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LECTURE 13: CEPSTRAL ANALYSIS 

●     Objectives: 

❍     Introduce homomorphic transformations 

❍     Understand the real cepstrum 

❍     Introduce alternate ways to compute the cepstrum 

❍     Explain how we compute mel-frequency "cepstrum" coefficients 

This lecture combines material from the course textbook: 

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to 
Theory, Algorithm, and System Development, Prentice Hall, Upper Saddle River, 
New Jersey, USA, ISBN: 0-13-022616-5, 2001. 

and information found in most standard DSP or speech textbooks: 

J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing 
Co., ISBN: 0-7803-5386-2, 2000. 
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Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, 
Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These 
systems, which have applications in a wide range of signal processing problems, represent a revolution 
in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear 
algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical 
models implemented using a complex software paradigm. Such systems are now capable of 
understanding continuous speech input for vocabularies of hundreds of thousands of words in 
operational environments. 

In this course, we will explore the core components of modern statistically-based speech recognition 
systems. We will view speech recognition problem in terms of three tasks: signal modeling, network 
searching, and language understanding. We will conclude our discussion with an overview of state-of-
the-art systems, and a review of available resources to support further research and technology 
development. 

Tar files containing a compilation of all the notes are available. However, these files are large and will 
require a substantial amount of time to download. A tar file of the html version of the notes is available 
here. These were generated using wget: 
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LECTURE 13: CEPSTRAL ANALYSIS 

●     Objectives: 

❍     Introduce homomorphic transformations 

❍     Understand the real cepstrum 

❍     Introduce alternate ways to compute the cepstrum 

❍     Explain how we compute mel-frequency "cepstrum" coefficients 

This lecture combines material from the course textbook: 

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to Theory, Algorithm, and System 
Development, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN: 0-13-022616-5, 2001. 

and information found in most standard DSP or speech textbooks: 

J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 
2000. 



HOMOMORPHIC TRANSFORMATIONS 

A homomorphic transformation converts a convolution into a sum: 

 
Consider the problem of recovering a filter's response from a periodic signal (such as a voiced excitation): 

 
The filter response can be recovered if we can separate the output of the homomorphic transformation using a simple filter: 

 
Note that the process of separating the signals is essentially a windowing processing. Is this useful for speech processing? 



THE REAL AND COMPLEX CEPSTRUM 

The real cepstrum of a digital signal x(n) is defined as: 

 
and the complex cepstrum is defined as: 

 
where the complex logarithm is used: 

 
Note that the real cepstrum, c(n), is the even part of complex cepstrum: 

 
The word cepstrum was coined by reversing the first syllable in the word spectrum. The cepstrum exists in a domain 
referred to as quefrency (reversal of the first syllable in frequency) which has units of time. 



THE CEPSTRUM OF POLE-ZERO FILTERS 

Consider a minimum phase system with a rational transfer function: 

 
Taking the complex logarithm: 

 
Taking an inverse z-transform: 

 
It is easy to see that the cepstrum is a decaying function of time (compact). Why is this desirable? 

Recalling that the real cepstrum can be computed from the even part of the complex cepstrum, the complex cepstrum can 
also be easily determined from the real cepstrum, c(n), as follows: 

 



LINEAR PREDICTION AND THE CEPSTRUM 

Consider an all-pole filter: 

 
The cepstrum can be determined by the following recursion: 

 
Note that if there are a finite number of filter coefficients, there are still an infinite number of cepstral coefficients. 
However, the series decays to zero and can be truncated. 

The proof of this result is shown below for completeness: 



 



AN EXAMPLE OF THE CEPSTRUM FOR A VOWEL 

Below is an example (from Noll) that demonstrates a typical cepstrum sequence for a vowel. The cepstrum is computed 
every 10 msec. 



 

From this example, we can see two important things: 

●     At the onset of the vowel, where the signal is not quite periodic, the peak in the cepstrum at the fundamental 
frequency is not well-formed. The amplitude of this peak grows as the signal becomes more regular (periodic). 
The same phenomena is true for the autocorrelation function. 

●     It is clear that the low order coefficients of the cepstrum contain information about the vocal tract, while the higher 
order coefficients contain primarily information about the excitation. (Actually, the higher order coefficients 
contain both types of information, but the frequency of periodicity dominates.) 

Hence, for speech signals, it seems the vocal tract response and the excitation signal can be separated using simple 
windowing in the quefrency domain. 



SOURCE-FILTER SEPARATION VIA THE CEPSTRUM 

An example of source-filter separation using voiced speech: 

(a) Windowed Signal

(b) Log Spectrum

(c) Filtered Cepstrum (n < 
N)

(d) Smoothed Log 
Spectrum

(e) Excitation Signal

(f) Log Spectrum (high 
freq.) 

 
An example of source-filter separation using unvoiced speech: 

(a) Windowed Signal

(b) Log Spectrum

(c) Filtered Cepstrum (n < 
N)

(d) Smoothed Log 
Spectrum

 

The reason this works is simple: the fundamental frequency for the speaker produces a peak in the cepstrum sequence that 
is far removed (n > N) from the influence of the vocal tract (n < N). You can also demonstrate this using an autocorrelation 
function. What happens for an extremely high-pitched female or child? 



FREQUENCY WARPING USING ALL-PASS TRANSFORMATIONS 

Recall the bilinear transform: 

 

which implements a nonlinear warping of the frequency axis: 

 
This can be implemented as a series of all-pass transformations: 

 

The cepstral coefficients are input and the output are frequency-warped cepstral coefficients. This is an interesting way to 
implement speaker-specific warpings (e.g., male vs. female speakers). 



MEL-FREQUENCY CEPSTRUM 

Recall our filterbank, which we construct in mel-frequency domain using a triangularly-shaped weighting function applied 
to mel-transformed log-magnitude spectral samples: 

 

After computing the DFT, and the log magnitude spectrum (to obtain the real cepstrum), we compute the filterbank 
outputs, and then use a discrete cosine transform: 

 
to compute the mel-frequency cepstrum coefficients. Note that the triangular weighting functions are applied directly to the 
magnitude spectrum, and then the logarithm is taken after the spectral samples are averaged. The resulting coefficients are 
an approximation to the the cepstrum, and in reality simply represent an orthogonal and compact representation of the log 
magnitude spectrum. 

We typically use 24 filterbank samples at an 8 kHz sampling frequency, and truncate the DCT to 12 MFCC coefficients. 
Adding energy gives us a total of 13 coefficients for our base feature vector. 
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LIFTERING: WINDOWING CEPSTRAL COEFFICIENTS 

●     Low order cepstral coefficients are sensitive to spectral slope, glottal pulse shape, etc. 

●     High order cepstral coefficients are sensitive to the analysis window position and other temporal artifacts. 

●     For speaker independent recognition, it is best to minimize such speaker-dependent variations in the features prior 
to recognition. 

●     We can reduce the variations in these coefficients by using a raised sine window that emphasizes coefficients at 
the center of the window: 

 
●     L is the number of cepstral coefficients (typically 24), and G is a constant normally designed to make the energy 

of the window equal to 1. 



ALTERNATIVE METHODS FOR
FREQUENCY DOMAIN ANALYSIS 

We have now established two different ways to perform a filterbank analysis of the speech signal (temporal and spectral): 

 
The most popular front ends are those that use cepstral coefficients dervied from the Fourier transform. Why? 



A TYPICAL SPEECH RECOGNITION FRONT END 

 



    
Next: Homomorphic filtering Up: Short-Term Fourier Analysis  Previous: Example: Spectral subtraction 

Cepstral analysis

The source filter model of speech production decomposes the speech signal, , into an excitation, , and a linear filter, 

. In the frequency domain: 

We wish  to represent the envelope of the speech power spectra and  to represent the fine detail of the 

excitation. For example, see figure 22 and figure 23. With a suitable definition of the log of a complex number (

) this may be achieved with: 

For most speech processing applications we require only the amplitude spectra, hence the equation is written: 

The slowly varying components of  are represented by the low frequencies and the fine detail by the high 

frequencies. Hence another Fourier transform is the natural way to separate the components of  and . This 

produces the cepstral analysis, shown diagrammatically in figure 28. 

  

Figure 28: Cepstral analysis

For the example speech of figures 21,22,23 the resulting (real) cepstral analysis is shown in figure 29. 
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Figure 29: The full real cepstrum. Calculated using Matlab: ifft(log(abs(fft(hamming(512) .* sig))))

It can be seen that most of the detail occurs near the origin and in peaks higher up the cepstrum. Thus the lower numbered 
coefficients provide the envelope information. The remainder of the detail is mostly contained in the peaks which are separated 
by the pitch period (in this case about 70 sample) and provide the fine detail pitch information. 

An enlargement of the few samples is shown in figure 30 



  
Figure 30: The first 20 cepstral coefficients

Speech Vision Robotics group/Tony Robinson 
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ABSTRACT

The paper begins by discussing the diff iculties in obtaining
repeatable results in speech recognition.  Theoretical arguments
are presented for and against copying human auditory properties
in automatic speech recognition. The “standard” acoustic
analysis for automatic speech recognition, consisting of mel-
scale cepstrum coeff icients and their temporal derivatives, is
described.  Some variations and extensions of the standard
analysis — PLP, cepstrum correlation methods, LDA, and
variants on log power — are then discussed. These techniques
pass the test of having been found useful at multiple sites,
especiall y with noisy speech.  The extent to which auditory
properties can account for the advantage found for particular
techniques is considered.  It is concluded that the advantages do
not in fact stem from auditory properties, and that there is so far
littl e or no evidence that the study of the human auditory system
has contributed to advances in automatic speech recognition.
Contributions in the future are not, however, ruled out.

