Return to Main

Objectives

Introduction:

Technology
M otivation

Techniques:
General Search
Depth-First
Breadth-First
Best-First
Beam Search
Hierarchical Search

On-Line Resour ces:
Tutorial

Hierarchica
Al Search
Code and Complexity

LECTURE 34: BASIC SEARCH ALGORITHMS

. Objectives:
o Theimportance of search in speech recognition
o General search algorithms
o Breadth-First vs. Depth-First

n Beam Search
This lecture follows the course textbook closely:

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to
Theory, Algorithm, and System Development, Prentice Hall, Upper Saddle River,
New Jersey, USA, ISBN: 0-13-022616-5, 2001.

This material can aso be found in most computer science textbooks on algorithms:

T. Corment, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
McGraw-Hill, New York, New York, USA, ISBN: 0-07-013151-1.

http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_34/lecture_34_00.html
http://www.isip.msstate.edu/publications/journals/ieee_spmag/1999/search/
http://www.isip.msstate.edu/conferences/srstw02/program/session_09/search/index.html
http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/index.html
http://www.cs.rochester.edu/users/faculty/nelson/courses/csc_173/graphs/search.html

HUMAN LANGUAGE TECHNOLOGY:
SPEECH RECOGNITION ISMULTIDISCIPLINARY

/ Input

Speech

Acoustic
Front-end

Acoustic Models

Pi{AMY)
Language Model E::
Recognhized

Utterance

. Acoustic Front-End: Signal Processing

. Acoustic Models: Pattern Recognition,

Linguistics

. Language Model: Natural Language

Processing

. Search: Computational Linguistics, Cognitive

Science

SPEECH RECOGNITION REQUIRES GOOD
PATTERN RECOGNITION AND SEARCH

. Continuous speech recognition is both a pattern recognition and search problem. Why?

. The decoding process of a speech recognizer finds the most probable sequence of words given the acoustic and
language models. Recall our basic equation for speech recognition:

P(W)P(A|W)
P(A)

P(W|A) =

Search is the process of finding the most probable word sequence:

. argmax P(W)P(A|W)
(W [P(A) }

argmax

[P(W)P(A|W)]

. The complexity of the search algorithm depends heavily on the nature of the search space, which in turn, depends
heavily on the language model constraints (e.g., networks vs. N-grams).

. Speech recognition typically uses a hierarchical Viterbi beam search for decoding/recognition, and A* stack

decoding for N-best and word graph generation.

GENERAL GRAPH SEARCH

. Many interesting and useful problems cannot be handled solely by dynamic programming. For example, consider
the traveling salesman problem - finding the shortest distance tour covering N cities and only visiting each city
once:

I| =
2]
Nl SR, -

| B 4 LY 4 X L
L ________{n-}-ff

The complexity of an exhaustive search solution to such problems can be O(NT) - which is prohibitive for speech
recognition.

. A search tree solution to the traveling salesman problem is show below:

. The search spaceis defined by atriplet (S,0,G), where Sisthe set of initial states, O is a set of operators or rules,
and G isaset of goal states.

. A general agorithm for searching such spaces can be defined as follows:

ALGORITHM 12.1: THE GRAPH-SEARCH ALGORITHM

Step 1: Initialization: Put § inthe OPEN list and create an initially emply CLOSE list
Step 2: If the OPEN list is emply, exit and declare failure,
Step 3: Pop up the first node N in the GPEN list, remove 1t from the OPEN list and put it into
the CLOSE list,
Step 4: If node V is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N'to S
Step 5: Expand node N by applying the successor operator 1o generate the successor sel
55V of node M. Be sure to eliminate the ancestors of &V from SSIN).
Step 6: Vv e SS(N) do
Ba. (optional} f v e GPEN and the accumulated distance of the new path is smaller than
that for the one in the QPEN list, do
(it change the traceback (parent) pointer of v 1o N and adjust the accumulated
distance for v.
i) goto Step 7.
6b. (optional) i v e CLOSE and the accumulated distance of the new path is smaller
than the partial path ending at v inthe CLOSE list. do
(i) change the traceback (parent) pointer of v 1o N and adjust the accumulated
distance for all paths that containv .
(i} go to Step 7.
6c. Create a pointer pointing to A and push itinta the OPEN list
Step 7: Reorder the OPEN list according to search strategy or some heuristic measurement.
Step 8: Go to Step 2,

. Animportant part of any search algorithm is the successor operator which generates the list of al possible nodes
that can follow a given node, and computes the distance associated with each of these arcs.

DEPTH-FIRST SEARCH

. Depth-first search explores a single path until its conclusion. If this path does not terminate on a goal state, we

backtrack and arbitrarily continue with another path:

Such a strategy is common for solving problems such as mazes where the first solution that reaches agoa stateis
acceptabl e (though this might not be the fastest solution).

. A general agorithm for searching such spaces can be defined as follows:

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put 5 in the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure.
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from N 1o S,
4a. If tha depth of node M is equal to the depth bound, go to Step 2.

Step 5: Expand node N by applying the successor operator to generate the successor set
SS{N} of node N. Be sure to eliminate the ancestors of N from SS(N).
Step 6: Vv e SS(N) do

6c. Create a pointer pointing to N and push it into the OFEN list.
Step 7: Reorder the the OPEN list in descending order of the depth of the nodes.
Step 8: Go to Step 2.

