Statistical Classifier Report

ECE 8443
Pattern Recognition
Prepared by

Danny Parker

28 April 2009

The purpose of this report is to evaluate if a general multivariate normal Bayes classifier can adequately classify signals generated at different temperatures. If the signals cannot be adequately classified can some form of preprocessing be done to improve performance? Further this report will compare Matlab’s NaïveBayes method to a standard implementation.

The general multivariate normal Bayes classifier makes the underlying assumption that the distributions are normal multivariate with an arbitrary covariance matrix. Even though all the processes reported are not normally distributed the assumption of normality generally holds due to the Central Limit Theorem. The discriminant function is given by

[image: image7.wmf])

(

ln

ln

2

1

2

1

1

0

i

i

i

i

i

i

P

w

w

+

å

-

å

-

=

-

μ

μ

t

 (1)

where

[image: image2.wmf],

2

1

1

-

S

-

=

i

i

W

 (2)

[image: image3.wmf],

1

i

i

i

w

m

-

S

=

 (3)

[image: image1.wmf]0

)

(

i

t

i

i

t

i

w

x

w

x

W

x

x

g

+

+

=

 (4)

Matlab’s Naïve Bayes classifier is poorly documented but from what can be gleaned it works similar to equation 1. The main differences arise from the fact that only the diagonal elements of the data covariance matrix are used and it applies kernel smoothing.

The signals to be classified were taken from four accelerometers and a thermocouple on a structure. While the data was being taken the structure put at various temperatures and various states of damage. The temperature profile of the test can be seen in Figure 1 and the damage states are shown in Table 1. The feature vector from these signals will be generated three different ways, FV1, FV2, and FV3, for classification. The first way the 2-norm of the covariance and the temperature data will be used for classification. The second way each term of the upper triangular part of the covariance along with the temperature will be used as features. The upper triangular portion is used because the covariance matrix is symmetric thus removing redundant information. FV3 will utilize all the entries in the covariance matrix plus the temperature as feature vectors. So to clarify, FV1 has 2 features while FV2 has 11 and FV3 has 17. The nature of the classes is such that the as they go from 1-9 the state of nature they represent is more distinct than the previous ones. The ultimate goal is to correctly classify the damage state regardless of the temperature.
[image: image4.jpg]Temperature Profile
140
T T T

10 -

100 -

sl -

6of =

w0 -

g

anf- —

| | | | | | | I
5[IEI 20 400 600 800 1000 1200 1400 1800 1800
Sample Number

Figure 1 Temperature Profile of the Test
Table 1: The Damage State and Sample Numbers
	Sample

Number
	Damage State

	0-425
	Undamaged

	426-600
	D1

	601-775
	D2

	776-960
	D3

	961-1135
	D4

	1136-1315
	D5

	1316-1490
	D6

	491-1665
	D7

 80% of the samples were used in the training and the remaining 20% used for testing. To test the performance of the classifiers training and testing was done 1000 times. The average performance of the classifiers is reported in Table 2. When looking at the performance one should keep in mind that just randomly guessing the class assignments has a 12.5% classification rate.
Table 2 Average Classification Rate
 User Code (left) Matlab (right)

	
	FV1
	FV2
	FV3
	
	
	FV1
	FV2
	FV3

	Class 1
	7.27%
	16.56%
	50.70%
	
	Class 1
	10.26%
	15.96%
	15.45%

	Class 2
	5.53%
	27.61%
	8.18%
	
	Class 2
	2.14%
	1.82%
	1.87%

	Class 3
	13.21%
	92.05%
	6.39%
	
	Class 3
	9.42%
	7.83%
	7.91%

	Class 4
	4.15%
	3.95%
	8.09%
	
	Class 4
	16.05%
	12.58%
	12.47%

	Class 5
	9.99%
	7.04%
	7.47%
	
	Class 5
	8.65%
	4.99%
	4.82%

	Class 6
	9.27%
	26.13%
	7.53%
	
	Class 6
	7.28%
	5.69%
	5.32%

	Class 7
	16.09%
	73.88%
	6.45%
	
	Class 7
	7.33%
	9.21%
	9.71%

	Class 8
	43.32%
	98.08%
	5.23%
	
	Class 8
	44.71%
	54.09%
	55.00%

	Overall
	12.58%
	38.88%
	18.20%
	
	Overall
	12.78%
	14.28%
	14.24%

Although certain FV’s has better performance in particular categories, overall none performed significantly better than randomly guessing the answer. The exception is FV2 when using the user code. It had a 38% classification rate.

This table bears a lot of analysis but a few things jump out. No mater which feature vectors were used the user code has a high error rate for classes 4 and 5. The Matlab code consistently had trouble with classes 2,3,5,6, and 7. FV1 was the worst performer. Whether it was worse in a statistically significant way is an exercise for the future. However it being the worst makes sense since it only had 2 feature vectors. Also, the user code almost (except class 4) categorically performs better than the Matlab code. This is also not unexpected since the full covariance matrix is used. Overall these classification rates are not acceptable to the end user.