1. INTRODUCTION

The purpose of this paper is twofold.  The first is to describe
what has emerged as the “standard” acoustic analysis for
automatic speech recognition and a discussion of some variants
and extensions — PLP, LDA, correlation methods and variants
on log-power representations — that have been found to be
useful at several independent sites, especiall y with noisy speech.
The second purpose is to discuss the extent to which the
development of representations for automatic speech recognition
has benefited from knowledge of the human auditory system.

Most of us who have worked in the field of speech recognition
feel some pride at the progress that has been made; we may
even feel amazement at how well current state-of-the-art
recognizers function considering the apparently crude methods
being used.  Nevertheless, we have to recognize that progress in
speech recognition techniques — as opposed to exploiting the
possibiliti es of more powerful hardware — has been quite slow.
Partly, this is because of the diff iculty in obtaining reproducible
results in the statistical estimation of recognition accuracy.  This
diff iculty stems not simply from the large size of the test corpora
needed; speech data can vary along many different dimensions,
all of which can affect the performance of the recognizer.
Conclusions drawn from one experiment relevant to a particular
user population and appli cation may not always be valid for a

different user population or appli cation.  All that a good
experiment can do is to determine performance on speech of a
particular type without being able to guarantee any universal
validity to the conclusions that have been drawn.

A second diff iculty in making solid progress in speech
recognition is the sheer complexity of a speech recognition
system, especiall y a modern large-vocabulary system.  The
effect of a decision about one part of the system may depend
cruciall y on choices made in other parts of the system.  When a
new method is reported to give better results than a
conventional method, it is usuall y not evident whether this
advantage would be repli cated in other systems.  Usuall y, it is
also not clear whether the conventional method has been
implemented optimall y.

These remarks apply as much to the choice of representation of
the speech signal as they do to any other aspect of a speech
recognizer.  In particular, it is impossible to make statements
about how good particular features are in representing speech
without specifying how those features will be used in the speech
recognizer.

In fact, it is not even possible to draw a clear li ne between the
representation of the speech signal (carried out in the so-called
acoustic “ front-end”) and the recognition process itself,
especiall y the process used in comparing the representation of
the speech to be recognized with that of specific speech sounds.

One can make a case that development of the representation of
the speech signal is not where most progress has been made.  In
the last decade progress has arguably been concentrated in the
understanding of how the distributions observed in training data
are best represented and on what generali zations should be
made.

Nevertheless, most people would agree that significant potential
for progress still exists in finding a representation of the
acoustic speech signal that best retains the information needed
for effective speech recognition, especiall y in noise, while
suppressing irrelevant information. Even without the aid of
grammatical, semantic and pragmatic information, human
li steners outperform today's best automatic speech recognizers
[1].  In 1978, Doddington [2] reported that human li steners
could achieve a recognition accuracy of 97.7% on a speaker-
independent isolated-word recognition task in which the words
were selected randomly from the 26,000 most common words in



the Brown Corpus and no two consecutive tokens were spoken
by the same speaker.  This is still beyond the state-of-the-art for
automatic speech recognizers. It is usuall y assumed that this
abilit y is due to a superior human technique for processing
sounds in general. (We cannot rule out the possibilit y, however,
that the apparent superior abiliti es of humans in phonetic
classification are due to higher-order active processing using
impli cit knowledge of the speech production process and its
constraints rather than stemming from a better physiological
“ front-end” .)

This assumption that humans possess a superior technique for
analyzing speech sounds has led many researchers to attempt to
reproduce characteristics of the human auditory system in the
hope of obtaining improved automatic speech recognition.

Dissenters from the view that we should try to copy human
hearing have sometimes argued that it is no more necessary for
the front-end of a speech recognizer to model the ear than it is
for an aircraft to flap its wings just because birds do.  This is a
false analogy.  Air pre-dated both humans and birds, and each
has found its own way of staying aloft in it.  Speech, by contrast,
did not pre-date human ears, or at least not primate ears, so it
must have evolved taking account of the abiliti es and limitations
of our hearing system.  Birds’ wings have not influenced the
properties of air but human hearing must have influenced the
properties of speech.  It would be surprising if there were
features in the speech signal that could contribute usefull y to
automatic speech recognition and yet be imperceptible to
humans: if they cannot be perceived it is unli kely that they
would be controlled in the speech production process.  In
developing automatic speech recognizers, then, there is on the
face of it a definite case for studying and perhaps copying the
human hearing system.

There are, on the other hand, some arguments suggesting that
detailed copying of the human hearing system might not be
useful.  First, we do not know enough about it as a whole, and
copying some parts and not others may be counter-productive.
Second, we do not know much at all about how the output from
the human hearing system is used to recognize speech — the
human recognition system may be so different from our
automatic systems that a quite different representation of the
speech is needed.  Finall y, processing techniques that have
evolved under the constraints and advantages of human
physiology may be inappropriate for our current digital
hardware.

The development in the choice of features for speech recognition
has seen many transient fashions and apparent blind alleys. One
can never be sure whether one of these methods would have
proved outstanding if enough effort had been applied to it, and
that may yet happen.  The problem discussed at the beginning of
this introduction of the diff iculty of drawing general conclusions
from speech recognition experiments arises here.  Consequently,
this paper will l argely confine itself to techniques that have been
found to be useful in multiple laboratories and under multiple
conditions.  In particular, the next section describes what has
steadil y evolved to being the standard acoustic analysis for
speech recognition.

This paper will not deal with modulation spectrum techniques,
nor with multi -stream techniques, both of which are the
province of Nelson Morgan's paper [3] in this workshop.

2.   THE EVOLUTION OF THE CURRENT
“ STANDARD” ACOUSTIC FRONT-END

From the very start of work on automatic speech recognition it
was apparent that comparing speech waveforms would not be a
fruitful approach: not only does the waveform lack the
insensiti vity to phase effects introduced by reverberation, for
example, it is also sensiti ve to the detail s of the excitation of
voiced and unvoiced speech in a way that would make the
identification of phonetic units directly from it extremely
compli cated.  There were some attempts to use zero-crossing
rates measured from the waveform, but this was driven more by
early limitations in computational power than any advantages
that these features offer for speech recognition.

What was seen to be needed was a representation of the vocal
tract transfer function as far as possible without influence from
the detail s of the excitation, apart, perhaps, from its gross
spectral shape, which can distinguish voiced from unvoiced
sounds.  The output from a bank of filt ers, designed originall y
for speech transmission in the so-called channel vocoder [4], and
spanning a frequency range from 0 Hz to typicall y 5 kHz,
provided the required properties.  Computing the (log) energy
output of each filt er at regular intervals results in a smoothed
version of the short-term speech spectrum.  The channels are
broad enough not to show the harmonic structure resulting from
the periodic excitation of voiced speech, at least for typical male
voices.  The original filt er-banks were analogue devices, but
nowadays an FFT is normall y used to simulate a filt er-bank in
software.

Reflecting the frequency resolution of the ear, the band-pass
filters in channel vocoders were generall y made to be broader at
high frequencies.  Most current recognizers which include a
filter-bank in their front-end retain this property, usuall y
through the so-called technical mel-scale, which has the center
frequencies of the channels equall y spaced up to 1 kHz and
logarithmicall y spaced beyond that frequency [5].

This non-uniform channel spacing is often seen as an instance in
which knowledge of properties of human hearing properties has
helped automatic speech recognition.  However, there is a good
case that the advantage of non-uniform channel spacing stems
not from the general properties of human hearing but from the
specific properties of the speech signal itself.  First, formant
bandwidths tend to increase with increasing frequency.
Moreover, unvoiced sounds, which generall y have their energy
and the information needed to distinguish between them
concentrated at high frequencies, have much broader formant
bandwidths than voiced sounds, which themselves have their
energy concentrated at lower frequencies.  These properties are
acoustical in origin and have nothing directly to do with the
resolution of the human ear.



Second, the information needed to make fine phonetic
distinctions between voiced speech sounds, when measured as
the contribution of each of a set of equall y spaced bands, is
concentrated in the lower part of the analysis range.  Even with
a set of bands that are logarithmicall y rather than equall y spaced
from the lowest frequency, the contribution has been found [6]
to peak at around 2 kHz and decline uniformly beyond that
frequency.  This non-uniform distribution of information seems
li kely to stem from the fine control that is available on the lower
formants, which itself stems from the acoustic and physiological
properties of the speech production process.

The advantage of non-uniform spacing of channels in a
recognizer front-end appears li kely to be due to its provision of
non-uniform weighting to different parts of the speech spectrum,
reflecting physiological and acoustic constraints on speech
production, rather than its repli cation of the frequency resolution
of the ear.

If this view of the source of advantage for non-uniform
frequency resolution in a speech recognizer is correct, then the
debates on whether one should use the mel scale or a bark scale
and whether the technical mel scale is a good enough
approximation [e.g. 7] will have been unnecessary.

LPC [8], li ke the channel vocoder originall y developed solely for
speech transmission, was an early rival to the filt er-bank as a
front-end for speech recognizers.  The computation needed for
an autocorrelation-method LPC analysis is less demanding than
that for the FFT used in a simulated filt er-bank.  LPC was
originall y motivated on purely acoustic grounds as a least-
squares fit to the waveform generated by an unbranched acoustic
tube, which behaves li ke an all -pole filt er, and which is a good
model of the vocal tract, at least for unnasali zed vowels.  For
speech recognition purposes, it may be better to view it as a
smooth parametric fit to the short-term power spectrum using a
special match criterion in the spectrum domain.  We will return
to this point in Section 3 on PLP.  Conventional LPC, unli ke
PLP, no longer seems to be a strong contender for front-end
processing.

