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ABSTRACT

The foundations of Support Vector Classifiers
(SVC) have been developed by Vapnik [1] and
are gaining popularity due to many attractive
features, and promising empirical performance.
The formulation embodies the Structural Risk
Minimization (SRM) principle, which has been
shown to be superior to traditional Empirical
Risk Minimization (ERM), employed by
conventional neural networks. SRM minimizes
an upper bound on the VC dimension,
generalization error, as opposed to ERM that
minimizes the error on the training data. It is this
difference which equips SVC'’s with a greater
ability to generalize, which is why they are able
to perform better that most traditional classifiers.

1. INTRODUCTION

There is a family of bounds governing the
relation between the capacity, i.e., the ability of
the machine to learn any set without error and its
performance. We will take a look at one of these
bounds which was first introduced in [1].
Suppose we are givelnobservations each of
which consists of a pair: a vectarand the
associated labsl Now it is assumed that there
exists some unknown probability distribution
P(;, y;) from which these data points are drawn

choice ofk generates a trained machine. The
expectation of the test error for the trained
machine is:

R(K) = [3ly = F(x Y)IOP(X, y1)

The quantity RK) is called the expected risk, or
just the risk. The empirical risk g, (k) is
defined to be just the measured mean error rate
on the training set:

|

RemdK) = 3 5 Ii— f(xi, K)|

i=1

The quantity 1/2]y {(x;, y;)| id called the loss.
For the case described here it can only take on
values 0 and 1. We can define a quantitguch
that it lies in the range [0, 1]. For losses taking
these values, with probability ¢the following
bound holds [1]:

R(K) < Remg k) + nggog%'ﬁ% 1 1og YT |

whereh is a non-negative constant called the
Vapnik Chervonenkis (VC) dimension and is a
measure of the notion of capacity. The right hand
side of the equation is called the risk bound and
the second term on the right hand side is the VC
confidence.

The VC dimension is a property of a set of
functions {f(k)}. We only consider the two-class

iid. Now suppose we have a machine whose taskpattern recognition case, so thgx;, k) is an

it is to learn the mapping; ->y;. The machine is
actually defined by the set of possible mappings
Xj -> f(x;, k), where the functiond(x;, k)

element of {-1, 1} for everyx; andk. Now if a
given set ofl points can be labeled in Wvays,
and for each labeling, a member of the skk{}

themselves are labeled by adjustable parametersan be found which correctly assigns those

k. The machine is deterministic and a particular

labels, we say that the set of points are classified



by that set of functions. The VC dimension ispair or hyperplanes which give maximum margin
defined as the maximum number of trainingby minimizing |w|[?>. Using a Lagrangian
points that can be classified bifK)}. formulation to the problem gives us:

The VC confidence depends on the chosen class 1 2 O/ !

of functions, whereas the empirical risk depends ~ -p=3IWl - 5 2 GpYilxjswrb)+ 5 o

on the function chosen by the training procedure. =1 =1

Hence, we would like to find that subset of the . _

chosen set of functions, such that the risk boundVe must now minimize p with respect tav, b

for that subset is minimized. SRM then consistgnd simultaneously require that the derivatives of
of finding that subset of functions which Lp with respect to all the alphas vanish, all
minimizes the bound on the actual risk. This carfubject to the constraint that the alphas be greater
be done by training a series of machines, one fothat to equal to zero. This is a convex quadratic
each subset, where for a given subset the goal grogramming problem. Requiring that the
training is to minimize the empirical risk. One gradient of Lp with respect tov andb vanish
then takes that trained machine whose sum qgjive the conditions:

empirical risk and VC confidence is minimal. W= YOGy,

I —
2. SUPPORT VECTOR MACHINES Yoy = 0

Since these are équality constraints in the dual
The goal of SVC is to devise a computationalformulation we substitute indto get:

efficient way of learning good separating

hyperplanes in a high dimensional feature space. Lp = 2 0i = 3 AYYiXi * X;

We see how SVC works by first considering the ' !

simple case of linear machines trained onlhe above technique when applied to non-
separable data. We assume that the training daggparable data will find no feasible solution. We

is in the form {;, y;} wherex; is an elementoR ~ can extend the ideas above by relaxing the
andy is an element of the set {-1, 1}. Supposeconditions when necessary by introducing a cost
we have a hyperplane that separates the negatifgnction. This can be done by adding positive

from the positive examples. The pointswhich ~ Slack variables in the constraints:

lie on the hyperplane satisfy. x; + b = 0,where Xjew+b>1-¢

w is the normal to the hyperplane and |bfljis Xj* W+Dbs-1+¢

the perpendicular distance form the hyperplanel_hus, for an error to occur the sum of the slack

to the origin. We define the margin of thevariables must exceed unity. Hence, a natural

hyperplane, i.e., the shortest dl_s_tance from_ th?vay to assign an extra cost for the errors is to
hyperplane to the closest positive (negative}y,anqe the objective function to be minimized

example to be: from /2 t0 |[\W{%/2 +CS &,
N e w+b>1 |wIP [[w] Iz&.
X;* W+bs<-1 Hence, similar to the linear case we need to
) ) aximize Ly subject to the constraints:
These can be combines into one set an 'p )
inequalities: O<a;<C
V(X * W+b)~1)20 2o =0

The distance form the negative and positivel N€ solution is again given by:

hyperplanes to the origin is M|||. Hence, the WSSy,
margin is simply 2/W/||. Thus we can find the '



Wherei loops over the support vectors, i.e., the definite (has non-negative eigen values). The
points that lie on the positive (negative) hyper-  kernel matrix is simply<;;=K(x;, X;).
planes that make up the margins.

