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ABSTRACT

The foundations of Support Vector Classifier
(SVC) have been developed by Vapnik [1] an
are gaining popularity due to many attractiv
features, and promising empirical performanc
The formulation embodies the Structural Ris
Minimization (SRM) principle, which has been
shown to be superior to traditional Empirica
Risk Minimization (ERM), employed by
conventional neural networks. SRM minimize
an upper bound on the VC dimens ion
generalization error, as opposed to ERM th
minimizes the error on the training data. It is th
difference which equips SVC’s with a greate
ability to generalize, which is why they are abl
to perform better that most traditional classifier

1. INTRODUCTION

There is a family of bounds governing th
relation between the capacity, i.e., the ability o
the machine to learn any set without error and
performance. We will take a look at one of thes
bounds which was first introduced in [1]
Suppose we are givenl observations each of
which consists of a pair: a vectorx and the
associated labely. Now it is assumed that there
exists some unknown probability distributio
P(xi, yi) from which these data points are draw
iid. Now suppose we have a machine whose ta
it is to learn the mappingxi -> yi. The machine is
actually defined by the set of possible mappin
xi -> f (x i , k ), where the functionsf (xi , k )
themselves are labeled by adjustable paramet
k. The machine is deterministic and a particul
.
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choice ofk generates a trained machine. Th
expectation of the test error for the traine
machine is:

The quantity R(k) is called the expected risk, o
just the risk. The empirical risk Remp(k ) is
defined to be just the measured mean error ra
on the training set:

The quantity 1/2|y -f(xi, yi)| id called the loss.
For the case described here it can only take
values 0 and 1. We can define a quantityv such
that it lies in the range [0, 1]. For losses takin
these values, with probability 1-v the following
bound holds [1]:

whereh is a non-negative constant called th
Vapnik Chervonenkis (VC) dimension and is
measure of the notion of capacity. The right han
side of the equation is called the risk bound an
the second term on the right hand side is the V
confidence.

The VC dimension is a property of a set o
functions {f(k)}. We only consider the two-class
pattern recognition case, so thatf(xi, k) is an
element of {-1, 1} for everyxi andk. Now if a
given set ofl points can be labeled in 2l ways,
and for each labeling, a member of the set {f(k)}
can be found which correctly assigns thos
labels, we say that the set of points are classifi
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by that set of functions. The VC dimension i
defined as the maximum number of trainin
points that can be classified by {f(k)}.

The VC confidence depends on the chosen cla
of functions, whereas the empirical risk depend
on the function chosen by the training procedur
Hence, we would like to find that subset of th
chosen set of functions, such that the risk bou
for that subset is minimized. SRM then consis
of finding that subset of functions which
minimizes the bound on the actual risk. This ca
be done by training a series of machines, one f
each subset, where for a given subset the goa
training is to minimize the empirical risk. One
then takes that trained machine whose sum
empirical risk and VC confidence is minimal.

2. SUPPORT VECTOR MACHINES

The goal of SVC is to devise a computationa
efficient way of learning good separating
hyperplanes in a high dimensional feature spa
We see how SVC works by first considering th
simple case of linear machines trained o
separable data. We assume that the training d
is in the form {xi, yi} wherexi is an element ofR
andy is an element of the set {-1, 1}. Suppos
we have a hyperplane that separates the nega
from the positive examples. The pointsxi which
lie on the hyperplane satisfyw. xi + b = 0,where
w is the normal to the hyperplane and |b|/||w|| is
the perpendicular distance form the hyperpla
to the origin. We define the margin of the
hyperplane, i.e., the shortest distance from t
hyperplane to the closest positive (negativ
example to be:

These can be combines in to one set
inequalities:

The distance form the negative and positiv
hyperplanes to the origin is 1/||w||. Hence, the
margin is simply 2/||w||. Thus we can find the

xi w• b+ 1≥
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pair or hyperplanes which give maximum margi
by minimizing ||w | |2. Using a Lagrangian
formulation to the problem gives us:

We must now minimize LP with respect tow, b
and simultaneously require that the derivatives
LP with respect to all the alphas vanish, a
subject to the constraint that the alphas be grea
that to equal to zero. This is a convex quadrat
programming problem. Requiring that th
gradient of LP with respect tow andb vanish
give the conditions:

Since these are equality constraints in the du
formulation we substitute in LP to get:

The above technique when applied to non
separable data will find no feasible solution. W
can extend the ideas above by relaxing th
conditions when necessary by introducing a co
function. This can be done by adding positiv
slack variables in the constraints:

Thus, for an error to occur the sum of the slac
variables must exceed unity. Hence, a natur
way to assign an extra cost for the errors is
change the objective function to be minimize
from ||w||2/2 to

Hence, similar to the linear case we need
maximize LD subject to the constraints:

The solution is again given by:

LP
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Wherei loops over the support vectors, i.e., the
points that lie on the positive (negative) hyper-
planes that make up the margins.

3. KERNEL CHARACTERISTICS

The use of a kernel is an attractive computation
short-cut. If we wish to use this approach, the
appears to be a need to first create a complica
feature space, then work out what the inn
products of that space would be, and finally fin
a direct method of computing that value in term
of the original inputs.