Returning to filt er-banks, there is a problem with using the
output of the filt er-bank directly in a speech recognizer.
Typicall y, recognition systems use Euclidean distances to
estimate log probabiliti es in their spectral comparison process.
For Euclidean distances to correspond to log probabiliti es, as
they should if the recognition process is to work well , samples
of the parameter set should have a multi variate Gaussian
distribution about the mean for the corresponding speech sound,
be uncorrelated and the parameters should be scaled such that
their variances about the mean for that speech sound are all the
same.  (We will discuss what we mean by “speech sound” in
this context in Section 4 on LDA.)  For a speech signal, samples
of the log energies in adjacent channels of a filt er-bank do
indeed have something close to a multi variate Gaussian
distribution, but they are highly correlated.  Fortunately, it turns
out that the cosine transform of the log energies from the filt er-
bank, i.e. the mel-scale cepstrum, produces coeff icients that are
very close to being uncorrelated; that is, the cosine transform is
close to a principal components analysis.  Cepstrum coeff icients

can consequently be weighted such that Euclidean distances
become good indications of log probabiliti es.

Various weighting schemes have been used in DP-based
template-matching recognition schemes.  Some [e.g. 9, 10] made
the weight an empiricall y chosen function of the index of each
cepstrum coeff icient, while others have been statisticall y
derived, from the total variance of the cepstrum coeff icients [11]
or from their average within-class variance [12].  For HMMs,
one could in principle include a full covariance matrix in the
metric used for each state of each reference model.  In this case,
it would not matter if the features representing the speech
spectrum were correlated, and the transformation into the
cepstrum would be unnecessary. However, the use of individual
covariance matrices is computationall y expensive and there is
almost never enough training data to estimate the matrices
accurately enough.  Instead, the cepstrum is normall y used and
the weights applied are usuall y (1/Φi

2)-½, where Φi
2 is the

within-class variance of the i'th cepstrum coeff icient estimated
for that state or basis function.  Sometimes, the individual
variance estimates are replaced by “ trained grand variances” , in
which the within-class variance statistics are pooled over all
states or basis functions [13].  This is equivalent to the
weighting scheme used in [12] and resembles the approach used
in LDA.

The cepstrum is also widely used in speech processing to
deconvolve the periodic voiced excitation signal from the effects
of the vocal tract [14], but in this case the cepstrum is derived
from a uniformly spaced, higher resolution log spectrum, not
from a non-uniform mel-scale filt er bank.  Truncating the mel-
scale cepstrum does effectively provide a further smoothing of
the spectral representation, but this is not the primary
motivation for using the mel-scale cepstrum.  Moreover, the
property of the cepstrum of being the optimum transform for
removing harmonic structure from a spectrum does not strictly
apply to the mel-scale cepstrum.  The primary motivation,
namely the approximation of the cepstrum to a principal
components analysis, allowing a weighting scheme to be
effective, has a secondary useful property: since a truncated set
of principal components provides the most compact
representation of the variance in the spectrum that it is possible
to get using li near transformations, the truncated cepstrum is
also effective in providing a compact representation of the
spectrum.

There is a price to be paid for applying a li near transformation
such as the cepstrum to the log power spectrum when
attempting to recognize speech in noise.  To a good
approximation, speech and an interfering noise signal can be
treated as simply additi ve in the power spectrum before taking
logs (and the log spectrum of the combined signal can then be
quickly obtained by table lookup).  The effect on the mel-scale
cepstrum of adding noise to a speech signal is much more
complex.  Consequently, when Varga and Moore [15]
successfull y demonstrated a technique for simultaneously
modeling a speech signal and a multi -state noise signal the
representation in which the phonetic comparisons were made
was the mel-scale log power spectrum.  Compared with other
techniques being used at the time, performance in very high
noise was very good, but performance in lower noise, especiall y



in speech-independent tests was less good than alternatives
employing an appropriate li near transformation such as the
cepstrum.

Most current representations of speech for speech recognition
augment the mel-scale cepstrum coeff icients with a measure of
their rate of change over time [16] (the “delta-cepstrum”) and
often also the  “acceleration” of the cepstrum coeff icients (the
“delta-delta-cepstrum”).  In principle, it would be possible to
compute the rate of change from pairs of adjacent frames and
the acceleration from three consecutive frames.  However, this
simple frame differencing is not a robust estimator of the rate of
change, which is instead normall y estimated from 5 or 7
consecutive frames with the values weighted to give the best
straight-li ne fit to the sequence.  The acceleration is then
derived from sequences of these values.

Because changes in overall l evel and the appli cation of li near
distortions to the speech signal have the effect of adding
constants to the log spectrum and hence to the cepstrum, the
dynamic cepstrum parameters are in principle unaffected by
such changes.  This makes them relatively more effective for
speech recognition over channels subject to unpredictable
changes of these kinds.

The technique generall y known as RASTA [17, 18] takes this
advantage a step further and applies “ leaky” integration to the
delta-cepstrum to regenerate something close to the original
static cepstrum but with a running short-term normali zation
applied to the spectrum.  This, however, is more the province of
Nelson Morgan’s paper.

We have now arrived at what is probably the standard current
acoustic representation for speech recognition: the mel-scale
cepstrum augmented with the delta-cepstrum and often the
delta-delta cepstrum.  The succeeding sections of this paper look
at some variants and additions to this representation that have
been found to be effective in several independent research
centers.

3. PLP

PLP, Perceptual Linear Prediction [19], can be directly
attributed to a single researcher, Hynek Hermansky.  However,
what is arguably its central idea, namely fitti ng the parameters
of an all -pole spectrum to a mel-scale spectrum (rather than to
the uniform spectrum as in conventional LPC analysis), rests on
a technique described by Makhoul [20], which he called
selective LPC.  In LPC, the parameters of the all -pole fit are
derived from the autocorrelation function of the speech
waveform.  Since the autocorrelation function is the Fourier
transform of the power spectrum, it is possible to derive a
pseudo-autocorrelation function from a distorted power
spectrum, such as a mel-scale spectrum, and hence make an all -
pole fit to the distorted spectrum.  PLP makes an all -pole fit to
the output of a mel-scale filt er-bank, with the order of the all -
pole fit being lower than the number of channels in the filt er-
bank.  Cepstrum coeff icients are then normall y derived from this
smoothed spectrum.

Notice that the theoretical justification for LPC, namely that the
spectrum being fitted was generated by an all -pole filt er, no
longer applies once the spectrum has been distorted onto the
mel scale.  Instead, the all -pole fit in PLP has to be seen as an
empirical technique fitti ng a smooth parametric curve to the
mel-scale spectrum using a fitti ng criterion that emphasizes
discrepancies more in the high-energy part of the spectrum than
in the low-energy parts. The use of a mel-scale filt er-bank to
represent the spectrum has two potentiall y beneficial effects.
First, the smoothing produced by the filt er-bank reduces the
influence on the all -pole fit of irrelevant spectral fine-structure
such as pitch harmonics, and second it reduces the weight given
in the fit to the higher frequencies in the spectrum.

In addition to the use of a mel-scale spectrum, PLP has two
other perceptuall y motivated features.  First, it applies a
loudness sensiti vity curve to the spectrum, reflecting the
reduced sensiti vity of the ear at the low and high ends of the
speech spectrum; and second, it takes the cube root of the power
in the spectrum before computing the pseudo-autocorrelation
function.  This second property is motivated by the observation
that the neural firing rates in the ear tend to correspond to the
cube root of the incident acoustic energy.  At least in this
author’s experience, however, these additional features
contribute rather littl e to the behavior of a PLP representation.

4. LINEAR DISCRIMINANT ANALYSIS

Cepstrum coeff icients for speech are approximately
uncorrelated.  This is also approximately true for delta-cepstrum
coeff icients and delta-delta-cepstrum coeff icients, both among
themselves and across the sets.  These properties are only
approximate, though, and one might of course want to try using
other acoustic features that do happen to be correlated with each
other.  Also, the cepstrum orders coeff icients according to their
contribution to the total variance in the signal and, as we have
seen, truncation of the cepstrum retains a high concentration of
the total variance in the reduced set.  However, what one reall y
wants to retain is the abilit y to distinguish between phonetic
units, and that is not necessaril y the same thing.  Moreover,
cepstrum truncation does not help in deciding what mix of
static, delta and delta-delta coeff icients should be retained.
These are the motivations for using li near discriminant analysis
(LDA) [21] to derive the acoustic representation.

Although the use of LDA was proposed in 1979 [22], its first
reported use does not seem to have been until 1988 [23, 24].
One of those first reports was motivated precisely by an attempt
to explore alternatives to the cepstrum in the form of two quite
different representations generated by an auditory model that
had to be combined.

LDA finds the li near transformation that diagonali zes the matrix
W-1B, where W is the within-class covariance matrix (i.e. the
pooled covariance of individual samples about their own class
means) and B is the between-class covariance matrix (i.e. the
covariance of the class means).

This begs the question of what constitutes a “class” .  Ideall y,
one might want the class to be a phonetic unit of some kind.



Back in 1979, we were far from using phonetic units.  Instead,
the classes were simply taken to be the frames of the whole-
word templates constructed by time-aligning and averaging
together the training examples of each word.  The within-class
covariance matrix is then obtained by observing and pooling the
covariance of the frames of the training examples about the
frame of the corresponding template to which they have been
aligned.  The between-class covariance matrix is simply the
covariance of the template frames.  Nowadays, a similar
procedure is used, with a class mean being a multi variate
Gaussian representing a state in a sub-word model or a mixture
component in such a model.

The transformed features obtained by multiplying the original
features by the matrix of eigenvectors of W-1B are uncorrelated
in their average within-class variation and all have the same
average within-class variation.  Their total variation is also
uncorrelated.  They are ordered according to a measure of
discriminating power, the F-ratio, which is the ratio of between-
class to within-class variance.  In fact, it can be shown that
under a set of assumptions to be li sted below LDA provides the
optimum discriminating power for a given number of features.