To improve performance it was decided to compensate the FV by the measured temperature. One method to compensate for the effects of the temperature is to model the functional relationship between it and the FV and then back out the effects on the current metric FV. To state it mathematically the compensated FV becomes

[image: image5.wmf])

(

_

t

f

dm

c

dm

-

=

(2)

where dm_c is the compensated FV, dm is the uncompensated FV, and f(t) is a function relating a temperature to the uncompensated FV. To model f(t) the data from the undamaged state was to train a neural network that related the temperature to the FV. The order of the neural network was determined by the number of features in the FV. The regression analysis of the fit showed an R > 0.95 in all cases. Then formula 2 was used to create the compensated FV.

After compensation the same FV’s were used including the temperature feature. Theoretically the measured temperature should be uncorrelated with the data but it was left in for convenience. Future testing should be done to see if removing the feature increase performance. The results were averaged in the same way previously described and reported in Table 3. Table 4 shows the percent change due to compensation with decreases highlighted in red.
Table 3 Compensated Averaged Classification Rate

 User Code (left) Matlab (Right)

	
	FV1
	FV2
	FV3
	
	
	FV1
	FV2
	FV3

	Class 1
	62.66%
	53.99%
	51.11%
	
	Class 1
	63.05%
	67.72%
	82.75%

	Class 2
	17.55%
	24.94%
	27.38%
	
	Class 2
	15.87%
	0.45%
	0.07%

	Class 3
	24.77%
	91.41%
	81.66%
	
	Class 3
	0.35%
	0.05%
	0.84%

	Class 4
	3.15%
	6.84%
	18.31%
	
	Class 4
	15.72%
	10.73%
	10.40%

	Class 5
	0.47%
	14.95%
	32.95%
	
	Class 5
	0.10%
	0.21%
	0.18%

	Class 6
	2.06%
	40.72%
	60.79%
	
	Class 6
	0.76%
	2.07%
	3.06%

	Class 7
	37.67%
	77.60%
	86.70%
	
	Class 7
	34.88%
	44.81%
	20.51%

	Class 8
	51.33%
	94.30%
	95.37%
	
	Class 8
	51.37%
	67.53%
	56.11%

	Overall
	30.42%
	50.81%
	55.71%
	
	Overall
	28.70%
	30.58%
	30.78%

Table 1 Percent Change Due to Compensation

 User Code (left) Matlab (Right)
	
	FV1
	FV2
	FV3
	
	
	FV1
	FV2
	FV3

	Class 1
	55.39%
	37.43%
	0.41%
	
	Class 1
	52.79%
	51.76%
	67.30%

	Class 2
	12.02%
	-2.67%
	19.20%
	
	Class 2
	13.73%
	-1.37%
	-1.80%

	Class 3
	11.56%
	-0.64%
	75.27%
	
	Class 3
	-9.07%
	-7.78%
	-7.07%

	Class 4
	-1.00%
	2.89%
	10.22%
	
	Class 4
	-0.33%
	-1.85%
	-2.07%

	Class 5
	-9.52%
	7.91%
	25.48%
	
	Class 5
	-8.55%
	-4.78%
	-4.64%

	Class 6
	-7.21%
	14.59%
	53.26%
	
	Class 6
	-6.52%
	-3.62%
	-2.26%

	Class 7
	21.58%
	3.72%
	80.25%
	
	Class 7
	27.55%
	35.60%
	10.80%

	Class 8
	8.01%
	-3.78%
	90.14%
	
	Class 8
	6.66%
	13.44%
	1.11%

	Overall
	17.84%
	11.93%
	37.51%
	
	Overall
	15.92%
	16.30%
	16.54%

There are some interesting things shown in Table 3. One of them is that while compensation increased the overall performance of the classifiers, the classes that the Matlab code did poorly on in the uncompensated case got worse when compensation was applied. Again whether this change is statistically significant is left for further investigation. Note too, that most of the improvements came from the correct classification of class 1. FV3 using the user code showed the most overall improvement.
In conclusion it is possible classify this type of data successfully. In general compensating for the temperature was more effective than allowing the recognizer to figure out the relationship. This is most likely due to the ability of the neural network to perform a nonlinear mapping while the discriminator was limited to linear. Classification methods such as SVM, K-means, or others that allow for an arbitrary discriminant would probably perform comparable to the compensated results without the extra step of compensation. Given the poor performance on a few particular classes some improvements can be expected by training expert classifiers for those classes. Also the data here was treated as independent. Because of the realities of the state of nature, such as damage in a structure cannot decrease, a HMM approach may improve performance.
� EMBED Equation.3 ���

PAGE
6

[image: image6.wmf])

(

ln

ln

2

1

2

1

1

0

i

i

i

i

i

i

P

w

w

+

å

-

å

-

=

-

μ

μ

t

_1302443832.unknown

_1302443897.unknown

_1302443542.unknown

_1302443698.unknown

_1298711579.unknown

