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(taII or
short) are
the
outputs of
the tree.

Attributes
(gender
and
helght) are
a set of
features
that
describe
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the data.

e Theinput
data
consists of
values of
the
different
attributes.
Using
these
attribute
values, the
decision
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tree
generates
aclass as
the output
for each
Input data.
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DATA-DRIVEN OPERATION

load data
and param

TRAIN )\ EVALUATE
mode?
YES @ NO

fwrn node find
into leaf hest split
output e classi calculate
tree budlt “a]chqelﬂ solit ohje error

There are four important operations in
constructing a decision tree:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_04.html (1 of 3) [6/15/2002 10:43:52 AM]
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« Question selection: choosing a set of
guestions to categorize your data (some
algorithms can derive questions
automatically).

o Splitting: partitioning data assigned to a node
Into N groups
(N=2 for binary trees).

o Growing: expanding the tree to better
represent the training data.

« Pruning: removing nodes to improve
generalization.

In speech recognition, we operate on
continuous-valued feature vectors, and use
likelthood computations derived directly from
HMM training. Thisisamaor reason why
decision trees are so popular in speech

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_04.html (2 of 3) [6/15/2002 10:43:52 AM]
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recognition systems - the implementation is very
el egant.
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SPLITTING CRITERIA

To split data at a node, we need to find the
guestion that results in the greatest entropy
reduction (removes uncertainty in the data):

In speech recognition, we can show this amounts
to maximizing the increase in likelihood:

dL = L (parent) - L(l&ft child) - L(right child)

These likelihoods can be computed from the
state occupancies computed during training (see

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_05.html (1 of 2) [6/15/2002 10:43:52 AM]
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decision tree-based state tying for a detailed
derivation and the important references).
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GROWING THE TREE

We typically grow the tree by successively
splitting each node until nodes can no longer be
split. Though thisislocally optimal, it is not
globally optimal. Nevertheless this produces
useful trees with minimum computational
complexity.

We can continue splitting nodes until:

« No more splits are possible (all samplesat a
node belong In the same class).

o Thegreatest likelihood increase (entropy
reduction) falls below our pre-set threshold.

o Thenumber of data samplesfalling in aleaf
node falls below some threshold.

Nodes which can no longer be split are declared

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_06.html (1 of 2) [6/15/2002 10:43:53 AM]
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ter minal nodes. When all active nodes are
terminal nodes, tree growing terminates.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_06.html (2 of 2) [6/15/2002 10:43:53 AM]
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PRUNING A TREE IMPROVES
GENERALIZATION

The most fundamental problem with decision
treesisthat they "overfit" the data and hence do
not provide good generalization. A solution to
this problem is to prune the tree:

/ \ pruning / \
N / \

/ \ /

Cost-complexity pruning is a popular technique
for pruning. Cost-complexity can be defined as:

R (1) = R(T)+olT]

X

where 17 represents the number of terminal

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_07.html (1 of 2) [6/15/2002 10:43:53 AM]
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nodes in the subtree.

Each node in the tree can be classified in terms
of I1ts iImpact on the cost-complexity If it were
pruned. Nodes are successively pruned until
certain thresholds (heuristics) are satisfied.

By pruning the nodes that are far too specific to
the training set, it is hoped the tree will have
better generalization. In practice, we use
techniques such as cross-validation and held-out
training data to better calibrate the generalization
properties.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_07.html (2 of 2) [6/15/2002 10:43:53 AM]
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THE CART ALGORITHM

The classification and regression tree (CART)
algorithm can be summarized as follows:

1. Create aset of questions that consists of all
possi ble questions about the measured
variables (phonetic context).

2. Select a splitting criterion (likelthood).

3. Initialization: create a tree with one node
containing all the training data.

4. Splitting: find the best question for splitting
each terminal node. Split the one terminal

node that results in the greatest increase in the
likelthood.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_08.html (1 of 2) [6/15/2002 10:43:53 AM]
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5. Stopping: If each leaf node contains data
samples from the same class, or some pre-set
threshold is not satisfied, stop. Otherwise,
continue splitting.

6. Pruning: use an independent test set or
cross-validation to prune the tree.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_27/lecture_27_08.html (2 of 2) [6/15/2002 10:43:53 AM]
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APPLICATION: ACOUSTIC MODELING

first state
of *-ay+"

| liquid //K
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APPLICATION: PRONUNCIATION
MODELING

Goal . Condition mappings from baseforms to
pronunciations using as much linguistic information
as possible (e.g., syllable boundaries). Train using
hand-labeled data.

I HAVE FORMULATED A

T
| , !
(I i !
ay [ B & v_vl f ac v m o ihom 1 ey ;&1&;___#: ih dx d ax
| i
' |
L
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LECTURE 28: PRACTICAL ISSUES

Return to Main

Objectives

Mixture Generation:
EM Estimation

Clustering
V ariance-Splitting

Temporal Modeling:
| ndependence

Duration
First-Order

Review:

Syllabus

On-Line Resour ces;

Clustering
Conditiona Independence

Ten Years of HMMs

LECTURE 28: PRACTICAL
|SSUES

o ODbjectives:
0 Mixture splitting
0 Clustering
0 Conditional independence
0 Duration modeling
0 Higher order processes

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
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Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

and from this source:

S.Young, et al, The HTK Book
(v3.0), Cambridge University
Engineering Department,
September 2000.
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LECTURE 28: PRACTICAL ISSUES

o ODbjectives:
0 Mixture splitting
0 Clustering
0 Conditional independence
0 Duration modeling
0 Higher order processes

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
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Al gorlthm and System Devel opment, Prentice

Hall, Upper Saddle River, New Jersey, USA,
SBN: 0-13-022616-5, 2001.

aincC

from this source:

S.Young, et al, The HTK Book (v3.0),
Cambridge University Engineering
Department, September 2000.
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EM ESTIMATION OF MIXTURES

o Closed-loop data-driven
modeling supervised only
from aword-level
transcription

e The
expectation/maximization
(EM) agorithm is used to

Improve our parameter
estimates.
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/-Initializaﬁ-:m T_./’\_ \ ® CompUta“Ona“y foICI ent

-~ training algorithms

o o~ | (Forward-Backward) have
e 4 A\ been crucial.

—

« 4-Way Split

* Rectmaton | /)Q’\ « Batch mode parameter

L >/ updates are typically
preferred.

o Decisiontreesare used to
optimize
parameter sharing, system
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complexity, and the use of
additional linguistic
knowledge.
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K-MEANS CLUSTERING

Algorithm Overview:

o Initialization: Choose K centroids
e Recursion:

0 Assign all vectorsto their nearest
neighbor.

0 Recompute the centroids as the average of
all vectors assigned to the same centroid.

o« Termination: Check overall distortion.

For atypical implementation of K-MEANS, see
our pattern recognition applet.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_28/lecture_28 02.html (1 of 2) [6/15/2002 10:43:55 AM]
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| SSUes:

o Distance measure: Euclidean? Mahal anobis?

o Centroid computation: Average? Median?
Min-Max?

o Splitting/Merging: Sparsity? Separability?

o Number of clusters: When do we stop?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_28/lecture_28 02.html (2 of 2) [6/15/2002 10:43:55 AM]
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TREE-BASED CLUSTERING:
VARIANCE-SPLITTING

Algorithm Overview:

o lteratively split the Gaussian with the highest
mixture weight.

o Perturb the mean by afraction of the
variance:

Hpew = BT OC

///\\D/&\Q
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HI\/I M LIMITATIONS: CONDITIONAL
INDEPENDENCE

Recall our basic acoustic model topology:

Sp 5 S22 53 0§y Sg + W Sp

(a) (b) (c)

It can be argued that HM M s do not provide a
realistic model for the temporal structure of
speech:

o Observation probabilities for each frame (or
state) are independent of previous or future
frames (conditional independence). Isthisa
realistic model ?

o Theprobability of staying in a state decays
exponentially.

What can we do to overcome these deficiencies?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_28/lecture_28 04.html [6/15/2002 10:43:56 AM]
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DURATION MODELING

We can explicity model duration using an
alternate acoustic model topology:

k B &
4@

o

We can derive suitable reestimation equations for
a probability density function at each state;

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_28/lecture_28 05.html (1 of 2) [6/15/2002 10:43:56 AM]
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Let d.(1) be the probability of staying in a state i for T frames. The transition

probability from state i at time ¢ to state j at time  + 1, denoted by v, ., can

be written as:
T
{xr{f}zr{j“]d{(‘c](n h_j-[,,v{fH}l]Ii; k)
|

N
D ok

x=1

Tf" TUl :} =

The probability of being in state j at time t with duration T can be computed
as:

JHII'I-
L= ¥ g

i=1

In practice, such refinements have given minimal
Improvements in performance.
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LECTURE 28: PRACTICAL ISSUES

HIGHER-ORDER MARKOV PROCESSES

Recall our first-order Markov process:
Plg,=j|(@,_1 =54, 3=k ...)] = Plg,= jla,_, =il

We considered only those processes for which the right-hand side is
independent of time:

a; = Plg,;= j|4,_, =il 1<i,j<N
We can extend this model to account for previous transitions:
aye = Pla,=k|(q,_1 = irq,_5=J)] 1<i, j,k<N

We now have a second-order Markov process. We can derive suitable
maximum likelihood reestimation equations:

o (i, Halk|(is )by B, . (s )

N
Y o,

i=1

Y (K| G, ) =

However, in practice, the benefits of this model have not offset the significant
increase in computational costs.
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Return to Main

Objectives

Statistical M odels:
Noisy Channel Model

Whesd of Fortune
Word Prediction

Syntactic Constraints:
State Machine

Ad Hoc Approaches
Networks

Formal Language:
Rewrite Rules

Chomsky Hierarchy

On-Line Resour ces;

HLTSurvey
Statistical Methodsin NLP

Software: SRILM
Software: CMUSL M

LECTURE 29: FORMAL
LANGUAGE THEORY

o Objectives:

0 Communication Theoretic
Approach

0 Chomsky Hierarchy
10 Network Grammars

0 Production Rules

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
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Devel opment, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
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L ECTURE 29: FORMAL LANGUAGE
THEORY

o ODbjectives.
10 Communication Theoretic Approach
0 Chomsky Hierarchy
0 Network Grammars

0 Production Rules

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
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LECTURE 29: FORMAL LANGUAGE THEORY

A NOISY COMMUNICATION CHANNEL
MODEL
OF SPEECH RECOGNITION

A noisy communication theory model for speech production and perception:

Message | Linguistic Articulatory | Acoustic

Source Channel ' Channel Channel

Observable: Message Words Phones Features

Bayesian formulation for speech recognition:
P(W|A) = P(A|W)P(W)/P(A4)

Objective: minimize the word error rate by maximizing P(W |A)
Approach: maximize P(A|W) (training)

Components:
« P(A| 1) acoustic model (hidden Markov models, mixture of Gaussians)
« P(W): language model (statistical, N-grams, finite state networks)
« [’(1): acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on knowledge of a
finite number of previous words (N-grams) — leads to search space reduction.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_29/lecture_29_01.html [6/15/2002 10:43:58 AM]



LECTURE 29: FORMAL LANGUAGE THEORY

LANGUAGE MODELING ISSIMILARTO
PLAYING
. WHEEL ... OF ... FORTUNE

WHEEL CF
FORTUNE

THING
Puzzie 1 e
iScore This Puzzle: 1800 Total Scoe: 3
There are 2 T's in this puzéle. Yaou get 1500.

'l‘

Buy a Vowel @ Spln the WhEEI! . Solve the Puzzie @@

Bux aNowet, (4] ] [1] "ol [ul

| guess|
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WORD PREDICTION ISCRITICAL

(G Cr_1, ..

Recognized Symbols: Pi5|0) = Elfg?ﬂﬂﬂ?anlp':wi
i

Langnage MModel: F{W;} T

‘ ; P(0,[WaFPWy | Preticton
Search Algorithms: F{W (0,1 =

FIO,)
f

3

. A i
Pattern Matching: [W, POy Gr-1, ... [W ] -]
Signal Model: P{O:|(W,_ 1, W, W, 1) —

}

it - e
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LECTURE 29: FORMAL LANGUAGE THEORY

SYNTACTIC CONSTRAINTS CAN

IMPROVE PERFORMANCE

The search space for vocabularies of hundreds of words can become
unmanageable if we allow any word to follow any other word (often called
the no-grammar case)

Our rudimentary knowledge of language tells us that, in reality, only a
small subset of the vocabulary can follow a given word hypothesis, but
that this subset is sensitive to the given word (we often refer to this as
“context-sensitive”)

In real applications, user-interface design is crucial (much like the
problem of designing GUI's), and normally results in a specification of a
language or collection of sentence patterns that are permissible

A simple way to express and manipulate this information in a dynamic
programming framework is via a state machine:

=
S

For example, when you enter state C, you output one of the following
words: {daddy, mommy}.

If:

state A Qgive

state B: me

state C: {daddy, mommy}
state D: come

state E: here

We can generate phrases such as:
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Daddy give me

+ We can represent such information numerous ways (as we shall see)
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EARLY ATTEMPTSWERE AD HOC

Recognized Sequence of Words ("Sentences”)

Finite Automaton T

Unconstrained Endpoint Reference Models
Dynamic Programming -
(Word Spotting)

Measurements Y
‘ Feature Extractor I
Speech Signal T

—— ot — o gt
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e e - TITIRUEEES
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LECTURE 29: FORMAL LANGUAGE THEORY

NETWORK DECODING ISPOPULAR FOR
COMMAND AND CONTROL
APPLICATIONS

Isolated Word Recognition:

Monspeech Nonspeech

N'Dr‘IEpEE"E:h {hﬁfﬂrd} NGHEDEEGH
@ w1 - 2 ln-@

Nonspeech: typically an acoustic model of one frame in duration that
models the background noise.