Under the following conditions, LDA can be shown to be the
optimal transformation for pattern classification using Euclidean
distances: (1) the original features have identical multi variate
normal distributions about their own class means, and (2) the
class means themselves have a multi variate normal distribution.
Although they are not unreasonable as approximations, these
assumptions are not in general strictly valid for speech.
Moreover, LDA gives a recipe for optimal discrimination
between Gaussian basis functions in models not between words
in a language, which is what we are trying to achieve.
Nevertheless, LDA is found to provide a useful transformation
of an original set of features.

LDA is particularly useful when, for computational or storage
reasons, the dimensionalit y of the feature set has to be reduced.
The higher-order transformed features usuall y have very low F-
ratios and, as would be expected from this, their omission from
the recognition calculations makes littl e or no difference to
recognition accuracy.  Indeed, for reasons that are not well
understood, in many though by no means all cases, omitting the
last few transformed features has been found to increase
recognition accuracy.

A modification to the derivation of the LDA transformation can
confer robustness on the representation.  Hunt and Lefèbvre [25]
described a technique in which the recognition models were
built from undegraded speech but the W covariance matrix was
derived by observing the distribution about the means in the
recognition models not only of undegraded speech samples but
also of samples degraded with additi ve noise and linear
distortion.  The resulting transformation was found to be just as
effective as a transformation derived only from undegraded
speech in recognition tests with undegraded speech, yet
performance with noisy and linearly distorted speech was much
improved.  There is evidence that in deriving the LDA
transformation sometimes it may be worth exaggerating the
degree of variation (in gain, for example) expected to be

encountered in the recognition process so as to reduce further
the weight given to this feature.

One common set of input features to the LDA consists of mel-
scale cepstrum coeff icients, delta-cepstrum and delta-delta-
cepstrum.  An alternative is simply to present sequences of, say,
five frames of cepstrum coeff icients to the LDA as the feature
set and let the LDA decide how best to combine them into
dynamic and static features.  Experience on which of these
alternatives works better seems to vary between laboratories.
The extension to much longer sequences of frames is in the
province of Nelson Morgan’s paper and will not be discussed
here.

Some approaches have been described that attempt to improve
the effectiveness of the li near transformation.  One [26] began
with a standard LDA representation and applied further rotation
and scaling by an iterative method progressively improving the
discrimination between confusable pairs of spoken letters.
Another, a heteroscedastic transformation [27], loosens the
assumption that all within-class covariance distributions are
identical to the assumption that they just share the same

principal axes.  A third [28] uses a maximum mutual
information criterion.  Although promising results have been
reported for these variants, they cannot yet be said to be
establi shed techniques.

5. CEPSTRAL CORRELATION
METHODS

For speech recognition in noise Mansour and Juang [29]
proposed replacing the Euclidean distance normall y used in
spectral comparisons with a correlation metric applied to sets of
cepstrum coeff icients (excluding C0).  (Actuall y, they proposed
several alternative metrics, but they all shared the same spirit.)
Geometricall y, this amounts to replacing the distance between
points in space represented by sets of cepstrum coeff icients by
the cosine of the angle between the two vectors defined by the
two sets of cepstrum coeff icients.  In this new metric, the norm
of the cepstrum coeff icient vector is effectively irrelevant; only
the relative values of the cepstrum coeff icients in a set matter.

Figure 2.
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This is another example where a technique can be viewed as
part of the spectral comparison metric or part of the spectral
representation itself.  Something close to the correlation metric
can be produced by normali zing all sets of cepstrum coeff icients
to a constant value and then using Euclidean distances [30].

It is easier to see why this process might be useful by thinking
of the effect of noise in the spectral rather than the cepstral
domain.  Additi ve noise with a fairly smooth spectrum close to
the average spectrum of voice speech will t end to fill i n the
valleys between the formants in the spectrum of voiced speech,
but it will not shift the locations of the formants.  It is as though
the contrast in the spectrum is reduced, but the overall pattern is
otherwise largely unchanged.  This reduction in the dynamic
range of the spectrum reduces the absolute values of the
coeff icients of the corresponding cepstrum, but to a first
approximation it preserves their relative values.

Of course, this method does depend on the noise spectrum being
flat, which is often not the case in real appli cations.  Test results
obtained exclusively with artificial added noise are not
necessaril y any guide to performance in the real world.

To ill ustrate this, we measured the variance of cepstrum
coeff icients C1 to C12 about their means for 14 speakers who
made recordings in a car with a far-field microphone in three
conditions: (1) stationary with the engine running, (2) low-speed
highway driving and (3) high-speed highway driving.  These
three conditions result in three virtuall y non-overlapping SNR
bands.  Figure 1 shows that the cepstrum norm does indeed
decrease as the SNR decreases.  However, Figure 2 shows that
with this real noise, which has more power concentrated at low
frequencies than speech has, the decrease is not uniform over
the different cepstrum coeff icients.  When the variance of the
coeff icients averaged over all the speakers in the high-speed
condition is compared with the corresponding values in the
stationary condition, the change is not found to be uniform.
Indeed, the change in the higher coeff icients is in the opposite
direction from that expected.  Consequently, with this real noise
the average effect of decreasing SNR is not simply to reduce the
cepstrum norm but also to change the angle of the cepstrum
coeff icient vector.

6. ALTE RNATIVES TO LOG POWER

The log power representation of the speech spectrum is clearly
attractive because of its gain-invariance properties and of the

approximately Gaussian distributions that it provides.  It
presents, however, one major problem.  Since, as x tends to
zero, log(x) tends to minus infinity, the function is very sensiti ve
to small values of x.  In the spectrum, this means that there is
most sensiti vity to those parts with lowest power, i.e. to those
parts where the SNR is normall y worst.

This property of the log function makes the results of spectral
subtraction of estimated background noise sensiti ve to small
errors in the noise estimate and has led to some complex
procedures for spectral subtraction [31].

One well establi shed technique for dealing with problems
associated with small values in the spectrum is to apply a lower
bound to them (so-called “masking” [32]) or to replace log(x)
with log(x + c), where c is a small constant.  This function
behaves li ke log(x) for x>>c but limits, of course, to log(c)
rather than going unbounded as x → 0.  For x >> c,
 log(x + c) ≈ log(c) + x/c (see box).  Thus log(x + c) moves
smoothly from a function that is limited at log(c)  and changes
linearly with x (i.e. more slowly than log(x)) when x is small to
log(x) when x is large.  In fact, it behaves li ke a “soft” mask on
the spectrum.

Hermansky and Morgan's J-RASTA [33] exploits this behavior
neatly by applying the RASTA technique of time-differencing
followed by leaky integration to log(x + c) rather than to log(x).
For x large, where the SNR is normall y high, the technique
behaves li ke the original RASTA formulation, normali zes away
linear spectrum distortions, and slow gain changes.  For x small ,
however, where the SNR is normall y low, we are in the li near
region of log(x + c), where the differencing/reintegration
technique removes steady additi ve noise [18].

Another motivation for adding constants to the argument of the
log function in speech recognition is to simulate the effect of
steady additi ve noise in models that have been trained on quiet
material but are to be used in the recognition of noisy speech.
Gales and Young’s PMC [34] is a somewhat more sophisticated
extension of this technique.

While the justification for masking techniques is purely
mathematical, the exploration of another departure from the log
function in representing the speech power spectrum, namely the
cube root representation, took its original motivation from
perceptual data, where auditory nerve firing rates had been
reported to be proportional to the cube root of the acoustic
power.  It was found that the cube root representation could give
better recognition results with noisy speech than the
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conventional log representation [35], though performance with
quiet speech was worse.

Root power functions, of the form n√p, constitute a family of
functions, with the limit as n → ∞ approximating the log
function apart from a scaling factor and additi ve constant to (see
box).  Further experimental work [36] has shown that although
n = 3, i.e. the cube root, may be optimal among this family of
functions for very low SNR, the optimal value of n increases
uniformly as the SNR improves.  Other work [37] has shown
that it is not necessaril y optimal to use the same value of n for
the test and the training material: when using models trained in
the quiet and testing with noisy speech it was found to be better
to have a smaller value of n for the training material than for the
test material

Figure 3 suggests that this behavior can be understood in purely
signal processing terms.  In the figure, root-power functions are
shown relative to the log function, having first been
“normali zed” in value and slope to the log function at a
particular point.  It can be seen that as n decreases the root
power functions have increasingly compressed outputs relative
to the log function for small i nput values.  The behavior is
similar to that observed for the function log(x + c), which is also
shown in the figure.  Thus, root power representations are
similar to masked log representations, with lower values of n
corresponding to higher values of the mask, c.  In li ght of this, it
is not surprising that the optimal value of n increases as the
SNR improves, nor indeed that in recognizing noisy speech with
models trained in the quiet it is better to use a smaller value of n
for the training material (similar to adding a small offset to the
spectrum, simulating steady noise, before taking logs) than for
the test material.

Root-power functions do not share the elegant level-invariance
properties of the log function.  For this reason, carefull y
normali zing the overall l evel of the signal would be expected to
be particularly important, and indeed the performance of root-
power representations has been shown experimentall y [37] to
depend strongly on the normali zation method.

Although root-power methods were originall y motivated by
auditory properties, they can, it seems, be best understood in
purely signal processing terms.

Some Properties of the Log and Root-Power Functions
log(1+x) = x – x2/2 + x3/3 ...   (1)

(1+x)
a
 = 1 + ax + a(a–1)x2/2! + a(a–1)(a–2)x3/3! ...

as a → 0, (1+x)
a
 → 1 + ax – ax2/2! + 2ax3/3! ....