Kernels come into play when we deal with non
linear SVM’s. In the solution for the non-
separable data we notice that the only way th
the data appears in the training problem is in t
form of dot productsxi.xj. If we first mapped the
data to some other space using a mapping th
the training algorithm would depend on the da
through the dot products in the feature space, i.
on functions of the form (xi) . (xj), we would
useK in the training algorithm and never need t
explicitly even know what is. An example o
the use of kernels is in the test phase b
computing the dot products of a given test poi
x with w and computing the sign:

wheresi are the support vectors. Hence, we avo
computing (x) explicitly by using the kernel
function K . A function must satisfy some
properties to ensure that is a kernel for som
feature space. Two basic conditions are tha
kernel must be symmetric and satisfy th
Cauchy-Schwartz inequality. These condition
are, however, not sufficient to guarantee th
existence of a feature space. To guarantee
existence of a feature space a kernel functi
must satisfy Mercer’s theorem.

Mercer’s theorem in short states that if X is
finite input space with K(x, z) a symmetric
function on X. Then K(x, y) is a kernel function
if and only if the kernel matrix is positive semi
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definite (has non-negative eigen values). Th
kernel matrix is simplyK ij=K(xi, xj).

4. MULTI-CATEGORY CLASSIFICATION

Constructing a classifier to produce a posteri
probability P(class|input) is very useful in
practical recognition situations. Posterio
probabilities are also required when a classifier
making a small part of an overall decision, an
the classification outputs must be combined fo
the overall decision.

However, SVM’s produce an uncalibrated valu
that is not a probability. Let the unthresholde
output of the SVM bef(x) = h(x) + b where

Instead of estimating the class-conditiona
densities p(f|y), we use a parametric model to fi
the posterior P(y = 1|f) directly. The class-
conditional densities between the margins a
apparently exponential. Bayes’ rule onto tw
exponentials suggests using a parametric form
a sigmoid

where A and B are the slope and offset of th
sigmoid fit for the model. The way multi-
category classification works is that we train on
SVM for each category. Then using the mode
generated by the trained SVM’s we genera
models to fit the sigmoids. In the testing stag
each trained SVM give us a distance measure
a test point. Using the sigmoid models we ca
determine the posterior probability for each o
the distances. Hence, the sigmoid model with t
highest posterior probability is the most like
category that can be assigned to the test point

5. EXPERIMENTS

The experiments were carried out on two da
sets representing both static and tempor
modelling of the data. The first data set, stat

h x( ) yiαi k xi x,( )
i
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modelling, is made up of 528 feature vectors fo
training, 379 feature vectors for developme
testing and 83 evaluation feature vectors. T
feature vectors in the first data set have 1
dimensions and 11 categories. The second d
set, temporal modelling, is made up of 92
feature vectors for training, 350 feature vecto
for development testing and 225 evaluatio
feature vectors. The feature vectors in the seco
data set have 39 dimensions and 5 categories

The first data set has 11 categories, hence,
SVM’s were trained on the 11 categories in
typical one verses the rest fashion. The poster
probability for each SVM was then determine
using a parametric form of a sigmoid. Similarly
the second data set has 5 categories, hence
SVM’s were trained on the 5 categories in a on
versus the rest fashion. Again the posterior pro
ability for each SVM was then determined usin
a parametric form of a sigmoid. With either dat
set the category with the highest posterior prob
bility was the most likely label for the test point

The SVM’s were trained using the Sequenti
Minimal Optimization given by J.C. Platt [2].
The parametric model fit for the sigmoid wa
determined using a model-thrust algorithm bas
on the Levenberg-Marquardt algorithm [3].

The development test result for the first data s
in Table 1 indicates that the SVM’s will be able
to learn and classify the first evaluation set we
The 0.57% wer result was obtained after a lin
search to find the optimal number for bins to hi
togram the data when determining the poster
probability. The main reason for doing this i
because the number of data points for trainin

Table 1: Error rates for development testing

Dev Set Avg# Support Vectors WER

Set 1 89.82 0.57%

Set 2 1257.80 80.0%
ta
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the sigmoid was insufficient to get a proper es
mate to the posterior probability distribution. In
fact when testing the evaluation set the points f
both the training set and the development test
were merged to form a larger pool to train from

The development test results for the second d
set in Table 1 indicates that the SVM’s will no
be able to learn and classify the second evalu
tion set well. The main problem was that the po
terior probability distribution predicted the
second category for each test point in the evalu
tion set. On closer inspection the sigmoid mode
for the first three categories and the last two ca
gories were almost identical. Furthermore, th
number of support vector for the first three an
last two categories were almost equal to the nu
ber of training point which indicates a high
degree of overlap in the second data set.

6. CONCLUSION

In conclusion as expected SVC’s are good sta
classifiers, however, they are not very good wh
it comes to modelling temporal data. If the tem
poral structure of the second data set we
removed I don’t expect any improvements in th
error rate primarily due to the high overlap in th
categories as evident from the support vectors
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