{Word}:  any word from the set of possible words that can be spoken

» The key point here is that, with such a system, the recognizer finds the
optimal start/stop times of the utterance with respect to the acoustic
model inventory (a hypothesis-directed search)

Simple Continuous Speech Recognition (“No Grammar”):

Nonspeech/{Word}

Monspeech Monspeech
O

» system recognizes arbitrarily long sequences of words or nonspeech events
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ALTERNATE REPRESENTATIONSOF FINITE
STATEAUTOMATON

Consider the following state diagram showing a simple language model
involving constrained digit sequences:

one (0.3)

zero (0.3) five (0.5)

oh '[].T} 0.5
0.9 o 0.9 % 0.9
C -
two (1.0) three (1.0) four (1.0)
0.1 0.1 J 0.1 J 0.1 J
zero (0.3) one (1.0) two (1.0) three (1.0) four (1.0)
oh (0.7)
0.9
five (1.0)

1.0

G 0.9 o eight (1.0) sight (1.0)
seven (1.0)
0.2 nine (1.0)
five (0.8) six (1.0) seven (0.5)
zero (0.1) four (0.5)

oh (0.1)

o ) nine (1.0)
MNote the similarities to our acoustic models.

1.“"11_]"' ;C" 'I'hﬂ nrnhnh;"hr H'F ‘l'l'lﬂ. [l W NNl o Pl u—.r.r:lrn Lt aF =t l"uun 'I'hrﬂﬂ. 'r.l"'ﬁllr 'F;ilﬂ. T C";\.l'

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_29/lecture_29_07.html (1 of 4) [6/15/2002 10:44:01 AM]



LECTURE 29: FORMAL LANGUAGE THEORY
VVIICL 12 UG PIIULTIIILY W UIT DTYUTHIWE LG1W WIS LWL LGS UL VS S51W DA

six seven seven eight eight” ?

How would you find the average length of a digit sequence generated from
this language model?

In the terminology associated with formal language theory, this HMM is
known as a finite state automaton.

The word stochastic can also be applied because the transitions and output
symbols are governed by probability distributions.

Further, since there are multiple transitions and observations generated at

any point in time (hence, ambiguous output), this particular graph is
classified as a nondeterministic automaton.

In the future, we will refer to this system as a stochastic finite state
automaton (FSA or SFSA) when it is used to model linguistic information.

We can also express this system as a regular grammar:

P1 P13 _ Pzs

S — = zero, A D —w» three, D H —= eight, [
P2 T Pz

S — = oh A D — w four, E H —w nine, J
P3 P15 P ]

S —w one A E —= four, E | —= eight, |
P4 P Py

S —w five, A E —= five, F | —= eight.
Ps Py P

A — = zero, A F —w zero, F | — nine, J
Pg P18 _ Pas

A — oh A F —= oh, F | —= nine.

E —» QOne, E F —= fi'\lrE,

E —_— Six’ g F —m Eix, G
Pg e P2

R = nna ﬁ G — SIX,
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== -_— Ay e

P P2
B R G —m seven, a)
P11 ' . P23
C e % H —= seven, A
Pag
P12 _
C — = three, D H » four, A

Note that rule probabilities are not quite the same as transition probabilities,
since they need to combine transition probabilities and output probabilities.
For example, consider p;:

ps = (0.9)(0.8)

In general,
Ply=yla=x) = » a;bk)
J

Note that we must adjust probabilities at the terminal systems when the
grammar is nondeterministic:
Pr = F1k+f}"k

to allow generation of a final terminal.

Hence, our transition from HMMs to stochastic formal languages is clear
and well-understood.

What types of language models are used?

* No Grammar (Digits)

« Sentence pattern grammars (Resource Management)

« Word Pair/Bigram (RM, Wall Street Journal)

* Word Class (WSJ, etc.)

» Trigram (WSJ, etc.)

« Back-Off Models (Merging Bigrams and Trigrams)

* Long Range N-Grams and Co-Occurrences (SWITCHBOARD)
« Triggers and Cache Models (WSJ)

» Link Grammars (SWITCHBOARD)
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How do we deal with OOV and dysfluencies?
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THE CHOMSKY HIERARCHY

We can categorize language models by their generative

capacity:
Typeol Constraints Automata
Grammar
Turing
gtr:rruacst%re A ->B Machine
(Unrestricted)
Linear
Bounded
Context
Sensitive aAb->aBb Automata
(N-grams,
Unification)
A->B
Constraint:
A lsa

non-terminal.
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E)quwal ent Push down
Context A ->Ww ?Ejé%”;atsﬂ\l
T herenw O
ISaterminal: Parsing)
B.C are
non-terminals
(Chomsky
normal form)
A ->w Finite-state
A ->WwWB automata
Regular (Subset of  (Network
CFG) decoding)

o CFGs offer agood compromise between parsing efficiency
and representational power.

o CFGs provide anatural bridge between speech recognition
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and natural language processing.
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LECTURE 30: PROBABILISTIC CONTEXT FREE GRAMMARS

Return to Main

Objectives

Training:
Independence
Inside Probability
Outside Probability
Accumulation
Reestimation Equation

Recognition:
Chart Parsing
Example

On-Line Resources:
Manning: Probabilistic Models of Language Structure
Manning: Statistical NLP
Gazdar: NLP
Stolcke: CFG Parsing

LECTURE 30: PROBABILISTIC
CONTEXT FREE GRAMMARS

o Objectives:

0 Training probabilistic context
free grammars

0 Inside outside algorithm

0 Recognition using chart
parsing

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System

Devel opment, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.
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LECTURE 30: PROBABILISTIC
CONTEXT FREE GRAMMARS

o ODbjectives.

0 Training probabilistic context free
grammars

0 Inside outside algorithm

0 Recognition using chart parsing

This lecture combines material from the course
textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.
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TRAINING PROBABILISTIC CONTEXT
FREE GRAMMARS (PCFG)

The training problem involves estimating the probability of each rule in a
probabilistic context free grammar (PCFG). Let define the probability of a

rule, 4 — o by P(4 — a|G).

The simplest approach to learning these probabilities would be to use a
Viterbi-style training algorithm and approximate these probabilities by the
number of times a rule was used divided by the total number of times a rule
could have been used. This requires a hard decision. We seek a method
analogous to Baum-Welch training in which we can make soft decisions:

C(4 - o)

m

ZEMﬁ%]

=1

P(4—0,|G) =

where C(+) denotes the number of times each rule is used.

If you have hand-annotated data (parse trees), you can estimate these
probabilities directly. However, such data is expensive to develop, and hence

is in short supply (especially since language model training requires
enormous amounts of text for LWVCSR applications).

To estimate these probabilities from data, we can use EM techniques to

derive the inside-outside algorithm. To do this, we must make one important
indepdence assumption:

The probability of a constituent being derived by a rule is
independent of how the constituent is being used as a
subconstituent.

For example. we assume the probabilitv of a noun phrase rule (NP) is the
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e me L A TTUEL TELERTRSY T E TEE WFET O R TR EraE F T U T E T

same no matter where thls NP rule is used {e g, whether it is used as a
subject of object of a verb).
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INSIDE PROBABILITY CALCULATION

Let the word sequence W = w, w,...w, be generated by the PCFG, G with
rules on the Chomsy normal form:
;'11. -3 .»-Tm;’lﬂ
A:‘ — W,

where w; is a terminal symbol (it cannot be further expanded) and 4, .4, are

m*
non-terminal symbols.

The probability for these rules must satisfy the following constraint:

2 PU; > 4,4, 1G)+ ) P(4;>w)G) = I Vi

", n )

A non-terminal symbok, 4, , can generate a sequence of words WWiy e Wi

We define the constituent probability:

Inside(j, A!., k) = P{Ar. = u .wj | 1...wﬂ,|{?}

/

This can be computed recursively as:

k-1
Inside(j, A, k) = Z Z P(A;— A, A )P(A, 2w w)P(A, 2wy ..
mnj=;

k-1
Y Y P4, A,4,)Inside(j, A, k) Inside(I +1,4,, k)

mnf=j

The inside probability is the sum of the probabilities of all derivations for the
section over the span from j to k:

A
N\
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OUTSIDE PROBABILITY CALCULATION

We can also define an outside probability for a non-terminal node, 4,

covering w, o w,: S

LL L] !"1-". 1 TEE 1_‘_' ]_1__"' LL L] H}'

gl P t Wee1 'Y Wr

Outside(s, A, t) = P(S=>w|...w _ 1 A;w,...wr)

After the inside probabilities are computed bottom-up, we can compute the
outside probabilities top-down. For each non-terminal symbol, 4, there are

one of two possible configurations 4, — 4,4, or 4, — A4 :
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We must consider both possibilities:

Quiside(s, A PSS = Wi W IA W W)

it
¥—1
z F{Am e A”AI.JP(A” = Wy W I}P[S’:‘: Wi W, _ lA:'wr“'wT]
v, 1=1
r
ni, H
+ Z P[Am — A;.A”)P[AH =W, , 1...14:1,};”{.‘5‘:'!* Wy W, IAmWI | 1...1#1-}
[=t+1
s—1

Z P(A,, — A, A)nside(l, A, .5 — 1)Outside(l.A,,.t)

= Z ) =1
r
n, n
+ ) P4, — 4,4 )Inside(1+ 1,4, 1)Outside(s, A, .I)
=1
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ACCUMULATING COUNTSFOR RULE
PROBABILITIES

The inside and outside probabilities are used to compute the sentence probability as:

e Wi wr] = Z Inside(s, A, D Outside( s, A, t) Vst
!.

The probability for the entire sentence can be computed using the forward probability:
P(S= W|G) = Inside(1,5,T)

The probability that a particular rule, 4, — 4 A4, is used to cover the span w_...w

mooR’ f

given the sentence and grammar is:

C(i,m,n, s, 1) = P{;’Ir =W W, A, = A4 |{S::r W, G))

m n
-1
z P{A;. o .a'lmf]’”}fﬂ.‘p'ftfe’{ﬁ', Am, Kinside(k+ 1, A”, HDOutside(s, z]’f.., f)
k=23

B 1
 P(S=W,G)
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REESTIMATION EQUATION

Summing these counts across all sentences gives us an estimate of the number of
times a rule has been used. Dividing by the total counts of productions used for each

non-terminal gives:
T —

| T
Z Z (L. m,m, 8, 1)
:T

{?} e s=lt=5+1

1 T
Z Z Z E(i,m,n,s,t)

MR =1r=x5+1

P{Ar.%.«’tm.«’tﬁ

In a similar manner, we can estimate (4, — wm| (+), the probability a terminal symbol

rule was used.

This algorithm can also be used to select rules (learn rules), dynamical prune rules, etc.
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RECOGNITION: DATA-DIRECTED
SEARCH VIA CHART PARSING

The recognition problem requires computation of (5 = W|(). This can be

performed using a probabilistic chart parser operating in breadth-first mode
(and using some notion of beam pruning):

Step Description

1 Initialization: Define a list called chartto store active arcs, and
a list called an agenda to store active constituents until they
are added to the chart.

Repeat: Repeat steps 2 to 7 until there is no input left.

3 | Push and pop the agenda: If the agenda is empty, look up the
interpretations of the next word in the input and push them to
the agenda. Pop a constituent C from the agenda. If C corre-
sponds to position from w; to W, of the input sentence, we

denote it C[i,j].
4 | Add C to the chart: Insert C[i,j] into the chart.

Add active arcs: For each rule, add to the chart an active arc

of the form XTi, j] — °CY where ° denotes the point (key)
after which things are not matched.

6 | Move ° forward: For any active arc, add a new active arc of
the form X[1, j]—= Y...C°...Z.

7 | Add new constituents: For any active arc of the form

X[1,1]1— Y...°C, add a new constituent of type X[1,j] to the
agenda..

8 | Exit: If S[1,n] is in the chart, where n is the lenght of the input,
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| | terminate. (Vwe can also recover all possible interpretations.)
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A CHART PARSING EXAMPLE

Initialization:

CHART AGENDA

MWame[1.1] <= Mary
Mary loves that person

After "Mary", the chart now has rules:
o "Name-> Mary"
e "NP->Name"

e« S->NPOVP
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CHART AGENDA

V[2.2] == lowves

Mary loves that person

AGENDA

Name->Mary
MNP-=MName
S-> NP VP

Mary loves that person
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Return to Main LECTURE 31 EXAM NO 2

Home

Exam Database

o B The second exam can be found here.
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LECTURE 32: N-GRAM LANGUAGE MODELS

Return to Main

Objectives

Review:
Noisy Channel Model

Chomsky Hierarchy

N-grams:
Derivation

Examples

Complexity:
Perplexity
Examples

On-Line Resour ces:
XML

W3C
Software: SRILM

LECTURE 32: N-GRAM
LANGUAGE MODELS

o ODbjectives.