                            = 1 + ax – ax2/2 + ax3/3 ....  = 1 + a.log(1+x)

Rewriting (1+x) as y, we get

log(y) → (y
a
 – 1)/a as a → 0

or, in terms of root powers, writing a = 1/n
log(y) → n( n√y – 1) as n → ∞ 

Also,
log(c+x) =  log(c) + log(1+x/c)
which, from equation (1),
= log(c) + x/c – x2/2c2 + x3/3c3 ...
which, for x << c
≅ log(c) + x/c
i.e. linear in x

7. DISCUSSION AND CONCLUSIONS

This paper has tried to describe and provide motivations for the
most common acoustic representation for speech recognition and
some variants that have been found to be useful in several
research centers, especiall y with noisy speech.

The philosophical case for taking what we know about the
human auditory system as an inspiration for the representation
used in our automatic recognition systems was set out in the
Introduction, and it seems quite strong.  Unfortunately, there
does not seem to be much solid empirical evidence to support
this case.  Sophisticated auditory models have not generall y
been found to be better than conventional representations
outside the laboratories in which they were developed, and none
has found its way into a major mainstream system.  Certainly,
there are successful approaches and features that are generall y
felt to have an auditory motivation—the use of the mel-scale,
the cube-root representation, and PLP.  However, this paper has
sought to show that they have no need of the auditory
motivation, and their properties can be better understood in
purely signal processing terms, or in some cases in terms of the
acoustic properties of the production process.  Other successful
approaches, such as LDA and the correlation metric, made no
pretense of having an auditory basis.

There might be a parallel with approaches to speech recognition
in general.  Up to as recently as a decade ago there was a
widespread feeling that the only way to achieve reall y effective
large-vocabulary continuous speech recognition would be to
understand how humans recognized grammatical sequences of
continuously spoken words.  Now we have large-vocabulary
continuous speech recognition based purely on statistical
methods, and the need to discover and copy what humans do is
felt to be much less.

And yet...  despite the present evidence, it seems that we must
surely have much to learn from what the human auditory system
does in representing the speech signal, and perhaps what the
human brain does in impli citl y understanding speech
production.  For example, harmonic structure in voiced speech
is nothing but a nuisance to be smoothed out in our spectral
representations; yet speech with a breathy excitation or
artificiall y excited with broad-band noise, which should be ideal
for our artificial representations, is, at least to this author’s ears,
much less clear than speech generated with normal periodic
voiced excitation.  Speech produced with a fundamental
frequency of 300 Hz, whose resulting harmonic separation
presents real problems for our current spectral representations,
especiall y in noise, seems to our ears to be no harder to



understand than speech produced with a typical adult male
fundamental frequency of 100 Hz.  Some support for this
subjective impression comes from a recent report [38] that
human difference limens on the frequency of the first formant
did not depend on F0 over a range from 100 Hz to 370 Hz.

It seems probable, then, that although the study of human
hearing and speech processing has contributed littl e to automatic
speech recognition so far, it does have potential to do so in the
future.  Nevertheless, it remains this author's view that we have
more to learn from studying and modeling human speech
production than we have from studying and modeling speech
perception.
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INTERVIEW:     Ben Gold
INTERVIEWER:    Andrew Goldstein
PLACE:            Berkeley, California
DATE:            15 March, 1997

Goldstein: Could you tell me something about your education and early career?

Gold: I graduated from Brooklyn Polytechnic in 1948 with a Ph.D. in Electrical Engineering, went to work for some small company 
in Manhattan for two years, then moved over to Hughes Aircraft Company in Culver City, California for three years. Since 1953 I 
have been an MIT Lincoln Lab employee, although now I am retired. I probably have always been interested in something to do 
with signal processing, although I didn't always call it by that name.

The important early work in digital signal processing came in a heavy flurry of activity in the early 1960s by Charlie Rader, myself, 
and several other people. I worked closely with Charlie, so I'm thinking in those terms. Before that I had been doing work which 
probably falls under the label of artificial intelligence. In those days we called it "pattern recognition." I designed a Morse code 
translator, which involved some signal processing but not very much. Then I got interested in the speech area. One day in late 
1959 or early 1960 I found myself at Bell Labs talking to a gentleman named John Kelly, who is now gone, and he was describing 
something called the Pitch Detector to me. He also talked about vocoders. I had heard of vocoders, but I hadn't been very aware 
of what it was all about. Kelly inspired me to look very carefully at the problem of finding the fundamental frequency of human 
speech. 

I was at Lincoln at that time, had already built the Morse Code Translator, and I came back and started working on this pitch 
problem. I did it just out of curiosity. In those days at Lincoln Lab you could almost pick and choose what you wanted to work on, 
up to a certain point. Working on pitch detection was considered okay, but my boss wanted to turn it into something "useful"

Goldstein: Who was that? 

Gold: That was a fellow named Paul Rosen. He said, "Well, if you have such a good pitch detector, shouldn't we build a vocoder 
that includes that pitch detector?" So that put me onto vocoders. Now, a vocoder, among other things, has many filters in it, and 
once you get into filters you are into signal processing. It was frustrating at the beginning because although the computer was 
capable of doing a good program for pitch detection, it really wasn't capable of simulating an entire vocoder. It was just too 
complicated. Nobody knew how to do filters on computers. So we were poised when we realized that, "Hey, maybe there's a way 
to do this." We got very excited, and we started doing a lot of work very quickly over a period of two or three years. That's where 
most of the work came from. 

Goldstein: I've been trying to track down the origins of digital filtering. I heard from someone that they had digital filters available 
to them in the early '50s. I'm not sure how to reconcile that statement with what you're telling me now

Gold: Even earlier, people use the computer to process signals in a way that could be called digital signal processing. I think the 
difference was that people like Kaiser, Rader, myself, and maybe a few other people saw the beginnings of what you might call a 
formal field of study. We produced an awful lot of stuff very quickly. We were vaguely aware of some of the seismic work, but it 
wasn't the same thing. Sure, they could program certain things, but they didn't have for example the notion of a finite impulse 
response filter, or an infinite impulse response filter. They certainly didn't have any notion at the time of the FFT, which was really 
kind of a bombshell. That was what created the digital signal processing as a real field, because it has so many possible 
applications. I still feel that the period starting with some of Kaiser's work, some of our stuff, and working its way up to the 
divulgence of the FFT, from '63 to '67, was when the whole thing exploded and became a real field. 

Goldstein: You said you started to drift into speech. Can you tell me about how that happened? 

Gold: Yes. I was interested in problems of this sort. I was 16 when I went to see the New York World's Fair. At the fair they had 
an exhibit of the Voder. It was fascinating. Here was a machine that kind of spoke. Not very well, but it spoke. I was more 



interested in some of the other things. There was an exhibit where if you won a lottery you could make a long distance call to 
anybody in the country through the Bell System, and everyone could listen in. I got a real kick out of that, but that didn't lead to 
anything later. The Voder, on the other hand, I always remembered. 

I think what really happened was more complicated, and let me try to trace it out. As I mentioned, I came to Lincoln in 1953 and 
was in a communications theory group. I worked there for a year, and then I got a Fulbright Fellowship and went to Rome, Italy for 
a year. I came back in '55 to the same group which now had a different name. It was called pattern recognition, and was one of 
the first groups in artificial intelligence. The group leader was a fellow named Oliver Selfridge He changed the subject matter of 
the group drastically, and that's why I worked on this Morse Translator, which was a form of pattern recognition. The group did 
well for a few years, but then the division heads at Lincoln Labs started to be unhappy with the group. Four people from the group 
were just arbitrarily transferred to Paul Rosen's group. A year later, the pattern recognition group was disassembled completely 
and it disappeared. We four engineers were left to work in another group. One of them left right away, but I stayed.

Goldstein: You were one of the four who were at first transferred before the rest of it was dissolved, then?

Gold: My interpretation is that they took the four best engineers and decided "we don't want the other people at all." When you got 
transferred to another group in those days at the laboratory, the boss didn't just come over to you and say, "Well, do this." He let 
you drift around and maybe pick up stuff from what other people are doing in the group, and he gave you carte blanche for a year 
or so. I had gotten interested in work that a fellow named Jim Forgie had been doing on speech recognition in a different group. I 
think probably my Morse Code work made me feel that this would be an interesting area to work on. 

When I came to work at Lincoln, they had big IBM computers, but they didn't have the kind of computers we're used to now or that 
we got used to a few years later. In other words, as an engineer for quite a while I never felt that I needed a computer. If you 
needed to solve a mathematical equation, the programmer would do it for you. So until about 1958, I had nothing to do with 
computers. The Morse Code work I did in pen and paper, and engineers built the device. I had nothing to do with the hardware. 

Around 1958 I began to feel that I had to learn something about these computers. I actually went to a school run by IBM for three 
weeks, and I discovered it was easy. I got interested. Then I discovered that at Lincoln labs there was a Computer Group who 
were pretty pioneering in the field of computer design. In particular there was a guy named Wes Clark, who was a great computer 
designer. Eventually I learned that they had built an enormous computer which really could do work in signal processing like 
speech recognition and pitch detection. Eventually I got to work with the TX-2. That really was the start of it

Goldstein: I still don't understand the difference between the kind of digital filtering that you started to work on, and the 
techniques that were already in the toolbox of engineers. You said that the seismic people were doing different things, but what 
was it that you needed to do that wasn't available in terms of digital filtering? 

Gold: Let's go back to the vocoder, because this is a good example. Here was one way that the work that I did operated in terms 
of practical use. First I started off with the notion that just because it's a nice thing to do I'd like to build a better pitch detector. 
From talking to Kelly, I felt that I could. 

