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LECTURE 29: FORMAL LANGUAGE THEORY

. Objectives:
o Communication Theoretic Approach
o Chomsky Hierarchy
o Network Grammars

o Production Rules
This lecture combines material from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to
Theory, Algorithm, and System Development, Prentice Hall, Upper Saddle River,
New Jersey, USA, ISBN: 0-13-022616-5, 2001.

and from this source:

F. Jelinek, Satistical Methods for Speech Recognition, MIT Press, Boston,
Massachusetts, USA, ISBN: 0-262-10066-5, 1998.


http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/
http://cslu.cse.ogi.edu/HLTsurvey/ch1node8.html#SECTION16
http://www-rohan.sdsu.edu/~gawron/stat/
http://www.speech.sri.com/projects/srilm/
ftp://ftp.cs.cmu.edu/project/fgdata/CMU_SLM/CMU_SLM_Toolkit_V1.0_release.tar.Z

LECTURE 29: FORMAL LANGUAGE THEORY

. Objectives:
o Communication Theoretic Approach
o Chomsky Hierarchy
o Network Grammars

o Production Rules
This lecture combines material from the course textbook:
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A NOISY COMMUNICATION CHANNEL MODEL
OF SPEECH RECOGNITION

A noisy communication theory model for speech production and perception:

Message Linguistic Articulatory Acoustic

Source Channel Channel Channel

Observable: Message Words Phones Features

Bayesian formulation for speech recognition:

P(W|A) = P(A|W)P(W)/P(A)
Objective: minimize the word error rate by maximizing P(W|A4)
Approach: maximize P(.A4|W) (training)

Components:
« P(A|W): acoustic model (hidden Markov models, mixture of Gaussians)
« P( 17): language model (statistical, N-grams, finite state networks)
« I’( A1) : acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on knowledge of a
finite number of previous words (N-grams) — leads to search space reduction.
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SYNTACTIC CONSTRAINTS CAN IMPROVE PERFORMANCE

The search space for vocabularies of hundreds of words can become
unmanageable if we allow any word to follow any other word (often called
the no-grammar case)

Our rudimentary knowledge of language tells us that, in reality, only a
small subset of the vocabulary can follow a given word hypothesis, but
that this subset is sensitive to the given word (we often refer to this as
“‘context-sensitive”)

In real applications, user-interface design is crucial (much like the
problem of designing GUI's), and normally results in a specification of a
language or collection of sentence patterns that are permissible

A simple way to express and manipulate this information in a dynamic
programming framework is via a state machine:

~ .
o e

For example, when you enter state C, you output one of the following
words: {daddy, mommy}.

If:

state A Qive

state B: me

state C: {daddy, mommy}
state D: come

state E: here

We can generate phrases such as:

Daddy give me

« We can represent such information numerous ways (as we shall see)
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NETWORK DECODING ISPOPULAR FOR
COMMAND AND CONTROL APPLICATIONS

Isolated Word Recognition:

Monspeech Monspeech

Nonspeech {Word} Nonspeech
@ | 1 | 7 ln-@

Monspeech: typically an acoustic model of one frame in duration that
models the background noise.

{Word}:  any word from the set of possible words that can be spoken

» The key point here is that, with such a system, the recognizer finds the
optimal start/stop times of the utterance with respect to the acoustic
model inventory (a hypothesis-directed search)

Simple Continuous Speech Recognition (“No Grammar™):

MNonspeech/{Word}

Nonspeech Monspeech
O

+ system recognizes arbitrarily long sequences of words or nonspeech events




ALTERNATE REPRESENTATIONSOF FINITE STATE AUTOMATON

Consider the following state diagram showing a simple language model

involving constrained digit sequences:
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zero (0.1) four (0.5)
oh (0.1)
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Mote the similarities to our acoustic models.

What is the probability of the sequence “zero one two three four five zero six
six seven seven eight eight” ?

How would you find the average length of a digit sequence generated from
this language model?

In the terminology associated with formal language theory, this HMM is
known as a finite state automaton.

The word stochastic can also be applied because the transitions and output
symbols are governed by probability distributions.

Further, since there are multiple transitions and observations generated at
any point in time (hence, ambiguous output), this particular graph is

classified as a nondeterministic automaton.

In the future, we will refer to this system as a stochastic finite state

automaton (FSA or SFSA) when it is used to more linguistic information.

We can also express this system as a regular grammar.

P1 P13 _ Pas

S — = zero, A D — w» three, D H —w eight, [
Pz _ P1a Pz

S — = oh A D —w four, E H —w nine, J
P3 _ P1s P ]

S —w one A E — = four, E | —= eight, |
P4 _ Pis Py

S —w five, A E —» five, F | — = eight.
Ps P17 P

A — = zero A F —w zero, F | —w nine, J
Pe P _ Pzs

A — = oh A F —a ohF | —= nine.

A —» one B F —» five, F

A —m six, B F —m six, G
Do b |

B one, B G —w SiX,

P22

B 1o wo. & G —» seven, A
P4 ' _ Pzs

C ot H — = seven, A

C —= three, D = Tour,

Note that rule probabilities are not quite the same as transition probabilities,
since they need to combine transition probabilities and output probabilities.
For example, consider p;:

p7 = (0.9)(0.8)

In general,
P{_y = yk|;§ - _1::} = Z“‘;H’“‘}
Jj

Note that we must adjust probabilities at the terminal systems when the
grammar is nondeterministic:
Pir = :U1,qr+,”",e;

to allow generation of a final terminal.

Hence, our transition from HMMs to stochastic formal languages is clear
and well-understood.

What types of language models are used?

* No Grammar (Digits)

» Sentence pattern grammars (Resource Management)

* Word Pair/Bigram (RM, Wall Street Journal)

* Word Class (WSJ, etc.)

» Trigram (WSJ, etc.)

» Back-Off Models (Merging Bigrams and Trigrams)

* Long Range N-Grams and Co-Occurrences (SWITCHBOARD)
+ Triggers and Cache Models (WSJ)

* Link Grammars (SWITCHBOARD)

How do we deal with OOV and dysfluencies?



THE CHOMSKY HIERARCHY

We can categorize language models by their generative capacity:

Type of Grammar

Phrase Structure

Constraints

A->B

Context Sensitive [aAb -> aBb

Context Free

Regular

A->B
Constraint:

A isanon-terminal.

Equivalent to:
A->w
A ->BC
where"w" isa
terminal;
B,C are non-
terminals
(Chomsky normal
form)

A->w
A ->wB
(Subset of CFG)

Automata

Turing Machine

(Unrestricted)
Linear Bounded

Automata

(N-grams, Unification)

Push down automata
(JSGF, RTN, Chart
Parsing)

Finite-state automata
(Network decoding)

. CFGs offer agood compromise between parsing efficiency and representational power.

. CFGs provide anatural bridge between speech recognition and natural language processing.