0 Communication theory model
of gpeech recognition

0 Statistical language models
0 N-gram language models

0 Perplexity

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
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F. Jelinek, Satistical Methods for
Soeech Recognition, MIT Press,
Boston, M assachusetts, USA,
|SBN: 0-262-10066-5, 1998.
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N-GRAM LANGUAGE MODELS

Consider a word sequence W = w w,yw,...w . The probability of this word
sequence can be decomposed as follows:
P(W) = P(wywywy...w,)

=P[w]}P{w2|w1}P[w3|w|,wz]...P{w”|wlmﬁzﬂ...*w 1]1

-

i
- 1_[ P{w}_.|wl}-;t:r...j-;t:!._ ]}

i=1
The choice of w, thus depends on the history, which we define as the

preceding i — 1 words.

Clearly, estimating P(w,.|w| Wi.....w; ) for every unique history is
prohibitive. Why?

A practical approach is to assume this probability depends only on an
equivalence class:

"
Pil = l_[ Pw|wywasoow; _y)

i=1

1
= 1_[ P{l,1f'1.|i13l{w|ﬁ1r1r'z,..‘,H*‘!-_ 1”
i=1

There are three obvious simplifications we can make:

« Unigram: D(W|, Wy 1) = ¢
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* Bigram: D(wy,wy,.coW; ) = Wi
* Trigram: DWWy, W; 1) = Wi_ W _ o

Of course, we can also merge histories based on linguistic considerations
(e.g., grouping all nouns that describe animals, grouping all articles). What
might be the advantages of doing this?
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N-GRAM DISTRIBUTIONSFOR A
CONVERSATIONAL SPEECH
(SWITCHBOARD) CORPUS

Unigrams (SWB):

Most Common: |, and, the , you, a
Rank-100: she, an, going
Least Common: Abraham, Alastair, Acura

Bigrams (SWB):

+ Most Common: “you know”, “yeah SI7,
“IS um-hum?”, “l think”
+ Rank -100: “do it", “that we”, "don’t think”

+ Least Common: “raw fish”, “moisture content,

“Reagan Bush”®
Trigrams (SWB):

+ Most Common: “1S um-hum S17, “a lot of”,
“I don't know”

+ Rank-100: “it was a”, “you know that”

+ Least Common: “you have parents”,
“you seen Brooklyn”

1.00
0.735
0.50
0.25

0.00

2 200 200 2K 20K

1.00 "
0.75
0.50
0.25

0.00
2 20 200 2K 20K 200K

1.00
0.75
0.50
0.25

0.00

5 50 500 5K S0K 500K
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PERPLEXITY ASA MEASURE OF
COMPLEXITY

How what can measure the complexity of a language model?
What is wrong with using the average branching factor?

i f
Consider a word sequence W = wywyw;...w_ = w, as a

random process. The entropy of this process is:

~ lim ~E[log(P(w"))]

n — ool

= — lim —ZP(WI}IGE(P(WTD

1 —> sall

H(W)

For an ergodic source, we can use a temporal average:
H(W) = — lim 11ng(P(wT)}
H—» oo

Of course, we must estimate these probabilities from the training
data:

H(W) = — lim —lﬂg(P(wl)}

1 —y coll

Jelinek showed that ﬁI( W)=H(W) if W is ergodic.

Wa ran Aafina narnlavitw ac-
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VW wd WAl %A %s THD D s F'I.irl '-llunll-, Awd .

Hw) 1
”.l'ﬁ‘(wT}

Note that if all words are equally likely, and there are L words in
the vocabulary:

PP(W) =2

log,L

PP(W) = 2 i

We can define the training-set perplexity as a measure of how
the training set fits the language model. Similarly, we can define
a test-set perplexity as the perplexity computed over the test
set. It can be interpreted as the inverse of the (geometric)
average probability assigned to each word in the test set.
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PERFORMANCE VS. PERPLEXITY

o Though perplexity is not the best measure for task complexity, it
provides some useful insights:

Word
Corpus VocgbzuelaryPerplexity Error
Rate
Tl Digits 11 11  ~0.0%
OGl
Alphadigits =~ P % | 5%
Resource
M anagement 1,000 60 4%

(RM)




EEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Air Travel

| nformation
Service
(ATIS)

1,800

12

4%

Wall Street
Journal

20,000

200 - 250

15%

Broadcast
News

> 80,000

200 - 250

20%

Conversational
Speech

> 50,000

100 - 150

30%

o Acoustic confusibility of highly probable and interchangeable words
most often dominates performance.
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« WER ~= -12.37 + 6.48*|0g,(Perplexity) [William Fisher, NIST, May
2000]
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Return to Main

Objectives

I ntroduction:
Noisy Channel Model

Chomsky Hierarchy
Motivation

Techniques:
Simple
Generalized Interpolation
Deleted Interpolation
Good-Turing Estimates
Katz Smoothing
Knesser-Ney Bigram Smoothing
Class N-grams

On-Line Resour ces:
LM Overview

Ngram Smoothing

Turing Intro
Good Turing Smoothing

LECTURE 33: SMOOTHING
N-GRAM LANGUAGE MODELS

o ODbjectives.

0 Why do we need N-gram
smoothing?

0 Deleted interpolation
0 Backoff language models

0 Discounting

This lecture combines material from
the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
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o ODbjectives.
0 Why do we need N-gram smoothing?
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WHY ISSM OOTHING SO IMPORTANT?

o A key problem in N-gram modeling is the
Inherent data sparseness.

o For example, in several million words of
English text, more than 50% of the trigrams
occur only once; 80% of the trigrams occur
less than five times (see SWB data also).

o Higher order N-gram models tend to be
domain or application specific. Smoothing
provides away of generating generalized
language models.

o If an N-gramisnever observed in the training
data, can it occur in the evaluation data set?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_33/lecture_33_01.html (1 of 2) [6/15/2002 10:44:09 AM]
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« Solution: Smoothing is the process of
flattening a probability distribution implied
by alanguage model so that all reasonable
word seguences can occur with some
probability. This often involves broadening
the distribution by redistributing weight from
high probability regions to zero probability
regions.
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SMOOTHING ISAN INTUITIVELY
SIMPLE CONCEPT

o Simple smoothing: pretend each bigram
occurs once more than it actually doesin the
training data set

L+ C(w, _.w)) L+ C(w,_ W)
P[wi‘wf_ l] - ) = : 1
Z{l FC {w!._ I,Lvr.]) V4 ZC’{WI— I._,H;‘F-)
W, W,

o Notethat the probability density function
must be balanced to that it still sumsto one.
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THE BACKOFF MODEL: A
FLEXIBLE TRADE-OFF BETWEEN
ACCURACY AND COMPLEXITY

o Backoff smoothing: Approximate the probability
of an unobserved N-gram using more frequently
occuring lower order N-grams

J”

.*..HHJH!."?UI'."|“|" o Bl t1J

[ r1(11'f|n'f. el Wi_) Ciw,_,.1--w;)>0

17"(“'."-- n+1Wj ]]"'IIJ_uJi'm;!.f."‘r-“'." Wi _n+2W;_ l} {'I{H.f n ]“‘”'f]' =0

« |f an N-gram count is zero, we approximate its
probability using alower order N-gram.

o Thescaling factor is chosen to make the
conditional distribution sum to one.

o Extremely popular for N-gram modeling in speech
recognition because you can control complexity as

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_33/lecture_33_03.html (1 of 2) [6/15/2002 10:44:10 AM]
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well as generalization.
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DELETED INTERPOLATION SMOOTHING

We can linearly interpolate a bigram and a unigram
model asfollows:

Pf(u-‘j|w!._ (] = lP{x-t-‘j.|w{._ P+ (1=A)P(w))

We can generalize this to interpolating an N-gram
model using and (N-1)-gram mode!:

i—n ["'WI—I) = A

Pf[w;.|14' P(11,-‘!.|u-'r._ﬂ b1eeWi_q)

u'_,|11'| PARETIION | O

(1= "'""u‘_,|u‘, S ey ]]P(H"f|1'1’?.f—n 2 Wio1)

Note that this |eads to arecursive procedure if the
lower order N-gram probability also doesn't exist. If
necessary, everything can be estimated in terms of a
unigram model.

A scaling factor is used to make sure that the

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_33/lecture_33_04.html (1 of 3) [6/15/2002 10:44:10 AM]
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conditional distribution will sum to one.

o An N-gram specific weight is used. In practice, this
would lead to far too many parameters to estimate.
Hence, we need to cluster such weights (by word class
perhaps), or in the extreme, use a single weight.

o Theoptimal value of the interpolation weight can be
found using Baum's reestimation algorithm. However,
Bahl et al suggest a simpler procedure that produces a
comparable result. We demonstrate the procedure here
for the case of a bigram laanguage model:

1. Divide the total training data into kept and held-out
data sets.

2. Compute the relative frequency for the bigram and
the unigram from the kept data.

3. Compute the count for the bigram in the held-out
data set.
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4. Find aweight by maximizing the likelihood:

> D Cwlog(Ax f(wy|wy) + (1 =R)f(wy|w)))
N(v)e R w,

Thisis equivalent to solving this equation:

FETRNG o | f(“"z\"') R =
D, DNwy) "Tosonm|

N(v)e R w,
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GOOD-TURING ESTIMATES

The Good-Turing estimate states that for any N-gram, o, that occurs »
times, we should reestimate this frequency of occurrence as:

Hrll

i S
:

where n  is the number of N-grams that occur exactly r times. This count

can be convrted to a probability by dividing by the total number of N-gram
tokens:

N = ZHFP‘ - Zﬂrf““": - z{r+l]nr| -

r=190 r=>0 r=19
The justification for this equation is as follows:
Suppose we have training data for N-grams o, ... . Let ¢(0;) denote the
number of times the N-gram o, occurs in the training data, and p; be the
true probability of o;.

Estimating p; by using its frequency of occurrence can be expanded as:

i
E{pdf{ﬂij =r) = Z p(i= k|c({1{.} = F”Jﬂ_
k=1
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We are using the chance that a randomly selected N-gram, o, with count »,

is in fact oLy . This can be rewritten into:

ple(oy) =r)

pli=klc(o)=r) =

N
Y ple(o) =r)
=1

Ny » N-—r
M-y

5

5 (Mpia-pp

=1

. N—F
Pir( I-p) j

5
. g"l,lr— '
D p-p)"

=1

Substituting this into our expression for E{F:'F(“i} = r):

PINCACET AR TA
E(p;|e(ay) =r) = =L

: » N-—r
3 5i(i-2)

=1
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Noting that every N-gram token counts as 1, we can express the expected
value of n, as:

&

i=1 I =

We can show that:

r+1Ey g0t 1) .
NEL By A%

We can make the approximation that n, = EN{HF] and

N

”.I" F 1 = N_-l- I.EM | I[H‘,. | 1}

Combining these results:

P{mf} =
rt = NP(a,)

= NE(p;|e(0) = 1)

_ yrr1Exen+
N+1 Eyn)

”r'l

:{F‘f‘ ]:I
»

Note that we must pre-smooth the distribution so n > 0.
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KATZ SMOOTHING BASED ON
GOOD-TURING ESTIMATES

o Katz smoothing applies Good-Turing
estimates to the problem of backoff language
models.

o Katz smoothing uses aform of discounting in
which the amount of discounting is
proportional to that predicted by the
Good-Turing estimate.

o Thetotal number of counts discounted in the
global distribution is equal to the total number
of counts that should be assigned to N-grams
with zero counts according to the Good-Turing
estimate (preserving the unit area constraint for
the pdf).
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o Katz Smoothing:

C(H"f_ ]W'f]fC{L#'i-_ I] j‘}k
Pﬁ'mz{wf|“’r— ) =134, C0w; _w)/Clw;_1)  kz2r>0
c(w;_)P(w;) F=20

}.lk (k‘l‘ l}ﬂk + 1

L Z PK.:HE[wi|Wf—1}

r n L
where d . = 7T 1}:1 and ol(w, ) = et
1 - el I- 2 Pa: (W)
y w,r>{
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KNESER-NEY BIGRAM SMOOTHING

o Absolute discounting involves subtracting a
fixed discount, D, from each nonzero count,
an redistributing this probability massto
N-grams with zero counts.

o Weimplement absolute discounting using an
Interpolated mode! .

j F 1 ] e
fn'f".'.w{llllfnn" n+1" ]}

max Clw, _, W) D0}

D COw_ W)
W,

(1 j'"'-l'.. ] oee Wy |” m’*.hhll."| Wi p+2¥; l]I

o Kneser-Ney smoothing combines notions of
discounting with a backoff model. Hereis an
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algorithm for bigram smoothing:

‘maxy C{w,. R D.0}
ot C{WI._IWI.}}[}
PenOi|wi_ ) =5 O 1)
ﬂ(“*‘!- B I}P N ;) otherwise
where
C(*w;)
Piplwy) =

Z C(*w))

W,

and C(*w) is the number of unique words preceding w..

a(w, ) is chosen to make the distribution sum to 1:

-3

w.C{w,_w)>0

L > Py

W C(wy_ owy) >0

HE{IJL‘{C[W;._ lwf} - D0}
C(H«‘!-_ 1)

alw; ) =

o Knesser-Ney smoothing constructs a lower
order distribution that is consistent with the
smoothed higher order distribution.
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CLASS N-GRAMS

o Recall we previously discussed defining
equivalence classes for words that exhibit

similar semantic and grammatical behavior.

« Class based language models have been
shown to be effective for reducing memory
requirements for real-time speech
applications, and supporting rapid adaption of
language models.

