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LECTURE 32: N-GRAM LANGUAGE MODELS

. Objectives:
o Communication theory model of speech recognition
o Statistical language models
o N-gram language models

o Perplexity
This lecture combines material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to
Theory, Algorithm, and System Development, Prentice Hall, Upper Saddle River,
New Jersey, USA, ISBN: 0-13-022616-5, 2001.

and from this source:

F. Jelinek, Satistical Methods for Speech Recognition, MIT Press, Boston,
Massachusetts, USA, ISBN: 0-262-10066-5, 1998.


http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_32/lecture_32_00.html
http://www.xml.com/pub/r/939
http://www.w3.org/TR/ngram-spec/
http://www.speech.sri.com/projects/srilm/

A NOISY COMMUNICATION CHANNEL MODEL
OF SPEECH RECOGNITION

A noisy communication theory model for speech production and perception:

Message Linguistic Articulatory Acoustic

Source Channel Channel Channel

Observable: Message Words Phones Features

Bayesian formulation for speech recognition:

P(W|A) = P(A|W)P(W)/P(A)
Objective: minimize the word error rate by maximizing P(W|A4)
Approach: maximize P(.A4|W) (training)

Components:
« P(A|W): acoustic model (hidden Markov models, mixture of Gaussians)
« P( 17): language model (statistical, N-grams, finite state networks)
« I’( A1) : acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on knowledge of a
finite number of previous words (N-grams) — leads to search space reduction.



THE CHOMSKY HIERARCHY

We can categorize language models by their generative capacity:

Type of Grammar

Phrase Structure

Constraints

A->B

Context Sensitive [aAb -> aBb

Context Free

Regular

A->B
Constraint:

A isanon-terminal.

Equivalent to:
A->w
A ->BC
where"w" isa
terminal;
B,C are non-
terminals
(Chomsky normal
form)

A->w
A ->wB
(Subset of CFG)

Automata

Turing Machine

(Unrestricted)
Linear Bounded

Automata

(N-grams, Unification)

Push down automata
(JSGF, RTN, Chart
Parsing)

Finite-state automata
(Network decoding)

. CFGs offer agood compromise between parsing efficiency and representational power.

. CFGs provide anatural bridge between speech recognition and natural language processing.



N-GRAM LANGUAGE MODELS

Consider a word sequence W = w w,w,...w . The probability of this word
sequence can be decomposed as follows:
P(W) = P(wywyws...w,)

= P{w] }P’{W2 | W ]F[wﬂ 1]
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The choice of w, thus depends on the history, which we define as the

preceding i — 1 words.

Clearly, estimating P(w;
prohibitive. Why?

W1.Wa,....w; 1) for every unique history is

A practical approach is to assume this probability depends only on an
equivalence class:

"
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i=1
n
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There are three obvious simplifications we can make:

« Unigram: D(w WoseeoW; ) = 0.
* Bigram: O(W,WasesW; 1) = W4
» Trigram: O(wWoseeaW; ) = Wi W5

Of course, we can also merge histories based on linguistic considerations
(e.g., grouping all nouns that describe animals, grouping all articles). What
might be the advantages of doing this?



N-GRAM DISTRIBUTIONSFOR A
CONVERSATIONAL SPEECH (SWITCHBOARD) CORPUS

Unigrams (SVWB): i

0.75
+ Most Common: |, and, the , you, a 0.50
+ Rank-100: she, an, going 0.25
« Least Common: Abraham, Alastair, Acura 0.00

2 20 200 2K 20K

Bigrams (SWB):

+ Most Common: “you know”, “yeah SI”, e /
“IS um-hum”, “| think” b
- Rank -100: “do it”, “that we”, “don’t think” e
. Least Common: “raw fish”, “moisture content,  **°
“Reagan Bush” 00020 200 2K 20K 200K
Trigrams (SWB):
+ Most Common: “1S um-hum 517, "a lot of”, i
“I don’t know” o |
+ Rank-100: “it was a”, "you know that” - |
+ Least Common: “you have parents”, e |

“you seen Brooklyn” 00550 500 5K 50K 500K




PERPLEXITY ASA MEASURE OF COMPLEXITY

How what can measure the complexity of a language model?
What is wrong with using the average branching factor?

i H
Consider a word sequence W = w wyw,...w, = w, as a

random process. The entropy of this process is:

H(W) = — lim lE|1ug(P(wT)}]

i — ool

o l n n
= — lim HZP(WI}IGE(P(H 1))
W

H—» oo
For an ergodic source, we can use a temporal average:

H(W) = — lim 1lng(P{w’f)}

n — ool

Of course, we must estimate these probabilities from the training
data:

H(W) = — lim 1lng(ﬁ{w’f)}

i — ool

Jelinek showed that sz( W)y=H(W) if W is ergodic.

We can define perplexity as:

H(w) _ 1
n ffi’(w;j}

Note that if all words are equally likely, and there are L words in
the vocabulary:

PP(W) =2

log,L
PPN ) =2 = i
We can define the training-set perplexity as a measure of how
the training set fits the language model. Similarly, we can define
a test-set perplexity as the perplexity computed over the test
set. It can be interpreted as the inverse of the (geometric)
average probability assigned to each word in the test set.



PERFORMANCE VS. PERPLEXITY

. Though perplexity is not the best measure for task complexity, it provides some useful insights:

Corpus Vocabulary Size Perplexity Word Error Rate
TI Digits 11 11 ~0.0%

OGI Alphadigits 36 36 8%
Resource Management (RM) 1,000 60 4%
Air Travel Information Service (ATIS) 1,800 12 4%
Wall Street Journal 20,000 200 - 250 15%
Broadcast News > 80,000 200 - 250 20%
Conversational Speech > 50,000 100 - 150 30%

. Acoustic confusibility of highly probable and interchangeable words most often dominates performance.

. WER ~= -12.37 + 6.48*|og,(Perplexity) [William Fisher, NIST, May 2000]




