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Maximum Likelihood Classification

Consider the problem of assigning a measurement to one of two sets:
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What is the best criterion for making a decision?

Ideally, we would select the class for which the conditional probability is highest:

However, we can’t estimate this probability directly from the training data. Hence,
we consider:
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Clearly, the choice of  that maximizes the right side also maximizes the left side.
Therefore,

if the class probabilities are equal,

A quantity related to the probability of an event which is used to make a decision
about the occurrence of that event is often called a likelihood measure.

A decision rule that maximizes a likelihood is called a maximum likelihood
decision.

In a case where the number of outcomes is not finite, we can use an analogous
continuous distribution. It is common to assume a multivariate Gaussian
distribution:

We can elect to maximize the log, rather than the likelihood (we refer

to this as the log likelihood). This gives the decision rule:

(Note that the maximization became a minimization.)

We can define a distance measure based on this as:
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Note that the distance is conditioned on each class mean and covariance.
This is why “generic” distance comparisons are a joke.

If the mean and covariance are the same across all classes, this expression
simplifies to:

This is frequently called the Mahalanobis distance. But this is nothing more
than a weighted Euclidean distance.

This result has a relatively simple geometric interpretation for the case of a
single random variable with classes of equal variances:
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The decision rule involves setting a threshold:

and,

If the variances are not equal, the threshold shifts towards the distribution
with the smaller variance.

What is an example of an application where the classes are not
equiprobable?

a
µ1 µ2+

2
------------------ 

  σ2

µ1 µ2–
------------------ P c 2=( )

P c 1=( )
--------------------- 

 ln+=

if x a< x c 1=( )∈
else x c 2=( )∈
ELECTRICAL AND COMPUTER ENGINEERING



JANUARY 24, 1996 EE 8993: LECTURE NO. 7 PAGE 4 of 5
Probabilistic Distance Measures

How do we compare two probability distributions to measure their overlap?

Probabilistic distance measures take the form:

where
1.  is nonnegative
2. J attains a maximum when all classes are disjoint
3. J=0 when all classes are equiprobable

Two important examples of such measures are:

(1) Bhattacharyya distance:

(2) Divergence

Both reduce to a Mahalanobis-like distance for the case of Gaussian vectors
with equal class covariances.

Such metrics will be important when we attempt to cluster feature vectors
and acoustic models.
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∞–

∞

∫=

J

JB f x c x̂ 1( ) f x c x̂ 2( ) x̂d

∞–

∞

∫ln–=

JD f x c x̂ 1( ) f x c x̂ 2( )–[ ]
f x c x̂ 1( )

f x c x̂ 2( )
----------------------ln x̂d

∞–

∞

∫=
ELECTRICAL AND COMPUTER ENGINEERING



JANUARY 24, 1996 EE 8993: LECTURE NO. 7 PAGE 5 of 5
Probabilistic Dependence Measures

A probabilistic dependence measure indicates how strongly a feature is
associated with its class assignment. When features are independent of
their class assignment, the class conditional pdf’s are identical to the
mixture pdf:

When their is a strong dependence, the conditional distribution should be
significantly different than the mixture. Such measures take the form:

An example of such a measure is the average mutual information:

The discrete version of this is:

Mutual information is closely related to entropy, as we shall see shortly.

Such distance measures can be used to cluster data and generate vector
quantization codebooks. A simple and intuitive algorithms is known as the
K-means algorithm:

Initialization: Choose K centroids

Recursion: 1. Assign all vectors to their nearest neighbor.

2. Recompute the centroids as the average of all vectors
assigned to the same centroid.

3. Check the overall distortion. Return to step 1 if some
distortion criterion is not met.
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c 1=

K

∑ P x xl=( )
P x xl= c ĉ=( )
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