« A word probability can be conditioned on the
previous N-1 word classes:

P“f.f‘{'lf—.r; i I...r:*r.] = Plfn-'!.‘.::f.}f’{{'dc Ci)

i—a+1""""
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o We can express the probability of aword
seguence In terms of class N-grams:

P(W) = Z HP{H IP(Ci{C; €

o If the classes are non-overlapping:

P(W) = ]‘[P(u-r.|{-{.)ﬁﬁ,-:j.‘{-;._” )
j.

o If we consider the case of a bigram language
model, we can derive asimple estimate for a
bigram probability in terms of word and class

counts:
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P{n-‘f‘n-'r._ )= P{w!.‘cj._ ) = P(H-'f‘::'!.JP{c.'f‘{'!._ 1)

C(w;c.)C(c; _c;)
C(c;) Clc;_y)

C(H’-}{ C;_q f}
[i} C( ,._|}

o Class N-grams have not provided significant
Improvements in performance, but have
provided a simple means of integrating
linguistic knowledge and data-driven
statistical knowledge.
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Return to Main

Objectives

Introduction:

Technology
Motivation

Techniques:
General Search
Depth-First
Breadth-First
Best-First
Beam Search
Hierarchical Search

On-Line Resources:
Tutorial

Hierarchical
Al Search
Code and Complexity

LECTURE 34: BASIC SEARCH
ALGORITHMS

o ODbjectives:

0 Theimportance of search in
speech recognition

0 General search algorithms
0 Breadth-First vs. Depth-First

0 Beam Search

This lecture follows the course
textbook closdly:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
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Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,

USA, ISBN: 0-13-022616-5,
2001.

Thismaterial can aso be found In

most computer science textbooks on
algorithms:

T. Corment, C. Leiserson, R.
Rivest, and C. Stein, Introduction
to Algorithms, McGraw-Hill,
New York, New York, USA,
|ISBN: 0-07-013151-1.
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LECTURE 34: BASIC SEARCH
ALGORITHMS

o ODbjectives:

0 Theimportance of search in speech
recognition

0 General search algorithms
0 Breadth-First vs. Depth-First

0 Beam Search
Thislecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
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HaII Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

Thismaterial can also be found in most
computer science textbooks on algorithms:

T. Corment, C. Leiserson, R. Rivest, and C.
Stein, Introduction to Algorithms,

McGraw-Hill, New York, New York, USA,
|ISBN: 0-07-013151-1.
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SPEECH RECOGNITION REQUIRES
GOOD
PATTERN RECOGNITION AND SEARCH

« Continuous speech recognition is both a
pattern recognition and search problem.
Why?

o Thedecoding process of a speech recognizer
finds the most probable sequence of words
given the acoustic and language models.
Recall our basic equation for speech
recognition:

P(W)P(A|W)

P(W|A) = P(A)

Search isthe process of finding the most
probable word sequence;
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i al‘gmax[ﬂ W)P(A| W)}

W P(A)
argmax : 5
= [PONPAIW)

o Thecomplexity of the search algorithm
depends heavily on the nature of the search
space, which in turn, depends heavily on the
language model constraints (e.g., hetworks vs.
N-grams).

e Speech recognition typically uses a
hierarchical Viterbi beam search for

decoding/recognition, and A™ stack decoding
for N-best and word graph generation.
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GENERAL GRAPH SEARCH

o Many interesting and useful problems cannot
ne handled solely by dynamic programming.
—or example, consider the traveling salesman
oroblem - finding the shortest distance tour
covering N cities and only visiting each city
once:

The complexity of an exhaustive search

solution to such problems can be O(NT) -
which is prohibitive for speech recognition.

o A search tree solution to the traveling
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salesman problem is show below:

o Thesearch space isdefined by atriplet
(S,0,G), where Sisthe set of initial states, O
IS aset of operators or rules, and G isa set of
goal states.

o A genera algorithm for searching such spaces
can be defined as follows:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_34/lecture_34_02.html (2 of 3) [6/15/2002 10:44:14 AM]



LECTURE 34: BASIC SEARCH ALGORITHMS

ALGORITHM 12.1: THE GRAPH-SEARCH ALGORITHM

Step 1: Initialization: Put S in the OPEN list and create an initially emply CLOSE list
Step 2: If the P EN list is emply, exit and declare failure,
| Step 3: Pop up the first node N in the GPEN list, remove it from the OPEN list and put it into
the CLOSE list,
Step 4: If node W is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N to S,
Step 5: Expand node N by applying the successor operator to generate the successor sel
55V of node N. Be sure to eliminate the ancesters of N from SS(N).
Step 6: Vv e SS(N) do
Ba. {optional} If v e OPEN and the accumulated distance of the new path is smaller than
that for the one in the OPEN list, do
(i change the traceback (parent) pointer of v 1o N and adjust the accumulated
distance for v .
i) goto Step 7.
6b. (optional) If v CLOSE and the accumulated distance of the new path is smaller
than the partial path ending at v inthe CLOSE list. do
(i} change the traceback (parent) pointer of v to N and adjust the accumulated
distance for all paths that contain v .
(i} go to Step 7.
Gc. Create a pointer pointing to A and push itinto the OPEN list
Step 7: Reorder the OPEN list according to search strategy or some heuristic measurement.
Step 8: Go fo Step 2,

o Animportant part of any search algorithm is
the successor operator which generatesthe
list of all possible nodes that can follow a
given node, and computes the distance
associated with each of these arcs.
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DEPTH-FIRST SEARCH

o Depth-first search explores a single path until
Its conclusion. If this path does not terminate
on agoa state, we backtrack and arbitrarily
continue with another path:

‘B

Such a strategy 1s common for solving
problems such as mazes where the first
solution that reaches a goal state is acceptable
(though this might not be the fastest solution).
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o A general algorithm for searching such spaces
can be defined as follows:

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put § in the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the
CLOSE list,
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointars from N to S.
da, If the depth of node M is equal to the depth bound, go to Step 2.

Step 5: Expand node N by applying the successor operator to generate the successor set
SS{N} of node N. Be sure o eliminate the ancestors of N from SS{N).
Step 6: Vv e SS(N) do

6c. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the the OPEN list in descending order of the depth of the nodes.
Step 8: Go to Step 2.

o Depth-first search, as we will see, Is useful
when dealing with beam search and
fast-matching algorithms.
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BREADTH-FIRST SEARCH

o Breadth-first search explores all alternatives
simultaneously level-by-level:

o A genera algorithm for searching such spaces
can be defined as follows:
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ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list.
Step 2: |f the OFEN list is empty, exit and declare failure.
Step 3: Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node Nis a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from Nto 5.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS[N).
Step 6: Vv e SS(N) do
Bc. Create a pointer pointing to N and push it inte the OPEN list,
Step 7. Reorder the OPEN list in increasing order of the depth of the nodes,
Step 8. Go to Step 2,

o Breadth-first search isacritical part of a
speech recognition system. Why?
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HEURISTIC SEARCH: BEST-FIRST (A*
SEARCH)

o Best-first search uses an evaluation function,
h(N), which indicates the relative goodness of
pursuing that node. If we combine thiswith
the partial path score, we can define a general
evaluation function:

T(N) = g(N) + h(N)

which can be used to evaluate hypotheses as
they evolve. If we always pursue the best path
according to this evaluation function, what
are the merits of this approach? What
constraints must be placed on this function to
guarantee an optimal solution? How would
that solution compare to other search
algorithms?
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o A genera algorithm for searching such spaces
can be defined as follows:

ALGORITHM 12.4; THE BEST-FIRST SEARCH ALGORITHM

Step 1: Initialization; Put 5in the OFPEN list and create an initially empty the CLOSE list.
step 2: T the OPEN list is empty, exit and declare failura,
step 3. Fop up the first node Nin the OFEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node Nis a goal node, exit successiully with the solution obtained by tracing back the
path aleng the pointers from N to S.
Step 5: Expand node N by applying the successor operator to generate the successor set
SS5{N) of node N. Be sure 1o eliminate the ancestors of N, frem SSIN).
Step 6: Vv e S5(N) do
6a. (optional) If v e OFPEN and the accumulated distance of the new path is smaller than

that for the one in the the OPEN list, do

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .

(i} Evaluate heuristic function f(v) for v and go to Step 7.

6b. {optional) If v e CLOSE and the accumulated distance of the new path is small than

the partial path ending atv in the the CLOSE list,
(i) Change the traceback {parent) pointer of v to N and adjust the accumulated

distance and heuristic function £ for all the paths containing v .

(ii} go to Step 7.
6c. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the the OPEN list in the increasing order of the heuristic function j/{N).

Step 8: Go to Siep 2.
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A search algorithm is said to be admissible if
It can guarantee an optimal solution.

One possible solution to the traveling
salesman problem using best-first search
might look like this:
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HEURISTIC SEARCH: BEAM SEARCH

o Beam search isanother form of heuristic
search in which we terminate hypotheses that
do not appear to be promising:

o A general algorithm for searching such spaces
can be defined as follows:
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ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM

Step 1: Initialization: Put Sin the OPEN list and create an initially empty CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: YN e OPEN do

3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.

3b. If node Nis a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from Nto 5.

dc. Expand node N by applying a successor operator to generate the successor set SS(V)
of node N. Be sure to eliminate the successaors, which are ancestors of N, from SS(N).

3d. Vv e S5(N) Create a pointer pointing to N and push it into Beam-Candidate list,
Step 4: Sort the Beam-Candidate list according to the heuristic function f(V) so that the best
wnodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate
list.
Step 5: Go to Step 2,

o Why Isbeam search very appropriate for
speech recognition?
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HIERARCHICAL SEARCH: OPTIMAL

SEARCH ISSUBTLE

Search Space Specification: DiGraph<SearchMNode=
MNP VP MP
Ty T e ™ e [

e

gjf—p-“:'—r“:?—p-ﬁz

L ez

Search Level Specifications: Vector<SearchlLevel=

Level O

Level 1

Level 2

fievel 0: Symbols = “NP~, “VP~
heam prune = true
beam width = 1000
Level 1: Symbols = “the”, “boy™, “ran”, ...
use Nsymbol probabilities
Msymbol length = 3
Level 2: Symbols = “dh”™, “ax™, “b”, “oy”, ...
use context dependency
\\_ context = 1 on left, 1 on right

Current Search Paths: Vector<DoubleLinkedList<Trace= =

Level 0 Traces | Trace(MP,VP)

Level 1 Traces | Trace(MP, the, dh, ax, boy)

Level 2 Traces | Trace (MNP, the, dh)
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o To maintain optimality in the search, we must
maintain a history of predecessor words
*and* states, since the same word sequence
can be produced by multiple paths in the
network.

« Dynamic expansion of context is generally
preferred over precompilation. Why?
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Return to Main

Objectives

Review:
M otivation

Decoder Basics:
Combining Scores

Continuous Speech

N-grams:
Unigram
Bigram
Trigram

Time Synchronous:
Level Building

Viterbi Beam

On-Line Resour ces;
Tutoria

Hierarchica
AJR: Search
SR: Search

LECTURE 35: TIME
SYNCHRONOUS SEARCH

o ODbjectives:
0 No endpointing!
0 N-gram-specific search
0 Time synchronous search

0 Time synchronous Viterbi
beam search

This lecture follows the course
textbook closely:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
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Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

Another good source for some of
thisinformation Is:

F. Jelinek, Satistical Methods for
Soeech Recognition, MIT Press,
Boston, M assachusetts, USA,
|SBN: 0-262-10066-5, 1998.
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LECTURE 35 TIME SYNCHRONOUS
SEARCH

o ODbjectives.
0 No endpointing!
0 N-gram-specific search
0 Time synchronous search

0 Time synchronous Viterbi beam search
This lecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice

Hall, Upper Saddle River, New Jersey, USA,
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ISBN 0-13-022616-5, 2001.

Another good source for some of this
Information Is:

F. Jelinek, Satistical Methods for Speech
Recognition, MIT Press, Boston,

Massachusetts, USA, ISBN: 0-262-10066-5,
1998.
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COMBINING SCORESIN THE LOG
PROBABILITY SPACE

o Recall our basic equation defining the search
problem:

- argmax ) )
W = [P(W)P(A|W)]

”.-?'
o Itisconvenient to process probabilitiesin the
log domain:

C(W|A)=—log[P(W)P(A|W)]

= —(log|P(W)] + log[P(A|W)])

argmin
W

1%

|[C(W|A4)]

Why?

o« Itisalso convenient to combine the language
model and acoustic scores using aweighting
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factor:

pw) =pw) - V)

log (P(W)) = LWlng(P(W)) + N(W)log(IP)

where LW is a language model weight,
N(W) is the number of words in the hypothesis,
and IP is a word insertion penalty (IP € [0, 1]).
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|ISOLATED WORD RECOGNITION USING
NETWORK DECODING

Isclated Word Recognition:

Monspeech Monspeech

Nonspeech {Word} Nonspeech
@ w1 - 7 ln-@

Monspeech:typically an acoustic model of one frame in duration that
models the background noise.

{Word}:  any word from the set of possible words that can be spoken

= The key point here is that, with such a system, the recognizer finds the
optimal start/stop times of the utterance with respect to the acoustic
model inventory (a hypothesis-directed search)

Simple Continuous Speech Recognition (“No Grammar”):

Monspeech/{Word}

Nonspeech Nonspeech
O "

+ system recognizes arbitrarily long sequences of words or nonspeech events
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UNIGRAM SEARCH: SIMPLE BECAUSE
ITISMEMORYLESS

o Thesimplest N-gram search isthe unigram
search, since it Is memoryless. The language
model probability depends only on the current
word.