Anyway, I programmed something on the TX-2 computer that turned out to be a good pitch detector. But how to prove it was 
tricky, because in order to prove that you have a good pitch detector you need a vocoder. You need to excite the vocoder with the 
result of the pitch detector. We didn't have a vocoder, but Bell Labs had a vocoder. So we actually took a 2-track tape down to Bell 
Labs. One track had speech on it, the other track had the results of my pitch work recorded as pulses, which were sort of in 
synchronicity with the speech. That 2-track tape was fed into the Bell Labs vocoder and we could hear and record the output. 

We brought the recording back and played it to our boss, Paul Rosen, and he said, "It sounds great. Let's build a vocoder." So 
that got us into what you might call analog signal processing. We didn't know how to build digital vocoders, so we actually built an 
analog vocoder and didn't do anything with the pitch detector except run programs.

After a while, we were able to test our own vocoder with our program pitch detector. It was slow: to analyze two seconds of 
speech took the computer about two minutes, 60 to 1 real time. So here is what we had to do. We had to take the speech down to 
the computer, run the speech in through the computer, run the pitch detector program, record, make our 2-track recording, and 



bring it upstairs to where the vocoder was. It was pretty slow. So we kept saying, "Wouldn't it be nice if we could program the 
vocoder on the computer?" So we went back to Bell Labs and visited Jim Kaiser. There may have been other people there, but 
he's the one I remember. He said he knew how to build certain digital filters. That was just what we needed. We said, "My God, 
this is fantastic." We could actually build digital vocoders. So we started furiously looking around for literature, and I found there 
was a book. Have you ever heard the Radiation Laboratory Series? 

Goldstein: Sure

Gold: It's in a volume published in 1947 called Theory of Servomechanisms by James, Nichols and Phillips. I had looked at that 
book many times, but there was one chapter that I had totally ignored. It was a chapter on sample data control systems. That 
chapter was written not by the main authors but by a gentleman named Hurewicz, who was a mathematician. He wasn't interested 
in our kind of digital filters at all, but he spelled out the theory in such a way that it could be used directly. It was a revelation. 

Here we were in 1963, and that chapter hit me like a bombshell. I practically memorized every word. Maybe a year or two earlier, 
Charlie Rader had come into the group. I had showed him how to use TX-2. He learned very fast. He and I both got very excited 
about it. It turned out that we were still pretty raw and didn't really know much. People brought up with doing analog work, analog 
filtering, found it very difficult to change their mindset to start thinking in terms of digital filters. At the time it didn't seem right. How 
could a filter be digital if it's analog? It didn't make any sense. But little by little we brainwashed ourselves. 

There was another person I wanted to mention, a fellow who worked at Lincoln. This is kind of a sad story. This is a guy named 
Joe Levin, who was working on seismic detection. Lincoln at that time had a large program to monitor the Kennedy-Khrushchev 
Test Ban Treaty in '63. The tests were underground, and so there was a big effort in distinguishing underground explosions from 
earthquakes. Joe Levin was a staff member working on that subject. He was a really smart guy who knew a lot of things. 
Fortuitously, we told him about our visit to Bell Labs and he said, "Listen, I am teaching a course in control theory, so I know all 
about these things, and I'd be happy to give you guys a few lectures." So he gave us four or five lectures, and it helped a 
tremendous amount. 

We got to the point where the three of us felt that we knew enough to write a really good paper on the subject. But then he got 
killed while he was driving on Massachusetts Turnpike. So Charlie and I wrote the paper, and it was a good paper. It was one of 
the early papers. At that point we were in the field, and despite the complaints of our bosses, who really didn't see the big picture, 
we kept working on it without getting fired.

Goldstein: Was the pressure from above ever serious? 

Gold: Well, at Lincoln things were really pretty hands-off, but we had been doing all this vocoder work, we had published it, and 
we had been making an impact. My boss saw that we had kind of been neglecting it. One day he met me in the hall and he said, 
"Why the hell aren't you guys working on vocoders?!" I mean, he yelled at me. My response was, "We will, we will." But we kept 
working on digital signal processing. We did a little more work on vocoders, and the two fields eventually came together.

Goldstein: It sounds like the field was emerging, and you needed to coalesce.

Gold: Yes. By the way, other people were involved. Jim Kaiser was definitely involved. There was a gentleman named Hank 
McDonald, although I don't even know if he's still living. He was Jim's boss, and he actually didn't do much research, but he was 
very interested in pursuing the area and encouraged Jim to work on it

Goldstein: At the time, did you feel any need to define the field that you were working in. It was sort of in between a few areas, it 
was not very well defined. Did you feel any personal need to have it defined, and if so, how did that process work? 

Gold: It worked in a strange way. Like all processes. Let me mention a few other characters. In 1966, there was a gentleman 
named Ken Stevens who was a speech guy on the faculty at MIT. He had gotten to know me through my vocoder work, and 
called me up one day to ask me if I like to spend a year at MIT as a visiting professor. After a little bit of discussion with my bosses 
at Lincoln, it worked out. Charlie and I thought at the time that we had enough material to write a book on vocoders. But this DSP 
stuff kept coming along, and by the time I got to MIT and started teaching a course, it was basically a DSP course. So the 



emphasis had shifted slowly.

Another thing happened. While I was at MIT, a guy who used to be my first boss at Lincoln, Bill Davenport, asked me if I would 
make contact with Al Oppenheim. Al at that time was a tenure track assistant professor. He had graduated several years before. 
He was doing work on something that he called homomorphic filtering. Al looked me up, and we exchanged information. He told 
me what he was doing, I told him what I was doing. 

We became friends, and at one point we went down to Bell Labs. They deserve a lot of credit, there's no doubt. We spoke to a 
fellow named Bruce Bogert. Now Bruce was not a DSP guy, particularly. He was interested in a lot of different things, and one of 
his interests again was earthquakes. He had come up with the idea of cepstrum. Now it turns out that Oppenheim's homomorphic 
filtering was also the idea of cepstrum. They are almost synonymous. The two of them went at it and really had a great discussion, 
and they both saw good stuff in what the other person had been doing. So that encouraged Oppenheim to continue work in that. 

The other thing that happened was Oppenheim got very interested in what Charlie [Rader] and I were doing. And just around that 
time the FFT hit. And it was actually an interesting story about how it hit. I was teaching this course, and it was mainly a course on 
digital filtering the Z transform, different kinds of filters. There was a lot of stuff along the lines of applications to vocoders. I had a 
TA, a teaching assistant, named Tom Crystal, who was still a graduate student. Well, a lot of MIT students spend time at Bell 
Labs. One day, during the 1966-67 academic year, when the course was nearly finished, he brought a little document to me after 
class. It was by Cooley and Tukey. At that time it hadn't been published as a paper, as a journal article, but simply as an internal 
memo. 

I can tell you my reaction. After the first few paragraphs the hair stood up on my head. I said, "This is unbelievable, and I know 
that this is very, very important." The rest of the paper, I couldn't understand at all. It was all mathematics, and I was just not good 
at that. It was quadruple sums, really complicated stuff. It was just algebra, but it was very hairy. So I asked Charlie, who is better 
at that than me, and Tom Stockham, to ÒtranslateÓ, because I knew it was important. They came up with some wonderful, 
wonderful ways of looking at it, which I think actually sparked the whole field. 

At that point, given Oppenheim's work, given the FFT, and given the stuff on digital filters, we said, "There's a book here," and 
Charlie and I sat down. I had written a fair amount of stuff already for my class, and we just sat down, we said "we're going to 
write a book, we're going to get Oppenheim to write a chapter, going to get Stockham to write another chapter." Charlie wrote the 
chapter on the FFT, and that was our book. 

Goldstein: What was Stockham's particular area of expertise? 

Gold: Stockham was an assistant professor and a good friend of Oppenheim on faculty at MIT. His advisor was Amar Bose, and 
he was interested in the kind of things that made Bose rich, like the impulse response of a room. He was doing that kind of work, 
but he was paying attention at that time to what was going on in DSP. He conceived idea of high speed convolution, which was a 
way of filtering using FFTs. It was a breakthrough paper, and that was the main topic of his chapter in our book. By that time 
Charlie and I had written four or five papers on the subject, and we were deeply, deeply into it. Of course by that time the world 
was deeply into it. There was a lot going on.

Goldstein: In the early '60s or late '50s was any desire or interest in defining this field:

Gold: I'd say that we were interested in defining the field. From my point of view, once I understood Hurewicz's chapter in The 
Theory of Servomechanisms, I felt that this was already a field. Just a few years later I actually offered to teach a DSP course. We 
had done quite a lot of work on quantization effects, on different kinds of filtering. Here was a whole field that we just called digital 
filters. The reason it became more than that was because of the FFT. We knew that there was such a thing as a discrete Fourier 
transform, but it seemed much too "clugey," because you need n2 operations. But if you do it with nlogn, it makes a whole world 
of difference

Goldstein: How did the FFT open the field up beyond digital filtering. What things became possible?

Gold: If you look at the DFT, the FFT is simply a way of doing the DFT, but it makes looking at the DFT very interesting. With the 



DFT you can, for example, define a filter bank, or you can define individual filters. There are enormous connections between 
different kinds of digital filters and different kinds of ways of dealing with the DFT. So the whole thing becomes a unified field. 
Things that really weren't possible to compute were now computable. I think that was probably the most significant point. You can 
compute things like Hilbert transforms, filters with complex parameters rather than real parameters, and things that you just 
couldn't do in the old system.

For example, a fellow named Bob Lerner at Lincoln had spent an enormous amount of time and money just building an analog 
delay line for audio frequencies. Well, that's completely trivial on the computer. The field now not only had a theoretical basis, it 
had a computational basis. I think that's why it really prospered, because you could do anything. As computers got faster, it turned 
out that things that took an IBM computer the size of a room could be done on a chip. 

Goldstein: Did that computational capacity change the focus from theoretical work to application work? 

