| Time | MWF: 8 - 9 AM | 
| Place | 330 Simrall | 
| Instructor | Joseph Picone, Professor | 
| Office | 413 Simrall | 
| Office Hours | 9-10 MWF (others by appt.) | 
| picone@cavs.msstate.edu | |
| Class Alias | ece_8990_pr@cavs.msstate.edu | 
| URL | http://www.cavs.msstate.edu/research/isip/publications/courses/ece_8990_pr | 
| Textbook | R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, Second Edition, Wiley Interscience, ISBN: 0-471-05669-3, 2000 | 
| Suggested Reference | R. Schalkoff, Pattern Recognition: Statistical, Structural, and Neural Approaches, Wiley Interscience, ISBN: 0-471-52974-5, 1992 | 
| Prerequisite | Statistics, Signal Processing, many years of research, and attendance at a lecture where the speaker proudly exclaimed "PCA Fails!" | 
| Other Reference Materials | Pattern Recognition Applet Statistical Signal Processing Publications Statistical Signal Processing Software Internet Links | 
| Item: | Due Date: | Weight: | 
| Critical Review No. 1 | 02/06 | 33% | 
| Critical Review No. 2 | 03/20 | 33% | 
| Final Exam | 05/09 | 34% | 
| Class | Date | Sections | Topic | 
| 1 | 01/08 | 1.1 | Introductions | 
| 2 | 01/10 | 1.2, 1.3 | Overview: Pattern Recognition in Action | 
| 3 | 01/12 | 2.1, 2.2 | Bayes' Decision Theory | 
| 4 | 01/17 | 2.3 - 2.5 | Classifiers and Discriminant Functions | 
| 5 | 01/19 | 2.6, 2.7 | Gaussian Densities | 
| 6 | 01/22 | 2.8, 2.9 | Error Bounds, Discrete Features | 
| 7 | 01/24 | 2.10, 2.12 | Missing Features, Context | 
| 8 | 01/26 | 2.10 | Bayesian Belief Networks | 
| 9 | 01/29 | 3.1-3.3 | Maximum Likelihood Parameter Estimation | 
| 10 | 01/31 | 3.5 | Bayesian Parameter Estimation | 
| 11 | 02/02 | 3.6, 3.7 | Sufficient Statistics | 
| 12 | 02/05 | 3.8 | Component Analysis | 
| 13 | 02/07 | 3.8 | Discriminant Analaysis | 
| 14 | 02/09 | 3.9 | Expectation-Maximization | 
| 15 | 02/12 | 3.10 | Hidden Markov Models - Overview | 
| 16 | 02/14 | 3.10 | Definitions and Basic Calculations | 
| 17 | 02/16 | 3.10 | Training and Learning | 
| 18 | 02/19 | 3.10 | Continuous Distributions and Mixtures | 
| 19 | 02/21 | 4.1 - 4.3 | Parzen Window | 
| 20 | 02/23 | 4.5 - 4.9 | Nearest Neighbor | 
| 21 | 02/26 | 5.1 - 5.3 | Linear Discriminant Functions | 
| 22 | 02/28 | 5.4 - 5.6 | Two-Class Linearly Separable Data | 
| 23 | 03/02 | 5.7 - 5.12 | Support Vector Machines | 
| 24 | 03/05 | 6.1 - 6.3 | Multilayer Networks, Backpropagation | 
| 25 | 03/07 | 6.4 - 6.9 | Bayes Theory, Practical Issues | 
| 26 | 03/09 | 6.10, 6.11 | Additional Networks, Regularization | 
| 27 | 03/19 | 7.1 - 7.2 | Simulated Annealing | 
| 28 | 03/21 | 7.3 - 7.4 | Boltzmann Machines | 29 | 03/23 | 7.5 - 7.6 | Evolutionary Methods | 
| 30 | 03/26 | 8.1 - 8.2 | Decision Trees | 31 | 03/28 | 8.3 - 8.4 | CART | 
| 32 | 03/30 | 8.5 | String Matching | 
| 33 | 04/02 | 8.6 | Grammatical Methods | 
| 34 | 04/04 | 8.7 | Rule Based Systems | 
| 35 | 04/06 | 9.1 | Occam's Razor | 
| 36 | 04/09 | 9.2 | No Free Lunch Theorem | 
| 37 | 04/11 | 9.3 | Minimum Description Length | 
| 38 | 04/16 | 9.4 - 9.5 | Resampling Techniques | 
| 39 | 04/18 | 9.6 - 9.7 | Comparing and Combining Classifiers | 
| 40 | 04/20 | 10.1 - 10.3 | Unsupervised Learning | 41 | 04/23 | 10.4 - 10.7 | Clustering | 
| 42 | 04/25 | 10.8 - 10.14 | Advanced Clustering Techniques | 
| 43 | 04/27 | Review | Parameter Estimation | 
| 44 | 04/30 | Review | Classification Based on Noisy Parameters | 
| 45 | 05/02 | Review | Speech Recognition Applications | 
| 46 | 05/05 | Final Exam | Evaluation Deadline |