N
pawy =[] Pw)

i=1

« Thegrammar network can be viewed as
follows:
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,,—-p W, R
!." ik
POW, ) /
/

/ P(W,)
yoo
<—a< P u“:ﬂ: 1""'&. s
4\ ; e

Thefinal state of each word Is connect to the
collector state by a null transition. The
collector state i1s connected to the start state

with another null transition. Word expansion
IStrivial.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_35/lecture_35_03.html (2 of 2) [6/15/2002 10:44:19 AM]



LECTURE 35: TIME SYNCHRONOUS SEARCH

BIGRAM SEARCH: GOOD COMPROMISE
BETWEEN PERFORMANCE AND
COMPLEXITY

o A bigram search is still relatively smple:

N

PIW) = POwy () T POovw; )
i=2

« A bigram search requires expand and merge:

i
- - POW, | W T
K{’F = -____h'::;\\\
-.I .l

L

=
=
=

-
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The search complexity can be N2 with a
backoff model (if any word can follow an
other word).

o We can reduce the complexity of abigram
search with backoffs by using a dynamic
expansion:

backoff node
I.-"'_“"-.I

A !

o W) ,f/ II"‘.HI
/ \
_ ™ }; .-r{'- 4 W) ~,Itprl-1ﬁ.-ll

e Il".
i \
W, —n’”{_q______ji_m-'; W) \}
o T

\_/ o
> v
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TRIGRAM SEARCH: OFTEN TOO
COMPLEX FOR A FORWARD SEARCH

o A trigram search isfairly computationally
Intensive:

N
P(W) = (P(w, ‘ (5) }P(H-'2| (s),w1)) 1_[ P[wi‘ W oW 1)

=3

o A trigram search is shown below:
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; i I"':lll'I

| W, W)

LW W)

o A trigram search is often too complex for a
single-pass forward search, and is instead
typically implemented as a postprocessing
step (rescoring) after aword graph has been
generated.
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TIME SYNCHRONOUS DECODING:
TRELLISEXPANSION

o Time synchronous decoding of a network can
be viewed as atrellis expansion operation:

o 2 @ ° ~ o
LR e e fﬁ% T
=i = - S
o o o o -4 . ©
T o o o A | oO

o ® @ | O

< _ @ ;_?lw ; O
i aad

o Thisalgorithm is based on the smple
principle of dynamic programming (Sakoe
and Chiba):
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DTW, Syntactic Constraints, and Beam Search

Consider the problem of connected digit recognition: “325 1739". In the
simplest case, any digit can follow any other digit, but we might know the
exact number of digits spoken.

An elegant solution to the problem of finding the best overall sentence
hypothesis is known as level building (typically assumes models are same
length.

Reference

i

Rs| T

o TR N EEERE Possible starts for second word

T Possible word endings for first word

F4 Fs Fig Fis Fag Fos Fag
Test

« Though this algorithm is no longer widely used, it gives us a glimpse into
the complexity of the syntactic pattern recognition problem.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_35/lecture_35_06.html (2 of 5) [6/15/2002 10:44:21 AM]
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o Thisalgorithm goes by many names
Including level building:

Level Building For An Unknown Number Of Words

Reference

i

M=3
T Beam
Ra| |

Test

- Paths can terminate on any level boundary indicating a different number
of words was recognized (note the significant increase in complexity)

= A search band around the optimal path can be maintained to reduce the
search space

= Mext-best hypothesis can be generated (N-best)
» Heuristics can be aoplied to deal with free endpoints. insertion of silence

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_35/lecture_35_06.html (3 of 5) [6/15/2002 10:44:21 AM]
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= T =T == == - -m-- - = = = - -= g T---aw3 == - m—= - == == ==

between words, etc.
= Major weakness is the assumption that all models are the same length!

« and the Bridle algorithm (one-stage DP):

The One-Stage Algorithm (“Bridle Algorithm”)

The level building approach is not conducive to models of different lengths,
and does not make it easy to include syntactic constraints (which words can
follow previous hypothesized words).

An elegant algorithm to perform this search in one pass is demonstrated
below:

Reference

A
Model

- Toest

« Very close to current state-of-the-art doubly-stochastic algorithms (HMM)

« Conceptually simple, but difficult to implement because we must
remember information about the interconnections of hypotheses

» Amenable to beam-search concepts and fast-match concepts

- -
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+ Supports syntactic constraints by Wmited the choices tor extending a
hypothesis

+ Becomes complex when extended to allow arbitrary amounts of silence
between words

+ How do we train?

It was first introduced for dynamic
time-warping (DTW) systems.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_35/lecture_35_06.html (5 of 5) [6/15/2002 10:44:21 AM]
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TIME SYNCHRONOUSVITERBI BEAM
SEARCH

o We can define many of these search concepts
Into a single algorithm: expansion operation:

I
. ALGORITHM 12.6: TIME-SYNCHRONOUS VITERBI BEAM SEARCH

Step 1: Initialization; For zll the grammar word states w which can stari a sentence
DO fiwrw)i=0
B0; Jiw Y w) = nuldl
Step 2: Induction: For fimes =1 to T do
For all active sfates do
Intra-word transitions according to Eq. (12.17) and {12.18)
Dt 5, ;w)=min -'l.sl"i X% |3 _ Wi+ D(E=Ls _; u.'}}

Rt w)=hit—Lb (5 whkw)
For all active word-final states do

Inter-word fransiions according to Eqg. (12.21), (12.22) and {12.23)

INE W)= mljn{lu;:_ Plw | v+ D0 Flvy, r]}-

R wY = (v .ty Flv g, v )

if D{e;mzw) < D f{wi;w)

i (whw) = Ditorw) and ke T{w) wi= it n;w)

Prunirg: Find the cost for the best path and decide the beam threshald
Prune unpromising hypotheses

Step 3: Termination; Pick the best path amaong all the possible final states of grammar at time
T . Obtain the aptimal word sequenca according o the backiracking pointer filr;m. w)

S

o Thisalgorithm uses dynamic expansion of the
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network to minimize memory reguirements.

ﬂﬂlﬁ jgﬁ Sentence level

Ward lewel
(Woard graph) @

G

|—5-l'.'|‘l'||'—i-'-—=-j|'|

Pheome level
Bo—=-n (Lex frae)

Modal &
state |level

We will have more to say about this
algorithm later.
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Return to Main LECTURE 36 S-I-ACK
Objectives DECODING

Stack Decoding:
Best-First

Admissible Heuristics
Fast Match

o ODbjectives.

M ulti-pass Sear ch:
N-Best Generation

L attice Generation

Other: 0 Best-first search with
admissible heuristics

On-Line Resources:
JA: Stack

AJR: Search
SR: Search

0 Fast matching

0 Cross-word decoding and
lexical trees

0 N-best and word graph
generation

This lecture follows the course
textbook closely:

X. Huang, A. Acero, and H.W.
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LECTURE 36: STACK DECODING

Hon, Spoken Language
Processing - A Guideto Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

Another good source for some of
thisinformation Is:

F. Jelinek, Satistical Methods for
Soeech Recognition, MIT Press,
Boston, M assachusetts, USA,
|SBN: 0-262-10066-5, 1998.
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o ODbjectives:
0 Best-first search with admissible heuristics
0 Fast matching
0 Cross-word decoding and lexical trees

0 N-best and word graph generation
Thislecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.
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Another good source for some of this
Information Is:

F. Jelinek, Satistical Methods for Speech
Recognition, MIT Press, Boston,
Massachusetts, USA, ISBN: 0-262-10066-5,
1998.
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STACK DECODING (A SEARCH)

e |f SOMe ,
heuristics are '” )
avallable to e
guidethe
decoding, the
search can be
donein a
depth-first
fashion
around the
best path.
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wasting
computation
on
unpromising
paths via
time
Synchronous
decoding.

e Sucha
heuristic
function 1s

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_01.html (2 of 5) [6/15/2002 10:44:22 AM
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very difficult
to attain In
speech
recognition
since It must
combine
elements of
acoustic and
language
model
scoring.

Stack
decoding IS
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avariant of
tree search.

o Note that the Viterbi search finds the optimal
state sequence while stack decoding focuses on
the optimal word sequence.

o The search process can be summarized as
follows:

0 Add all possible one-word sequences to the
OPEN list.

0 Remove the best path from the OPEN list;
all paths from it are extended, evaluated,
and placed back in the OPEN list (sorted).

0 Continue until acomplete path that is
guaranteed to be better than any path on the

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_01.html (4 of 5) [6/15/2002 10:44:22 AM]
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OPEN list has been found.

o TWO key operations:

0 Finding an effective heuristic function for
estimating the probability of the "future"
part of the path.

0 Determining when to extend the search to
the next word/phone.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_01.html (5 of 5) [6/15/2002 10:44:22 AM]



LECTURE 36: STACK DECODING

ADMISSIBLE HEURISTICS

o Recall the general form of our evaluation
function:

f(H) = g(H) + h(H)

Where g() represents the evaluation function
for the partial path up to timet, and h()
represents the estimate of the remaining path.

o An admissible heuristic function is one that
always underestimates the true cost of the
remaining path (e.g., a zero function).

o Theevauation function can simply be the
forward probability.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_02.html (1 of 2) [6/15/2002 10:44:23 AM]



LECTURE 36: STACK DECODING

o Theexpected cost of the remaining part of the
path can be estimated by gathering statistics
from the training data:

(H) = (T-0Prir

e It can be shown that this same heuristic can
ne applied to the problem of extending the
nath into the next word.
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FAST MATCH ISCRITICAL IN STACK
DECODING

o An effective underestimated heuristic
function for the remaining portion of speech
Isvery difficult to derive.

« In asynchronous stack decoding, the most
expensive step isto extend the best subpath.

o Fast match isamethod for the rapid
computation of alist of candidates that
constrain successive search phases.

« Fast match can be regarded as an additional
pruning theshold to meet before a new word
or phone can be started.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_03.html (1 of 2) [6/15/2002 10:44:23 AM]
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o A fast match method is called admissibleif it
never prunes away the optimal path.

o One popular fast match approach isto
estimate the probability a phone model by
using the "straight-thru™ path:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_03.html (2 of 2) [6/15/2002 10:44:23 AM]
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N-BEST DECODING ISUSEFUL FOR
INTEGRATING KNOWLEDGE SOURCES

« Often the search space becomes unmanageable
for real problems due to complex |language
model constraints (e.g., trigrams) and acoustic
models (e.g., cross-word context-dependent
phones), and our interest in integrating multiple
knowledge sources (e.g., phrase structured
grammars).

o A pragmatic aternative isto use a multipass
search approach:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_04.html (1 of 6) [6/15/2002 10:44:24 AM]
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o Itiscommon to perform afirst pass of
decoding with a bigram language model (or a
word-internal triphone/trigram system), and
postprocess (or rescore) the output with amore
sophisticated system. We refer to this process
as multipass decoding.
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. Stack decoding is naturally suited to generating
N-best lists. Consider this example from the
North American Business (NAB) Corpus.

| will tell you would |

L think in my office

| will tell you what |
think in my office

| will tell you when |
think in my office

| would sell you would |
think 1n my office

| would s&ll you what |
think in my office
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| would sell you when |
think in my office

| will tell you that | think
In my office

| will tell you why | think
In my office

| will tell you would |
think on my office

| Wilson you think on my
office

o N-best lists are very compact representations of
the search space since timing information Is
discarded.
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o One popular rescoring experiment that can be
performed with N-best listsisreferred to as an
oracle experiment:. How often does the correct
hypothesis appear, and at what depth in the list
does it appear?

0.0 20.0 40.0 50.0 200 100.0
0.0 I I I I F0.0
| | | |
| | |
Wy a0.0 F | | a0.0
O | | |
R | | | |
_____ I O I (I
O f0.0 | | | | H0.0
| | | |
E | | | |
R 400 F ! ! I | 1400
R | | |  BEST
O NP l— — — — — — b—— — — — R ———
| | | |
= | | | |
200 F | | | | —4 20.0
A | | | |
T | | | |
| | | |
| | | |
| | | |
I:II:I 1 | 1 | 1 | 1 | 1 I:II:I
0.a 20.0 40.0 G0.0 a0.0 100.0

DEPTH OF MBEST LIST (M)
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o Oracle experiments are one form of a cheating
experiment. Cheating experiments are very
Important diagnostic tools.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_04.html (6 of 6) [6/15/2002 10:44:24 AM]
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WORD GRAPH GENERATION AND
RESCORING

o An N-best list can be viewed as a graph:

will tell Yo what | think  in my  office
worLle sall when
Wilson whiy

would

1) Y \f \z -

Thisrepresentation is often referred to as a
lattice.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_36/lecture_36_05.html (1 of 5) [6/15/2002 10:44:25 AM]
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« How might we generate such a graph using time
synchronous Viterbi decoding?

o Solution:
keep multiple
choices at
each node In
the graph
during the
dynamic
programming
step:

e Itishardto
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underestimate
the Impact
word graph
rescoring has
had on speech
recognition
research.
However.
these graphs
arevery large
and take at
least an order
of magnitude
more time to
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generate (than
the one-best
choice). Why
are these
worth the
trouble?