Gold: No, I would say that computation and theory became very strongly integrated so that you could do both at one time, and 
that had a tremendous effect on how the field grew. Because you could try something out and you could actually see what 
happened on the computer very quickly, and that gives you insights that you couldn't get just with paper and pencil.

Goldstein: That's similar to digital filters in the beginning of the '60s where you were able to try different vocoders without having 
to actually build them.

Gold: That's right, and we did. It was pretty slow compared to what we can do now, but it was fast enough that we felt it was really 
worth doing.

Goldstein: Let me step back for a second, because we moved past your pitch detector machine. Can you put the development of 
the pitch detector in the context of the technology that was available at the time? What did you want to do that was different than 
earlier pitch detectors and what tools did you have available?

Gold: This short-lived pattern recognition group still had some very interesting notions. One of the notions that Oliver Selfridge 
advanced he called Pandemonium. He always had tricky names for things. He thought this was some sort of paradigm for how the 
brain operates. His idea was there are many, many independent modules in the brain, and they all go their own way, doing what 
they like to do, but somehow, in solving a pattern recognition problem, they get together and produce a good answer. What this 
says, in terms of engineering, is perhaps a single algorithm isn't sufficient to get a particular result. Maybe you need several 
algorithms which are quasi-independent. 

This inspired me when I worked on pitch detection. I put together six little elementary pitch detectors. I had a method which was 
really nothing more than a histogram, a probability estimate of what these different pitch detectors told me about what they 
thought pitch was. The combination of these six elementary detectors led to a single detector which was better than any of them. 
It was quite good. So that was an important background for my work on pitch detection, but not particularly for the DSP. It was 
really for the pitch detector

Goldstein: Could you tell me about the class that you were teaching in DSP? Was this the first instruction they had at MIT in this 
area?

Gold: This was probably the first time anywhere. It was 1966-67, and they just made an announcement. I had a fairly large class, 
maybe 20 people. One of them was Larry Rabiner. He was a grad student at the time, and that year while I was there Larry and I 
shared an office. We got to be friends. He was a very smart guy. By the time he graduated in 1967 he already knew a lot of stuff 
on speech and on DSP. He was the one guy who I really remember well. There are other people who took my class who have 
done okay, but he became a star. Al Oppenheim did not take the class; he just came and spoke with me, about the time the class 
was finishing. Tom Crystal sat in on it. He was a TA, and he has done fairly well. I forget where Tom is now, but I know that he 
was a committee chairman for IEEE, probably for the Signal Processing Committee.

Goldstein: So the class was intended for graduate students? 



Gold: The class was definitely intended for graduate students, and I think there were only graduate students in it. This was very 
new stuff. It wasn't that it was terribly difficult. I think what was hard about it was the fact that your mindset had to change. The 
idea that you could, with a computer, do a filter, which had always been a coil and a capacitor, seemed very strange. It was very 
strange to me, and I think to many people.

Goldstein: When you started working with digital filters, you had to be conscious of things like quantization effects. Were there 
design considerations from the analog world that you could forget about?

Gold: Well, the basics about digital filters can be summed up as sampling and quantization. Sampling is a very basic thing, and 
what it tells you is that whatever filter you build, its frequency response is periodic in frequency. That's very different than analog 
filter. The question becomes, "What do I do about that? How do I handle it?" The way you handle it, most of the time, is that at the 
very end, you build an analog filter to get rid of all those periods and save only the main period. 

[End of tape 1, side a] 

Gold: Accuracy is a very key question in both analog and digital filters. In the analog filter world, what people used to do first was 
what's called the approximation problem. That is, you find a mathematical function that does the kind of filtering you expect. That's 
the least of your worries in the analog domain. What you really worry about is how to build it. There's been a whole slew of 
volumes on techniques for building better analog filters that are less sensitive to perturbations in the parameters, because you 
can't build a coil that's exact. You can come pretty close digitally. But in the analog world what you try to do is develop a structure 
that is less sensitive to variations. So that's a whole big field, and occupied many people at Bell Labs and other places through the 
'20s and '30s and '40s. 

Now, when you come to build a digital filter, first of all you have a sampling problem, which we mentioned, and that is not terribly 
difficult to get around. The quantization problem is now becoming less difficult, but it was quite a problem. You could think of 
quantization as just noise, and you don't want a noisy filter. The question is how much noise for how much word length. Charlie 
and I at the very beginning actually worked out some theoretical results. We said, "You've got to do it this way, and these are the 
answers, here are some numbers." But even that isn't enough, because depending on the structure of your digital filter you have 
more or less sensitivity to the parameters in the digital filter just as you do in the analog domain. So we had to figure out better 
structures. A lot of people did a lot of work on that, and that went on for maybe 10-15 years.

Goldstein: Can you relate the work you did on quantization issues to that done by Widrow? Were you after the same issues? 

Gold: It's my impression that Widrow did a lot of work on what later came to be called neural networks a long time before anyone 
else. But that had nothing to do with digital filters at all.

Goldstein: That's true, but he did get involved with neural networks after working on adaptive filters. His Ph.D. had been on 
analyzing the noise from quantization.

Gold: All I can say is that I wasn't aware of what Bernie did, and we had no connection in that sense. I may have done the very 
same thing that he did and I didn't know. 

Goldstein: You mentioned a few names that I've heard before, people who were in this community at MIT. Could you lay out for 
me the social relations in that community? Was everybody on the same plane as colleagues, or were there senior people? 

Gold: The people I've mentioned are Rabiner, who was a grad student, Oppenheim who was tenure track faculty, and Stockham, 
who was also tenure track faculty. These are the three people who were associated with MIT except for Charlie and me. We were 
also associated with MIT working at Lincoln Lab. 

Goldstein: I've heard Tom Stockham's name come up as an inspiration. He was described as being important intellectually and 
also socially. 



Gold: Tom was a good friend of Al Oppenheim. Larry Rabiner was not as close. I'm not sure if he even knew Al Oppenheim at the 
time, but he knew me because of the class. Charlie and I worked together, and so Charlie knew everybody that I knew. I know 
that Al and Tom were really good friends, because Al bought Tom's house in Lexington. So Tom, Al, and I became quite good 
friends. Charlie and I didn't become great friends, but we worked together for a lot of time. After a while many other people got 
interested. I have a very good friend, Joe Tierney, who two or three years later suddenly realized, "Hey, look what these guys did. 
I want to learn it too." He started really doing stuff. 

Charlie, Larry and I were definitely interested in audio processing. I think Al was more of a mathematical type, and I think Tom 
was also interested in audio processing. But at a certain point the radar people got interested. You're talking two orders of 
magnitude more speed from radar compared to audio, maybe three orders, and yet the possibilities were looking so good that 
even radar people started fooling around with this. Eventually, a lot of DSP came out of radar.

Goldstein: When you say the radar people, do you have anyone specific in mind? 

Gold: The only name that comes to mind is a fellow named Ed Muehe, and it was peripheral with him. I mean, he was interested 
in it. There was also a fellow named Bob Purdy. Purdy was a good radar guy. What actually happened was that in the late '60s, I 
came in one day to my boss and said, "Isn't this DSP stuff great. Why don't we build a computer based on it." It was quite a 
provocative statement, to build a whole computer. Anyway it turned out we did, and it cost a lot of money. It was a big computer. 
From end to end, it probably covered this entire room.

Goldstein: So it was about 25 feet square? 

Gold: It was big, yes. It was called the Fast Digital Processor, the FDP, and it was built with in-house funds. Somehow my boss 
felt strongly enough about it that he was able to find the money. For many years they had what they call line item money, money 
that just came in through the Air Force or some agency like that, which was pretty automatic. Then there was other money that 
you had to apply for. So if something came along that the managers felt was good but not sponsorable, they'd use in-house 
money. The Fast Digital Processor, was built with in-house money. It cost a lot of money, and the directors got very antsy about it 
towards the end. So they said, "We've got to use this for something useful. Let's use it for radar." So we all became radar people. 
For a few years we worked on radar, and Muehe and Purdy were people that I worked with, but it was really the same people, like 
Charlie and me, who were pushing radar DSP.

Goldstein: Was there similar work going on elsewhere? 

Gold: Oh, I'm sure there was. By that time the whole world was working on it. I'm just talking about what I know at Lincoln. I know 
that, for example, at Bell Labs they had built a very nice piece of software that they called BLODI, which stands for Block Diagram 
Compiler. It was basically a macro program where you could specify DSP blocks and have the computer assemble it and give you 
an algorithm. Charlie actually liked that program so much that he built something called PATSY for our computer. I don't 
remember what it stands for anymore. It was a nice algorithm. There was that kind of work going on with us and elsewhere. 

In the late '60s, Al came to Lincoln for two years and worked on what he called the homomorphic vocoder. It was a way of using 
his mathematics to build really a new type of vocoder algorithm, which is now a standard. Oppenheimer is one of the great guys. 
After those two years he went back to MIT and organized the first really intensive graduate course on DSP. From the course he 
wrote his book, which became as close to a best seller as a DSP book can be. But that was already into the 1970s.

Goldstein: When you said that you suggested to your boss that you build a computer based on DSP, what do you mean by that? 
Based on DSP or to do DSP functions? 

Gold: So it could do very fast FFTs and very fast digital filters. The thought was about parallelism. These days of course you can 
build huge parallel processors, but in those days it wasn't that easy. So what I proposed was four individual processors, each 
running in parallel, and if you structure the computer correctly it can do digital filtering and FFTs four times as fast as if you only 
had one processor. 



Now of course nearly anything you build, as you probably know, becomes obsolete by the time you finish building it. By the time 
we finished building the FDP, technology had advanced to the point where we now could do the same thing with raw speed. We 
actually built a succession of computers which were a lot simpler, but very fast for those days, to do signal processing. We no 
longer used the rather awkward structure of the FDP. It was good in its time, for a few years. We wrote a paper on it, and it was 
nice, but it became obsolete very quickly.