4. MULTI-CATEGORY CLASSIFICATION

3. KERNEL CHARACTERISTICS _ - _
Constructing a classifier to produce a posterior

The use of a kernel is an attractive computational Probability P(class|input) is very useful in
short-cut. If we wish to use this approach, there practical recognition situations. Posterior
appears to be a need to first create a complicatedprobabilities are also required when a classifier is
feature space, then work out what the inner making a small part of an overall decision, and
products of that space would be, and finally find the classification outputs must be combined for
a direct method of computing that value in terms the overall decision.

of the original inputs. .
However, SVM’s produce an uncalibrated value

Kernels come into play when we deal with non- that is not a probability. Let the unthresholded
linear SVM’s. In the solution for the non- output of the SVM bé&(x) = h(x) + b where
separable data we notice that the only way that — cv klx.

the data appears in the training problem is in the h(3) Zy,alk(x,, X)

form of dot productsq.xj. If we first mapped the _ . .

data to some other space using a mapging thenlnstead of estimating the class-conditional
the training algorithm would depend on the data densities fy), we use a parametric model to fit
through the dot products in the feature space, i.e.,the posterior P(y = 1] directly. The class-
on functions of the formr X) . @ (x;), we would conditional densities between the margins are
useK in the training algorithm and never need to apparently exponential. Bayes’ rule onto two
explicitly even know whatd is. An example of exponentials suggests using a parametric form of
the use of kernels is in the test phase by a sigmoid

computing the dot products of a given test point _ _
X with w and computing the sign: P(y=11)) = 1/(1+ exp(Af + B))

f(x) = 5 a;y®(s)* P(x) +b where A and B are the slope and offset of the
i=1 sigmoid fit for the model. The way multi-

wheres are the support vectors. Hence, we avoid category classification works is that we train one
computing® &) explicitly by using the kernel ~ SVM for each category. Then using the models
function K. A function must satisfy some generated by the trained SVM’s we generate
properties to ensure that is a kernel for some models to fit the sigmoids. In the testing stage
feature space. Two basic conditions are that a gach trained SVM give us a distance measure for
kernel must be symmetric and satisfy the j test point. Using the sigmoid models we can
Cauchy-Schwartz inequality. These conditions getermine the posterior probability for each of
are, however, not sufficient to guarantee the he gistances. Hence, the sigmoid model with the
existence of a feature space. To guarantee thehighest posterior probability is the most like

existenc‘e of a feature space a kernel function category that can be assigned to the test point.
must satisfy Mercer’s theorem.

_ ) _ 5. EXPERIMENTS
Mercer’s theorem in short states that if X is a

finite input space with KX, z) a symmetric  The experiments were carried out on two data
function on X. Then KX, y) is a kernel function  sets representing both static and temporal
if and only if the kernel matrix is positive semi- modelling of the data. The first data set, static



modelling, is made up of 528 feature vectors for the sigmoid was insufficient to get a proper esti-
training, 379 feature vectors for development mate to the posterior probability distribution. In
testing and 83 evaluation feature vectors. The fact when testing the evaluation set the points for
feature vectors in the first data set have 10 both the training set and the development test set
dimensions and 11 categories. The second datawere merged to form a larger pool to train from.
set, temporal modelling, is made up of 925

feature vectors for training, 350 feature vectors The development test results for the second data
for development testing and 225 evaluation set in Table 1 indicates that the SVM'’s will not
feature vectors. The feature vectors in the secondbe able to learn and classify the second evalua-
data set have 39 dimensions and 5 categories. tion set well. The main problem was that the pos-
terior probability distribution predicted the
second category for each test point in the evalua-
tion set. On closer inspection the sigmoid models
for the first three categories and the last two cate-

Table 1: Error rates for development testing

Dev Set| Avg# Support Vectors| WER

Set 1 89.82 0.57% gories were almost identical. Furthermore, the
number of support vector for the first three and
Set 2 1257.80 80.0% last two categories were almost equal to the num-

ber of training point which indicates a high
The first data set has 11 categories, hence, 11degree of overlap in the second data set.
SVM'’s were trained on the 11 categories in a
typical one verses the rest fashion. The posterior 6. CONCLUSION
probability for each SVM was then determined
using a parametric form of a sigmoid. Similarly, In conclusion as expected SVC'’s are good static
the second data set has 5 categories, hence, Zlassifiers, however, they are not very good when
SVM’s were trained on the 5 categories in a one it comes to modelling temporal data. If the tem-
versus the rest fashion. Again the posterior prob- poral structure of the second data set were
ability for each SVM was then determined using removed | don’t expect any improvements in the
a parametric form of a sigmoid. With either data error rate primarily due to the high overlap in the
set the category with the highest posterior proba- categories as evident from the support vectors.
bility was the most likely label for the test point.
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