« Word graphs
can be very
large: 10 to 50
MBYytes per
file; 1 Gbyte
Or more per
COrpus.
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o What figure of merit can we use to describe such
graphs? (Hint: lattice word error rate) Explain the
significance of this measure.
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Return to Main

Objectives

Review:
Typical System

Efficient Search:

Complexity
Lexical Trees

Multiple Trees
Factored Probabilities

Examples:
Search Demonstration

On-Line Resour ces:
Ney: LM Lookahead

OGlI: Lexica Trees
SRSDR'02: Decoding

LECTURE 37: LEXICAL TREES

o Objectives:

0 A typical speech recognition
architecture

0 Complexity of N-gram
decoding

0 Definition of alexical tree

0 Basic computational issues

This lecture follows the course
textbook closely:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
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Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

Another good source for some of
thisinformation is.

N. Deshmukh, A. Ganapathirgu
and J. Picone, "Hierarchical
Search for Large Vocabulary
Conversational Speech
Recognition," |[EEE Sgnal
Processing Magazine, vol. 16, no.
5, pp. 84-107, September 1999.
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LECTURE 37: LEXICAL TREES

o ODbjectives:
0 A typical speech recognition architecture
0 Complexity of N-gram decoding
0 Definition of alexical tree

0 Basic computational 1ssues
Thislecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.
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Another good source for some of this
Information Is:

N. Deshmukh, A. Ganapathiraju and J.
Picone, "Hierarchical Search for Large
Vocabulary Conversational Speech
Recognition,” |IEEE Sgnal Processing
Magazine, vol. 16, no. 5, pp. 84-107,
September 1999.
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A TYPICAL SPEECH RECOGNITION
SYSTEM

o A typical system decomposes sentences into
words, words into phone seguences, and
phones into HMM models:

Hello Joe

Hello Jon Sentence level
E m
Whord lenvel m
(Word graph) Hella]
';W
— I Phone level

Thao—=n (Lex tree)

Modal &
state level
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COMPLEXITY OF N-GRAM SEARCH

o Although it Isaways desirable to use as
many knowledge sources as possible, there
are practical problems integrating such
Information into atime-synchronous search.

o Oneadlternate strategy Isto use a mult-pass
search. However, the more accurate the
first-pass, the better the performance on
subseguent passes.

o One of the most critical parts of search isthe
treelexicon.

o Inalinear lexicon, each word Is represented
as alinear sequence of phonemes independent
of other words. For example, though task and
tasks share the same root, we do not share any

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_02.html (1 of 2) [6/15/2002 10:44:26 AM]
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of their history during the search process.

« Largelexicons introduce enormous
complexity for a backoff N-gram language
model because we must "start” all wordsin
the lexicon for every unique history in our
current search space.

o Can we share some of the underlying
phonetic structure of words in the lexicon?

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_02.html (2 of 2) [6/15/2002 10:44:26 AM]
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LEXICAL TREES

A lexical treeis adata structure that allows
us to share histories between words in the
lexicon:

Most systems use some form of dynamic
context expansion:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_03.html (1 of 2) [6/15/2002 10:44:26 AM]
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r-d@*! HARD

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_03.html (2 of 2) [6/15/2002 10:44:26 AM]



LECTURE 37: LEXICAL TREES

MULTIPLE COPIES OF
PRONUNCIATION TREES

o A simplelexical treeissufficient if no
language model Is used.

« For higher-order N-gram models, the
Inguistic state cannot be determined locally.
History plays an important role. For example,

for bigrams, atree copy Is required for each
predecessor word.

o Efficient pruning can eliminate most of the
unnecessary tree copies.

o To0dea with tree copies, you can create
redundant trees for each word context.
However, thisis expensive.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_04.html (1 of 3) [6/15/2002 10:44:27 AM]
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o Many of the active state hypotheses
correspond to the same redundant unigram
state because the language model probability
cannot be applied until the next word has
been observed.

e A successor tree approach can be used to
eliminate this redundancy:

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_04.html (2 of 3) [6/15/2002 10:44:27 AM]
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bigram successor

unigram tree

o However, for backoff language models, this
ISn't as efficient as It might seem (unless
aggressive pruning is used to allow only a
small subset of wordsto follow agiven

word).
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FACTORED LANGUAGE MODEL
PROBABILITIES

o Premise: We can improve accuracy and
minimize resources if we can apply the
language model score as soon as possible.

o Factoring LM probabilities across atreelis
one such idea:

P*(n) max P(x)
g = ”
x € child(n)

P*(n)

F*(n) =
P*( parent(n))

o We can embed these probabilitiesin the
pronunciation tree;

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_37/lecture_37_05.html (1 of 2) [6/15/2002 10:44:27 AM]
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I‘.I i a i,
.4 LN b

o Inpractice, such ideas reguire strong
emphasis on the language model to be
effective (such as WSJ or NAB). Applications
such as conversational speech, in which
acoustic ambiguity Is extreme, and acoustic
scores tend to dominate decoding, do not
benefit as much from such approaches.
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Return to Main

Objectives

Review:
Lexica Trees
Factorization

Efficienct Sear ch:
Memory Organization

Subtree |somorphism

Sharing Tails
Exploiting Polymorphism

Examples:
Search Demonstration

On-Line Resour ces:
Odell: Context

Software Toolsfor NLP
Search Tool

LECTURE 38: OPTIMIZATION
OF LEXICAL TREES

o ODbjectives.
0 Subtree Isomorphism
0 Sharing Trees
0 Polymorphism

0 Search Demo

This lecture follows the course
textbook closely:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guideto Theory,
Algorithm, and System

Devel opment, Prentice Hall,
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Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

Another good source for some of
thisinformation is:

N. Deshmukh, A. Ganapathirgju
and J. Picone, "Hierarchical
Search for Large Vocabulary
Conversational Speech
Recognition,” |EEE Sgnal
Processing Magazine, vol. 16, no.
5, pp. 84-107, September 1999.
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LECTURE 38: OPTIMIZATION OF
LEXICAL TREES

o ODbjectives.
0 Subtree |somorphism
0 Sharing Trees
0 Polymorphism

0 Search Demo
This lecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice

Hall, Upper Saddle River, New Jersey, USA,
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ISBN 0-13-022616-5, 2001.

Another good source for some of this
Information Is:

N. Deshmukh, A. Ganapathiraju and J.
Picone, "Hierarchical Search for Large
Vocabulary Conversational Speech
Recognition,”" |EEE Sgnal Processing
Magazine, vol. 16, no. 5, pp. 84-107,
September 1999.
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M EMORY ORGANIZATION AND
EFFICIENCY

o A magor drawback to the use of successor
trees isthe large memory overhead required.

o For example, the 1994 NAB LM contains 5M
nigrams and over 70M bytes to store
redecessor-dependent lexical trees.

o Need efficient ways to handle the multiple
copies of lexical trees.

« Factorization of the LM scores pushes the
application of probabilities earlier in the tree
(before we leave the leaves and transition to
the next word). Hence, we open the
possibility to merge duplicated trees.
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o Thesetreescan be merged to avoid redundant
state evaluation, thereby saving space and
computation, with no loss of optimality.
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SUBTREE |SOMORPHISM

o Oneway we could reduce complexity isto
optimize the number of statesin a
deterministic finite state automaton. If we
exploit the tree structure of the graph, we can
do more aggressive optimization.

e Two subtrees are said to be iIsomorphic to
each other If they can be made equivalent by
permuting the successors.

o Similarly, two states are indistinguishable If
and only if their subtrees are isomorphic.

o We can merge subtrees that are isomorphic
within alexical tree. There are automated
algorithmsto do this.
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SHARING TAILSOF TREES

o Assume a bigram language model.

o Alinear tail Inalexical treeisdefined asa
subpath ending in aleaf node and going
through states with a unigque successor (also
called a single-word subpath).

o LM factorization pushes forward the LM
probability to the last arc of the linear tail.

o We can optimize atree to take advantage of
shared-tail optimization. Consider thistree
before optimization:
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and this tree after shared-tail optimization:
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lexicon linear SUCCEsS50T
tree transcriptions trees

o What are the advantages of this approach?
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EXPLOITING SUBTREE
POLYMORPHISM

« The previous techniques we have discussed
only eliminate identical subtrees.

e There are many subtrees that share the same
nodes and topology, but have different LM
scores. Can we avoid redundant acoustic
model state evaluations for such trees?

o A subtreeisdominated when the best
outcome in that subtree is not better than the
worst outcome 1n another instance of that
tree. State evaluation iIs redundant and
unnecessary for the dominated tree.

« A polymorphic linguistic context assignment
to reduce redundancy is employed.
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« Polymorphic context assignment involves
keeping asingle copy of the tree and allowing
each state to assume the linguistic context of
the most promising history (in essence, a
pruning technique).

o Each nodeinthetreeisevaluated once.
However, this approach can introduce search
errors.

o One approach (WHISPER) to mitigate the
effects of this pruning isto keep a heap of the
most promising contexts, and to delay the
decision regarding which context is most
promising.

« For trigram decoding, many of the approaches
we have just described are still not practical.
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Retunto Main LECTURE 39: ADAPTATION

Objectives

Introduction:
Motivation

Approaches: i ObJ eCtI VES.

MAP
MLLR
Comparison

0 Maximum aposteriori estimation

On-Line Resour ces:
MAP
MLLR

Comparison

0 Maximum likelihood linear regression

0 Comparison in performance
This lecture draws on materia from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to Theory,
Algorithm, and System Devel opment, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN:
0-13-022616-5, 2001.

and this presentation/paper:

J. Hamaker, "A Speaker Adaptation Techniques for LVCSR",
http://www.islp.msstate.edu/publications/courses/ece 7000 speech/lectures/current/lecture 10/,
ECE 7000: Special Topicsin Speech Recognition, Department of Electrical and Computer
Engineering, Mississippi State University, Mississippi, USA, November 1999.
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LECTURE 39: ADAPTATION
o Objectives:
0 Maximum a posteriori estimation

o Maximum likelihood linear regression

o Comparison in performance

This lecture draws on material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken Language Processing - A Guide to Theory,

Algorithm, and System Devel opment, Prentice Hall, Upper Saddle River, New Jersey, USA,
ISBN: 0-13-022616-5, 2001.

and this presentation/paper:

J. Hamaker, "A Speaker Adaptation Techniquesfor LVCSR",
http://www.isip.msstate.edu/publications/courses/ece 7000 speech/lectures/current/lecture 10/,

ECE 7000: Special Topicsin Speech Recognition, Department of Electrical and Computer
Engineering, Mississippi State University, Mississippi, USA, November 1999.
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ADAPTIVE TECH NIQUES- MINIMIZING

MISMATCH

We can improve recognition performance by
training on asingle speaker. Thisis known as
speaker dependent speech recognition.

However, there are numerous training
problems (long enrollment). An alternate
approach is to adapt speaker independent
models.

Such adaptation techniques are generally used
to reduce mismatch between the acoustic
models and the decoding environment (e.g.,
microphone, acoustic channel and speaker
mismaich).

There are two basic approaches:
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0 Maximum A Posteriori (MAP): choosing
an estimate that maximizes the posterior
probability (consistent with the observed
data and prior inormation).

0 Maximum Likelithood Linear
Regresson (MLLR): ML estimate of a
linear transformation.
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MAXIMUM A POSTERIORI ADAPTATION

Given observation data X, the MAP estimate is:

. arg max
O = (D [p(X|D)p(D)]

If we have no prior information, p(®) is the uniform distribution, and the
MAP estimate is identical to the MLE estimate. However, if we have prior
information, we can use EM to estimate the new parameters:

Q14 p(@. D) = logp(P) + O(®.D)

Under a significant number of assumptions, we can derive a rather simple
and intuitive expression for updating Gaussian means:

. “i Cik
Fik = Tik ™ kau ' ST ':r'k””{
where:
TAPPN: ML estimate of the mean
H: existing estimate of the mean (prior information)
T
Cik' D Lyt k)
r=1
Tir: parameter controlling relative weight of prior information
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A COMPARISON OF MLLR AND MAP

Below is acomparison of MLLR and MAP on a 60,000 word

dictation task. The speaker dependent system was trained on
1,000 sentences.

Ij.{l — —————n SE——

12.5 4 o1 1R+ MAP
z
o=
% 11.5 sy W AP Omly
o
I I _ﬂ _Spcﬂkcr_
Independent
10.5 - A—— Spﬂakﬂf-lkpmdﬂﬂl

10.0 +— S e S

0 200 400 600 LAY 1000
Number of Adaptation Utterances

Though MAP appears to be fairly powerful in this example,
MLLR is much more popular. MLLR+MAP combines the

best of both approaches, but also leads to a more complicated
system.
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Return to Main L ECTURE 40: EXAM NO. 3

Home

Exam Database

The third exam can be found here.