Goldstein: Who was the boss who was interested in seeing it applied to radar? 

Gold: I would single out Jerry Dineen, who was director of Lincoln in the '70s. Paul Rosen, who had my group leader, was an 
associate division head by this time, so he was my boss's boss. His boss was Walter Morrow, who is now the Lincoln Lab 
Director. The names I would pick were Dineen, Rosen, Morrow, and Irwin Lebow, who was sort of my direct boss. These were the 
people who pushed radar. One of Lincoln's big things of course is radar, computers and communication. That's what it was 
founded on. DSP was sort of an orphan for a while. The directors didn't see that this was anything wonderful. But later on they did. 
It took a few years

Goldstein: You made a comment that people needed to change their mind set to see the digital filtering world. Was that a very 
serious issue with some people?

Gold: I think it was pretty serious.

Goldstein: Were there some people who weren't able to readjust? 

Gold: I think some people felt that, and maybe still do to some extent. At the time that Oppenheim was teaching his course, Louie 
Smullin, who was a microwave person, was the chairman of the EE department. Louie didn't think there was anything interesting 
in DSP. It was just signal processing: "We know signal processing, why get so involved?" He just didn't see it at all. Another 
person is Bill Siebert, who eventually integrated it into his classes. He is another professor at MIT. But at first Bill didn't think that it 
was that important. So, you know, things take time.

Goldstein: I'm interested in following the progress of research of this kind into functioning systems. A lot of the people never 
pursued that, or never really followed it. It sounds like you were a little more involved with actual systems.

Gold: We could build interesting systems using these ideas, and also could write interesting computer programs. Eventually the 
two things merged. When we first started working on this, we would write a program, it would be non-real time, and we would get 
results which would indicate how good or bad our algorithm was. We would polish it up, and then we would turn it over to a 
hardware man who could build it and make it run much faster than we could. Eventually the technology sort of merged so that the 
designer would simply write a program or make a chip. You know, the two became one in a sense.

Goldstein: When did that happen? 

Gold: I'd say by the 1980s it was clear that was happening. Maybe other people more visionary could see it sooner, but I think the 
whole thing was really sparked by the integrated circuit revolution. Things were obviously getting faster, smaller, better, and the 
DSP people knew that. I think anybody could see that something that you build on a board today in five years would be on a chip. 
That was sort of common knowledge

Goldstein: Were you aware that any of the work that you were doing or the work that you saw going on around you was showing 
up in commercial systems of any kind or in you know functioning hardware? 

Gold: Yes. The person who comes to mind first is a fellow named Lee Jackson. Lee worked in Bell Labs and he knew Jim Kaiser. 
He was a younger person, and within two or three years after we started doing our stuff he got very involved and got to be very 
good at it. In the late '60s he left Bell Labs and he either formed or joined a company to build digital filters. I don't know how 
successful it was, but he's the one who comes to mind. There may be many other examples.



Goldstein: When you sell a digital filter, is it just software that runs on a computer that your client already owns? 

Gold: No, probably in those days it was real hardware. It was a special purpose piece of hardware that did only that, that you 
couldn't program or anything. It was faster and smaller.

Goldstein: Who was using these? 

Gold: Good question. I don't know if the company went out of business or is still in existence. My guess is they didn't really sell a 
lot. I think chips came along and the whole thing became a different game. I never paid much attention to what happened 
commercially and how much money people made. My guess is that the integrated circuit revolutionÑit wasn't really a revolution, it 
was an evolutionÑkept getting better and better. All sorts of digital devices were being fabricated and sold in many different ways 
by people like Intel and other places. I think that DSP devices were just part of that game. When people had to do something, and 
it needed some digital filters, they put in some digital filters. There was no big deal anymore. It was just another component. You 
could probably program it in most cases. It fell into the whole area of integrated circuit technology.

Part of it was still theoretical. In fact, at a certain point I more or less crawled out of the field and just got back into speech. There 
were all these professors with their graduate students, and they were doing stuff that on the one hand was just too advanced for 
me because it had lots of math, and on the other hand was sort of a waste of time. It was just being done to get a thesis out.

Goldstein: That's interesting. When did that start? When did you start to have that feeling? 

Gold: I'd say that by the mid-seventies I was entirely involved in speech work, building vocoders, analyzing them, getting more 
involved in perception, which is something I am still doing now, but not really doing theoretical work in DSP. That was really just a 
few years of stuff for me.

Goldstein: I see

Gold: It was a few years of theoretical work, then a few years of work in which I was pretty heavily involved in computer design for 
DSP, and after that just drifting back into speech.

Goldstein: Were you involved when linear predictive coding became an important issue? 

Gold: We got involved very quickly. What happened there was interesting. Remember I mentioned that we were doing radar 
work? One of the reasons that we were doing radar work was that the funding for speech work had dried up, and that was one of 
the reasons directors ordered us to do radar work, "because we can give you money for that." All of a sudden LPC came along, 
just another bombshell.

Goldstein: Tell me when.

Gold: I'd say very late '60s, early '70s, probably going into up to the mid-seventies. In any case, we jumped into that pretty 
quickly. We had a fellow named Ed Hofstetter who was actually an old microwave person. He wasn't that old, but he came from 
microwave. He got interested in speech, and got interested in programming, something he had never done, and he got very good 
at it. He was also a good mathematician. When LPC came along, he was one of the first to really pick up on it and understand it. 
He said, "I could write a real time program using the FDP." At that time nobody could do real-time computation on a general 
purpose computer to do LPC.

Goldstein: The FDP? 

Gold: The Fast Digital Processor. It was a fast computer. He actually programmed the first real-time LPC on the FDP. So that got 
us back into the speech area, and we actually did quite a bit of work on LPC.



Goldstein: Why did that get you back into the speech area?

Gold: Well, because LPC caused the funding switch to open again, and we got money, and were able to work on stuff. Just 
before that there had been a flurry of work on just DSP theory, and new filter structures had been invented, and Hofstetter, among 
others, also programmed those on the FDP. It was very useful to have a fast computer, because the ability to do things in real 
time turns out to be an important issue.

Goldstein: Can you tell me how you became aware of LPC and just re-create that sequence? 

Gold: Either Schroeder or Atal came down to MIT and gave a lecture. We attended, and it was something that seemed very odd 
to us, because it was a whole different way of looking at how you build a speech processor. But after a little bit of fussing and 
thinking about it, we realized this was very powerful, and we got into it. I'm trying to remember whether people in our group did 
any theoretical work on it. I know that building the first real time LPC was a nice innovative thing, but in terms of any theoretical 
work, I don't think the people at Lincoln contributed. I learned about LPC, but I didn't contribute to any of the theory.

Goldstein: You said it struck you as a strange way to build a speech processor, but LPC wasn't necessarily limited to applications 
in speech, was it?

Gold: No, it came out of auto-regressive analysis, which was used in the statistical domain a lot

Goldstein: Right

Gold: But it had never occurred to me that it could be used for speech. That was the nugget, the fact that somebody, either 
Schroeder or Atal at Bell Labs thought, "Hey, this might be a new speech processor." 

Goldstein: I see. So in their lecture they said that?

Gold: Yes. They probably spent a year or two working quietly at Bell Labs building something, programming something, and then 
they were ready to announce it. When they did, everybody in the world picked it up. And they are still picking it up. 

Goldstein: The way you've been talking up to now, it makes it sound like digital signal processing was synonymous with digital 
filtering. I don't want to say something like that unless I've checked it. Is that the way it was used back then? 

Gold: That's the way I thought of it. Until the FFT came along, I didn't see any particular use for these Z transforms and all the 
theoretical stuff aside from programming, building, and analyzing filters. Now, it's true that when you build something like a 
vocoder the major part of the computation is definitely filtering, but you also do other things. You do rectification, and you do low 
pass filtering in addition to band pass filtering. You have to do down sampling. There are several other functions that take place, 
but they all seem very, very trivial. We could have done those functions ten years ago on computers. They were easy, but filters 
were hard. So I'd say filters were the heart and soul of DSP.

Goldstein: You said that by the mid-seventies you had gotten out of digital signal processing and were concentrating on speech.

Gold: Well, I got out of it in the sense that I didn't sit down and try to do new theoretical things. I paid attention to the field. I used 
these things all the time as a matter of course.

Goldstein: That's what I wondering: how somebody could be doing speech without these tools.

Gold: Oh, no. I use them to this very day. I'm always using DSP things, I'm always thinking in terms of cepstra or Hilbert 
transforms, things like that, and thinking of them in a digital way. But this is all textbook stuff now.



Goldstein: Could you tell me highlights from say the mid-seventies up to the present day of new techniques that arrived that one 
could use in applications such as the ones you are interested in? 

Gold: Well, LPC was new.

Goldstein: But LPC in the late '60s.

Gold: And LPC really can't even be done analog. It's by definition a digital process. What you're doing is saying, "I predict this 
sample on the basis of n previous samples." So it's automatically digital. LPC is certainly a big thing. There have been some nice 
things. I'm thinking of the different ways you could look at auto-regression, like maximum entropy ideas. There have been many 
things along those lines that have to do with the mathematics of linear prediction, but none of them really are in the same category 
as just the invention of LPC itself, or the FFT, or the fact that you could build digital filters. 

Goldstein: It sounds to me like you're saying that applications have been absorbing these major pillars since the late '60s.

Gold: What I'm saying is the reason that it's such an important area is because of integrated circuits and the ability to combine 
theory and computation. You can realize things and do it all, and connect it with theory very strongly.

Goldstein: Yes, I've heard you clearly.

Gold: That just couldn't be done until integrated circuits and things like the FFT came along.

Goldstein: Thank you very much.
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