. Depth-first search, aswe will see, is useful when dealing with beam search and fast-matching algorithms.

BREADTH-FIRST SEARCH

. Breadth-first search explores all aternatives simultaneously level-by-level:

. A general agorithm for searching such spaces can be defined as follows:

ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM

Step 1: Initialization: Put S in the OPEN list and create an initially empty the CLOSE list.
Step 2: If the OPEN list is empty, exit and declare failure,
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the
path along the pointers from Nto 5.
Step 5: Expand node N by applying the successor operator to generate the successor set
S&(N) of node N. Be sure to eliminate the ancestors of N, from SS[N).
Step 6: v £ SS(N) do
6c¢. Create a pointer pointing to N and push it into the OPEN list,
Step 7: Reorder the OPEN list in increasing order of the dapth of the nodes.
Step 8. Go to Step 2.

. Breadth-first search isacritical part of a speech recognition system. Why?

HEURISTIC SEARCH: BEST-FIRST (A" SEARCH)

. Best-first search uses an evaluation function, h(N), which indicates the relative goodness of pursuing that node. If
we combine this with the partial path score, we can define a general evaluation function:

f(N) = g(N) + h(N)

which can be used to evaluate hypotheses as they evolve. If we always pursue the best path according to this
evaluation function, what are the merits of this approach? What constraints must be placed on this function to
guarantee an optimal solution? How would that solution compare to other search algorithms?

. A general agorithm for searching such spaces can be defined as follows:

ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM

Step 1: Initialization; Put 5 in the OFPEN list and create an initially empty the CLOSE list.
Step 2: [T the OPEN list is empty, exit and declare failura,
Step 3. Fop up the first node Nin the OFPEN list, remove it from the OPEN list and put it into the
CLOSE list.
Step 4: If node Nis a goal node, exit successfully with the solution obtained by tracing back the
path along the peinters from Nto S
Step 5: Expand node N by applying the successor operator o generate the successor set
SS{N) of node N. Be sure 1o eliminate the ancestors of N, from SSIN).
Step 6: Vv e S5(AN) do
6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than

that for the one in the the OPEN list, do

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated
distance for v .

(i} Evaluate heuristic function #{v) for v and go to Step 7.

6b. (optional) If v e CLOSE and the accumulated distance of the new path is small than

the partial path ending atv in the the CLOSE list,
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated

distance and heuristic function 7 for all the paths containing v .
(ii} go to Step 7.
Gc. Create a pointer pointing to N and push it into the OPEN list.
Step 7: Reorder the the OPEN list in the increasing order of the heuristic function ().

Step 8: Go to Step 2.

. A search algorithmis said to be admissible if it can guarantee an optimal solution.

. One possible solution to the traveling salesman problem using best-first search might look like this:

HEURISTIC SEARCH: BEAM SEARCH

. Beam search is another form of heuristic search in which we terminate hypotheses that do not appear to be
promising:

. A general agorithm for searching such spaces can be defined as follows:

ALGORITHM 12.5: THE BEAM SEARCH ALGORITHM
Step 1: Initialization: Put Sin the OPEN list and create an initially empty CLOSF list.
Step 2: I the OPEN list is empty, exit and declare failure.
Step 3: YN e OPEN do
CLOSE list.
path along the pointers from Nto S.
of node N. Be sure fo eliminate the successors, which are ancestors of N, from SS(N).
3d. Vv e S5(N) Create a pointer pointing to N and push it into Beam-Candidate list,

list.
Step 5: Go to Step 2,

3a. Pop up node N in the OPEN list, remove it from the OPEN list and put it into the
3b. If node Nis a goal node, exit successfully with the solution obtained by tracing back the

3c. Expand node N by applying a successor operator to generate the successor set SSIN)

Step 4: Sort the Beam-Candidate list according to the heuristic function /() so that the best
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidaie

. Why is beam search very appropriate for speech recognition?

HIERARCHICAL SEARCH: OPTIMAL SEARCH ISSUBTLE

search Space Specification: DiGraph<5SearchMode=
NP VP NP
- s ™ o ™ — - Level 0

L _

™y [Level 1

5%—» o ™ % ™ Level2

search Level Specifications: Vector<SearchLevel=

fievel 0: Symbols = “NP”, “V¥YP~™ -\‘x
beam prune = true
heam width = 1000
Level 1: Symbols = “the”, “boy™, “ran”, ...
use MNsymbol probabilities
Msymbol length = 3
Level 2: Symbols = “dh”, “ax™, “b~™, “oy”, ...
use context dependency
H_ context = 1 on left, 1 on right J

Current Search Paths: Vector<DoubleLinkedList<Trace= =

Level 0 Traces | Trace (MP,VP)

Level 1 Traces | Trace (NP, the, dh, ax, boy)

Level 2 Traces | Trace (NP, the, dh)

. Tomaintain optimality in the search, we must maintain a history of predecessor words *and* states, since the
same word sequence can be produced by multiple paths in the network.

. Dynamic expansion of context is generally preferred over precompilation. Why?