First Exam
Second Exam
Third Exam
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The third exam can be found here.
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LECTURE 41: DISCRIMINATIVE TRAINING

Return to Main

Objectives

Introduction:
Pattern Recognition

Mutual Information:
Conditional Likelihood
MMIE
Discussion

Minimum Error Classification:
L oss Functions

Gradient Descent
Comparison

On-Line Resources:
Ganapath: Discriminative Techniques
Woodland: MLLR

Juang: MCE

LECTURE 41:
DISCRIMINATIVE TRAINING

o ODbjectives:
0 Mutua Information

0 Maximum Mutual Information
Estimation

0 Minimum Error Rate
Estimation

This lecture follows the course
textbook:

X. Huang, A. Acero, and H.W.
Hon, Spoken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_41/index.html (1 of 2) [6/15/2002 10:44:32 AM]


http://www.isip.msstate.edu/publications/books/msstate_theses/2002/support_vectors/
http://www.nist.gov/speech/publications/tw00/html/cp220/cp220.htm
http://www.bell-labs.com/org/1133/Heritage/Mce/

LECTURE 41: DISCRIMINATIVE TRAINING

Another good sourceis:

A. Ganapathiraju, Support Vector
Machines for Soeech

Recognition, Ph.D. Dissertation,
Department of Electrical and
Computer Engineering,
Mississippi State University,
January 2002.
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LECTURE 41: DISCRIMINATIVE
TRAINING

o ODbjectives.
0 Mutua Information
0 Maximum Mutual Information Estimation

0 Minimum Error Rate Estimation
This lecture follows the course textbook:

X. Huang, A. Acero, and H.W. Hon, Sooken
Language Processing - A Guide to Theory,
Algorithm, and System Development, Prentice
Hall, Upper Saddle River, New Jersey, USA,
|SBN: 0-13-022616-5, 2001.

Another good source s
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A. Ganapathirgu, Support Vector Machines
for Soeech Recognition, Ph.D. Dissertation,
Department of Electrical and Computer
Engineering, Mississippl State University,
January 2002.
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THE PATTERN RECOGNITION
PROBLEM

Recall our communication theory model for speech recognition (simplified):

| |
| |
Data 1 I Pattern
®|  Generator *1  Decoder - o
0 I X : 0
i i
| |
Lo o oo oo o o o o

The rule for minimum error rate classification is to select the class (P with

the maximum posterior probability, F{mf|x}. Recalling Bayes' rule:
plx|m)P(m,)

p(x)
The probability of the observation, p(x), can be expressed as:

F{m1.|.r] =

p(x) = Y plx|op(ey)
k

Recall that in the classification stage, p(x) can be considered a constant.

A conditional maximum likelihood estimator (CMLE), denoted , is defined as
follows:

5 argmax
cMLE®) = Puqp = Pol®|X)

MNote that the summation in our equation for p(x) extends over all possible
classes (correct and incorrect!) and sums partial probabilities. How will we

E T -n il - 1 i | ] -
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esumate inesey simiarly, tne parameter veclor @ Inciudes not only @, tine

parameters for the correct class ®;, but also those for all other classes.
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CONDITIONAL LIKELIHOOD AND
MUTUAL INFORMATION

The mutual information between the random variable X (observed data)
and the class assignment, €2, is defined as:

v p(X. Q) D_ [ f”:xmﬂmj
10x.9) = £{log{ £ ) = £{ioel T

Since we don't know the probaiblity distribution for p( X, £1), we can assume
our sample is representative and define the instantaneous mutual
information:

[ plx, o) ]
I{x, @) =:log

p(x)P(w;)

If equal prior information, P(w®,), is assumed for all classes, maximizing the

conditional likelihood is equivalent to maximizing mutual information. In this
case, CMLE becomes maximum mutual information estimation (MMIE).
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A DISCRIMINANT MODEL

In contrast to MLE, MMIE is concerned with distributions over all possible
classes. We can rewrite our equation for p(x) in terms of the correct class
assignment and the competing models:

p(x) = Y p(x|ogp(oy)
k

= plxlopP(o)+ Y plx|oy)p(op)
k=i

The posterior probability can be rewritten as:
plx|w;)P(w;)
p(x)
p(x|®)P(®)

p(x|0)P(®) + z plx|o)p(o,)
ki

P(@;]x) =

I
D p(x|opp(oy)

WY
p(x[0)P(w)

Maximization of P( mf|.r} with respect to all models leads to a discriminative

model. It implies the confribution of p{x|w;)P{w;) from the correct model
needs to be reinforced, while the contribution from the competing models,

z p(x|w;)p(w,), needs to be reduced.
U
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MMIE AND MLE ARE SIMILAR AND YET
DIFFERENT

o InMLE, only the correct model is updated
during training. In MMIE, all models are
updated during training, even with one training
sample.

o Thegreater the prior information on the class
assignment, the more effect it has on the
MMIE estimator.

o |f the assumption of the underlying distribution
Is correct, MMIE and MLE should converge to
the same result. However, in practice, MMIE
must produce a lower likelihood for the true
class assignment (underlying distribution).

« MMIE and MLE are consistent estimators, but
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MMIE has greater variance. MMIE tries not
only to increase the likelihood of the correct
class, but decrease the likelihood of the

Incorrect class.

MMIE is computationally expensive. Why?

How do we estimate the probability of the class

assignment for the incorrect classes?

Experimental results; CU/HTK word error

rates on eval 97sub and eval 98 using
hStrain00sub training:

MMIE

YWER

|teration

eval 97sub

eval 98

0
(MLE)

46.0

46.5
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1 438 | 450
2 43.7
3 441 | 447

The resultsin Table 3 show that again the peak

Improvement comes after two iterations, but
thereis an even larger reduction in WER: 2.3%
absol ute on eval97sub and 1.9% absolute on
eval98. The word error rate for the 1-best
hypothesis from the original bigram word
|attices measured on 10% of the training data
was 27.4%. The MMIE models obtained after
two Iterations on the same portion of training
data gave an error rate of 21.2%, so again
MMIE provided avery sizeable reduction in
training set error.
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MISCLASSIFICATION ERROR RATE
AND LOSS FUNCTIONS

Parameter estimation technigues discussed thus far aim to maximize the
likelihood (MLE and MAP) or the posterior probability (MMIE). We can also
minimize the error rate directly:

1M
Ez'{I} = r-_lrlf{}i:f D) + [ﬁ z_dj{x-.- {I}}TI:|

JT#i
where f!;. represent a family of s discriminant functions. e (x)=0 implies a
recognition error; e(x)=0 implies correct recognition. 1 is a positive

constant that controls how we weight the competing classes (1 — = favors

the top score; n = 1 implies the average of scores for all competing classes
is used).

To transform e;(x) into a smooth function that can be differentiated, we use

a sigmoid function (as is used in neural networks):
1
I{x) = —e,(x)
| +e

The recognizer’s loss function can be defined as:

b}
[(x, D) = z 1{x)8(w = »;)
i=1

We can further define the expected loss as:

A
L(®) = E(l(x, @) = Y jm_m I(x, ®)p(x)dx
i=1
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GRADIENT DESCENT SOLUTIONS

The expected loss function:

¥
L) = [{x, @)p(x)dx
( lem_mf{ )p(x)
" —
can rarely be solved analytically. Instead, we must use an iterative solution
(such as a neural network). We can find the optimal parameters by choosing
an initial estimate, ®_ and following this gradient descent equation:

[

"' = g Vix®

:|| ,
D = @D
where & is a positive constant controlling the speed of convergence, and

Vi(x, &) is the gradient of the recognizer's loss function. We refer to this
technique as minimum classification error rate (MCE). The gradient
descent is often referred to as generalized probabilistic descent (GPD).
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COMPARISON OF PERFORMANCE

« MMIE and MCE are very expensive and
often application specific. A similar, more
pragmatic approach, Is corrective training.

e Incorrective training, we keep a"near-miss'
ISt and reinforce correct choices, and
nenalize near misses. Thisisan ad-hoc
orocedure that works well in practice.

« MCE and MMIE produce very similar results.
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Return to Main LECTURE 42: NEURAL
Objectives NETWORKS

I ntroduction:
Neurons

Thresholds
Radial Basis Functions

Perceptrons o ODbjectives:

Applications:
Classification
Training

Recurrent Networks 0 Comparison to HMM States
On-Line Resour ces: (N eur()nS)

Ganapath: Overview

OGl: Training

AJR: Speech Applications
ANN Software Links

0 Nonlinearities
0 Multi-layer Perceptron

0 Recurrent Networks
This lecture uses material from:

J. Deller, et. a., Discrete-Time
Processing of Soeech Sgnals,

MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.
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and the course textbook:

X. Huang, A. Acero, and H.W.
Hon, Sooken Language
Processing - A Guide to Theory,
Algorithm, and System
Development, Prentice Hall,
Upper Saddle River, New Jersey,
USA, ISBN: 0-13-022616-5,
2001.
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o ODbjectives:
0 Comparison to HMM States (Neurons)
0 Nonlinearities
0 Multi-layer Perceptron

0 Recurrent Networks
This lecture uses materia from:

J. Déller, et. al., Discrete-Time Processing of
Soeech Sgnals, MacMillan Publisning Co.,
|SBN: 0-7803-5386-2, 2000.

and the course textbook:
X. Huang, A. Acero, and H.W. Hon, Sooken
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THE ARTIFICIAL NEURAL NETWORK
(ANN)

1 Premise: complex computational operations can be implemented by
massive integration of individual components

1 Topology and interconnections are key: in many ANN systems,
spatial relationships between nodes have some physical relevance

1 Properties of large-scale systems: ANNs also reflect a growing body

of theory stating that large-scale systems built from a small unit need
not simply mirror properties of a smaller system (contrast fractals
and chaotic systems with digital filters)

Why Artificial Neural Networks?

1 Important physical observations:

— The human central nervous system contains 10" — 10" nerve
cells, each of which interacts with 10° — 10 other neurons

— Inputs may be excitatory (promote firing) or inhibitory
The Artificial Neuron — Nonlinear The HMM State — Linear
O

nu-de N node: ny

FE —h".<~ alk r
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| K

vector input scalar output

N
Y= S Z Wi~ 8y

n=1

a) ) = oG DaGbote + 1))
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TYPICAL THRESHOLDING FUNCTIONS- A
KEY DIFFERENCE

The input to the thresholding function is a weighted sum of the inputs:

— 1T 5"
Up = Wp )y

The output is typically defined by a nonlinear function:

S(u) S(u)

Linear i Ramp F
1 =
= = | ——i |l
Y Y

S(u) S(u) oy
Step $ Sigmoid b Sy =(1+e)

1 | = 1 —;:_:—_— iR

— - U GJ - |

Y Y

Sometimes a bias is introduced into the threshold function:
W .
Vi = L‘:[H*k}* ﬂ'ﬁ,] = f:--l:h'k Hk}
This can be renresented as an extra inout whose value is alwavs -1:
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RADIAL BASISFUNCTIONS

Another popular formulation involves the use of a Euclidean distance:

N
yi = S| Y -y -8 = S([we-y||,- 0
=1

Mote the parallel to a continuous distribution HMM.

This approach has a simple geometric interpretation:

Y2 O,
A S(u)
A
-t 1
Wi ,
= - Yy =t -
Y Y

Another popular variant of this design is to use a Gaussian nonlinearity:

2
i

S(u) = e
What types of problems are such networks useful for?

» pattern classification (N-way choice; vector quantization)

» associative memory (generate an output from a noisy input;
character recognition)

» feature extraction (similarity transformations; dimensionality
reduction)
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We will focus on multilayer perceptrons in our studies. These have been
shown to be quite useful for a wide range of problems.
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MULTI-LAYER PERCEPTRONS

This architecture has the following characteristics:
« Network segregated into layers: N; cells per layer, L layers

« feedforward, or nonrecurrent, network (no feedback from the output of a
node to the input of a node)

Yo V1 YN
%‘hr:!& i Output Layer

X
W
W/

Hidden Layer

4
i
Al

O
I/

e
Wy
/f\ /A
)

Input Layer

>
= |
=

An alternate formulation of such a net is known as the learning vector
quantizer (L\VQ) — to be discussed later.

The MLP network, not surprisingly, uses a supervised learning algorithm.
The network is presented the input and the corresponding output, and must

learn the optimal weights of the coefficients to minimize the difference
between these two.
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The LVQ network uses unsupervised learning — the network adjusts itself
automatically to the input data, thereby clustering the data (learning the
boundaries representing a segregation of the data). LVQ is popular because
it supports discriminative training.
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WHY ARTIFICIAL NEURAL NETWORKS
FOR SPEECH?

« An ability to separate classes that are not linearly separable:

Linearly Separable Meshed Classes
Decision i
Boundary

& >
-
o
”
-
-
"
-
-
- i

A three-layer perceptron is required to determine arbitrarily-shaped decision
regions.

« Nonlinear statistical models

The ANN is capable of modeling arbitrarily complex probability
distributions, much like the difference between VQ and continuous

distributions in HMM.
* Context-sensitive statistics

Again, the ANN can learn complex statistical dependencies provided
there are enough degress of freedom in the system.

Why not Artificial Neural Networks? (The Price We Pay...)

- MR ild ks Aaal skl eAabbarmes AF s smmmmnial lammsbl
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» Temporal relationships not explicitly modeled

And, of course, both of these are extremely important to the speech
recognition problem.
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MLP TRAINING: BACK PROPAGATION

By incorporating a nonlinear transfer function that is
differentiable, we can derive an iterative gradient descent
training algorithm for a multi-layer perceptron (MLP). This
algorithm is known as back propagation:

ALGORITHM 4.1: THE BACK PROPAGATION ALGORITHM

Step 1 Initialization: Set r =0 and choose initial weight matrices W for each layer. Let's de-
note w:j{r) as the weighting coefficients connecting i input node in layer k—1 and j" out-
put node in layer & attime r.

Step 2: Forward Propagation: Compute the values in each node from input layer to output layer
in a propagating fashion, fork =110 K

N
vf. = sigmoid(w,,(1)+ Z u: Gy Y (4.72)
i=l

and v* is denoted asthe j* node inthe k" layer

—%

+e
Step 3: Back Propagation: Update the weights matrix for each layer from output layer to input
layer according to:

where sigmoid(x) = l

i dE
Wy (£ +1) = wy (1) {Ia ;{I}

where E = iu y.—o,|* and (,,,,...»,) is the computed output vector in Step 2.
fm=l

o is referred to as the learning rate and has to be small enough to guaraniee
convergence. One popular choice is 1/(¢+1) .

Step 4: Iteration: Let 7 = r +1. Repeat Steps 2 and 3 until some convergence condition is met.
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The MLP network has been the most popular architecture

for speech processing applications due to the existence of

robust training algorithms and its powerful classification
properties.
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RECURRENT NETWORKS: TOWARDSTIME
SYNCHRONOUS DECODING

To incorporate time synchronous behavior into a neural
network, we need some sort of feedback looop. The
architecture below s known as arecurrent network:

FA Qutput Layer
7/ Hidden Layer
Y
i/f |
X ;¢ 2! &|x 4 7' &x & z' |4 x €& Input Layer

A more popular version of thisisthe time delay neural
network (TDNN):
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T

z' Qutput Laver
7 Hidden Laver
R il e

X . |¢4 7! 4{x |4 7' [« x , 44 z' |4 x (4 Input Layer

m-3 n-. mn-1 n

These recurrent networks have been extremely
Important to allowing the integration of neural networks
Into the Markov moddl statistical framework we use in
speech recognition. Such systems are known as hybrid
systems.
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Return to Main

Objectives

I ntroduction:
Evolution

Human Performance

M achine Performance:
Evauations

Evolution of Task
String Alignment
NIST Scoring

Other Metrics:
Information Retrieval

Named Entity
Correlation with WER
Statistical Significance

On-Line Resour ces:
AAAS: Recognition

NIST: Tools
Precision and Recall

LECTURE 43: EVALUATION
METRICS

o Objectives.
0 Human Performance
0 Machine Performance

0 Automated Scoring: String
Alignment

0 Precision and Recall

This lecture uses material from the
Instructor's notes. Most NL P books
contain information about scoring. A
good resource s

D. Jurafsky and J.H. Martin,
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SPEECH and LANGUAGE
PROCESSNG: An Introduction
to Natural Language Processing,
Computational Linguistics, and
Soeech Recognition,
Prentice-Hall, ISBN:
0-13-095069-6, 2000.
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o ODbjectives:
0 Human Performance
0 Machine Performance
0 Automated Scoring: String Alignment

0 Precision and Recall

This lecture uses material from the instructor's
notes. Most NL P books contain information
about scoring. A good resource s
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to Natural Language Processing,
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Computational Linguistics, and Speech
Recognition, Prentice-Hall, ISBN:
0-13-095069-6, 2000.
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AUTOMATED SCORING USING STRING EDITS
AND DYNAMIC PROGRAMMING

To automatically score a hypothesis, we must first align it
with the reference text, and then count word errors
(substitutions, deletions, and insertions).

The desired output is shown below:

| nput REF: CUT TALL SPRUCE TREES
| nput HYP: HAUL MOOSE FOR FREE

Al ign REF: CUT TALL SPRUCE *** TREES
Align HYP. *** HAUL MOOSE FOR FREE

<3 Sub | 1Ins | 1 Del | O Cor | 4
Ref Wrds >

The solution to this problem can be achieved using
dynamic programming with a Levenstein distance metric
(each non-matching pair adds one to the accumulated
distance). We can demonstrate this using a DP grid:
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L

TRE
TRE
3FR
SPR
TAL
TAL
CuT
CuT

E

EEanEsmA

™

L

H o=

Qo=

nes:
nbs :
wed ;
whd 1
wed:
whi3:
wad:
whi:
wal:
whil:
ned:
neg:

nkd ned whl wel wh2 wel whl wel whd wed nbs nes

2% xxx YAIT HAU MOOD MOO FOR FOR FRE FRE *=*+
Hypothesis String
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THE NIST SCORING REPORT
A typical scoring report from the NIST standard scoring software is shown below:

DETAI LED OVERALL REPORT FOR THE SYSTEM
hypot heses 808080 t ot al . out

SENTENCE RECOGNI TI ON PERFORMANCE

sent ences
12547
wth errors 1.9% (
241)

Wi th substitions 1.1% (
134)

w th del etions 0.2% (
20)

Wth insertions 0.8% (
102)

WORD RECOGNI TI ON PERFORMANCE

Percent Total Error = 0.6% ( 263)
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Percent Correct = 99.6% (41061)
Percent Substitution = 0.3% ( 138)
Percent Del etions = 0.1% ( 21)
Percent | nsertions = 0.3% ( 104)
Percent Wbrd Accuracy = 99. 4%
Ref. words = (41220)
Hyp. words = (41303)
Al i gned wor ds = (41324)
CONFUSI ON PAI RS Tot al
(38)

Wth >= 1

occurances (38)

ONoOgRWNE

13 -> five ==> oh

12 -> oh ==> nine

-> nine ==> oh

-> two ==> three
-> oh ==> ei ght

-> oh ==> four

-> four ==> five
-> eight ==> three

OO0 NN0 O
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9: 5 -> five ==> nine
10: 5 -> four ==> oh
11: 5 -> three ==> eight
12: 5 -> zero ==> oh
13: 4 -> oh ==> seven
14: 4 -> seven ==> oh
15: 4 -> three ==> two
16: 3 -> eight ==> six
17: 3 -> eight ==>two
18: 3 -> nine ==> one
19: 3 -> oh ==> two
20: 3 -> two ==> oh
21: 2 -> elight ==> one
22. 2 -> five ==> eight
23: 2 -> nine ==> five
24: 2 -> oh ==> zero
25: 2 -> seven ==> one
26: 2 -> six ==> eight
27: 1 -> eight ==> five
28: 1 -> eight ==> nine
29: 1 -> eight ==> seven
30: 1 -> four ==> one
31: 1 -> one ==> fjve
32: 1 -> one ==> four
33: 1 -> seven ==> nine
34: 1 -> seven ==> siX

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_43/lecture_43_02.html (3 of 12) [6/15/2002 10:44:41 AM]
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35: 1 ->
36: 1 ->
37: 1 ->
38: 1 ->
138
| NSERTI ONS
(11)
occurances (11)
1: 43 ->
2: 17 ->
3: 13 ->
4. 9 ->
5: 8 ->
6: 6 ->
7. 3 ->
8: 2 ->
9: 1 ->
10: 1 ->
11: 1 ->

seven ==> zero
Ssi X ==> three
t hree ==> one
Zero ==> two

Tot al

Wth >=

oh

el ght
SI X
one
ni ne
t WO

t hr ee
f our
five
seven
Zero
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104
DELETI ONS
(3)
occurances (3)
1: 11 ->
2. 6 ->
3. 4 ->
21

SUBSTI TUTI ONS
(11)

occurances (11)

1: 35 ->
2: 20 ->
3: 16 ->
4: 14 ->

oh
el ght
t Wo

oh

five
el ght
ni ne

Tot al

Wth >=

Tot al

Wth >=
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5: 12 -> four
6: 11 -> two

7. 10 -> three
8: 9 -> seven
O: 6 -> zero
10: 3 -> sSiX
11: 2 -> o0ne

* NOTE: The 'Substitution' words are those
ref erence words

for which the recogni zer supplied an
| ncorrect word.

FALSELY RECOGNI ZED Tot al
(11)

Wth >= 1
occurances (11)

1: 39 -> oh

2: 19 -> nine
3. 16 -> eight
4: 14 -> three
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5: 11 -> two
6: 10 -> five
7. 9 -> one
8: 8 -> four
9: 5 -> seven
10: 4 -> sSiX
11: 3 -> zero

* NOTE: The 'Fal sely Recogni zed' words are those
hypot hesi s wor ds

whi ch the recogni zer incorrectly
substituted for a reference word.

DUWMP OF SYSTEM ALI GNMVENT STRUCTURE

Syst em nane: hypot heses 808080 t ot al . out

Speakers:
0: bg
1: bk

http://www.isip.msstate.edu/~gao/net/2002_spring/lecture_43/lecture_43_02.html (7 of 12) [6/15/2002 10:44:41 AM]
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161: sSn
162: tb

Speaker sentences 0: bg #utts: 77
1d: (bg _1190039a)

Scores: (#C #S #D #1) 7 0 0 O

REF: one one nine oh oh three nine
HYP: one one nine oh oh three nine
Eval :

1d: (bt _41722a)

Scores: (#C #S #D #1) 5 0 0 1
REF: four ** one seven two two
HYP: four OH one seven two two
Eval : I

1 d: (gf 8863740a)

Scores: (#C #S #D #1) 6 1 0 O

REF. eight eight six three seven FOUR oh
HYP. eight eight six three seven OH oh
Eval : S

i d: (gf 886a)
Scores: (#C #S #D #1) 3 0 0 O
REF. eight eight six
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HYP. eight eight six
Eval :

1 d: (gf_892a)

Scores: (#C #S #D #1) 3 0 0 O
REF. eight nine two

HYP. eight nine two

Eval :

1 d: (gf _8a)

Scores: (#C #S #D #1) 1 0 0 O
REF. el ght

HYP. el ght

Eval :

1 d: (gf _8b)

Scores: (#C #S #D #1) 1 0 0 O
REF. eight

HYP: ei ght

Eval :

1 d: (gf _8o0l156a)

Scores: (#C #S #D #1) 5 0 0 O
REF. eight oh one five six
HYP. eight oh one five six
Eval :
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1d: (gf _914a)
Scores: (#C #S #D #1) 3 0 0 O

SYSTEM SUMVARY PERCENTAGES by
SPEAKER

| SPKR | # Snt # Wd | Corr Sub Del
| ns Err S.Err |

|-------- S oS e
| bg | 77 253 [ 100.0 0.0 0.0

0.0 0.0 0.0 |

| -------- S oS e
| Dbk | 77 253 | 99.6 0.4 0.0

0.0 0.4 1.3 |

| -------- S oSSR e s m m e e e e e e e e e e e e e e e e e e e e e e e e e — o -
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Sum Avg| 12547 41220 | 99.6 0.3 0.1
6

1.9 |
| e
| Mean | 77.0 252.9 ] 99.6 0.3 0.1
0.3 0.6 1.9 |
| SD | 0.2 1.1 ] 1.1 1.0 0.2
0.7 1.4 3.9 |
| Median | 77.0 253.0 |[100.0 0.0 0.0
0.0 0.4 1.3 |
SYSTEM SUMVARY PERCENTAGES by
SPEAKER

| SPKR | # Snt # Wd | Corr Sub Del
| ns Err S Err |
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| ------ S TSR U e
| bg | 77 253 | 253 0 0]

0 0 0 |

| ------ S TSRS e
| bk | 77 253 | 252 1 0

0 1 1 |

| ------ s TS e m m m e e e e e e e e e e e e e e e e e e e e e e e e m o

| - - - - - - - - - - —_—"—_—"—_—"—_—"—_—"—_—_"—_"—_"—_—"—_"—_"—_"—_—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"——"—"———"—"———"——"—"——————/"—/"—/“—
| Sum | 12547 41220 |41061 138 21

104 263 241 |

| Mean | 77.0 252.9 |251.9 0.8 0.1
0.6 1.6 1.5 |

| SSD. | 0.2 1.1] 2.9 2.5 0.4
1.7 3.5 3.0 |

|Median| 77.0 253.0 |[253.0 0.0 0.0
0.0 1.0 1.0 |
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EXPERIMENTAL DESIGN: STATISTICAL
SIGNIFICANCE

Why Isthis important?

Click hereif you want to learn more about how
to measure statistical significance.
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LECTURE 44: STATE OF THE ART SYSTEMS

Return to Main

Objectives

Review:
Technology

State of the Art:
LVCSR Systems

On-Line Resour ces;
AAAS: Recognition

SRSTW'02
2001 Hub 5E
2001 SPINE

LECTURE 44: STATE OF THE ART
SYSTEMS

o ODbjectives:

0 Review of the basic components of a speech
recognition system

0 Compare a generic trigram/triphone system
to state of the art

0 Introduce more exotic features of red
systems

This lecture uses material from the instructor's
notes and |SIP's annual speech recognition
workshop:

J. Picong, et al, "Speech Recognition System
Training Workshop,"

http://www..i1sl p.msstate.edu/confer ences/sr stw/,
Institute for Signal and Information Processing,
Mississippi State University, Mississippi,

USA, May 2002.
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LECTURE 44: STATE OF THE ART
SYSTEMS

o ODbjectives.

0 Review of the basic components of a speech
recognition system

10 Compare a generic trigram/triphone system
to state of the art

0 Introduce more exotic features of real
systems

This lecture uses material from the instructor's
notes and | SIP's annual speech recognition
workshop:

J. Picone, et al, "Speech Recognition System
Training Workshop,"
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http://www.1sip.msstate.edu/confer ences/sr stw/,
Institute for Signal and Information Processing,
Mississippl State University, Mississippl,

USA, May 2002.
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LECTURE 46: FINAL EXAM

Return to Main LECTURE 46 FI NAL EXAM

Home

Exam Database

o B Thefinal exam can be found here.

Second Exam
Third Exam
Final Exam
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