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ABSTRACT fraction of samples of the same class on the same side
while maximizing the distance from the closest

Support Vector Machines (SVMs) is a relatively training samples from each class. This distance is
novel pattern recognition approach that has attracted referred to as margin in SVMs literature.
a great deal of attention from the machine learning
and automatic speech recognition community. SVMs The use of the connectionist systems such as neural
are based on the theory of underlying statistical networks has been limited because of various
learning, specially the Structural Risk limitations such as lack of generalization[2],
Minimization(SRM). SVMs have proven to be optimization process [3] and slow convergence [2,4].
successful in many pattern classification problems The SVMs have clearly two distinct advantages.
such as image identification and face recognition. In Firstly they have an excellent ability to generalize
many of these problems, SVMs have outperformed and secondly they do not need any fine tuning of
other non-linear classifiers such as artificial neural parameters. SVMs also demonstrate good
networks and k-nearest neighbors since these sufferconvergence property.

from many deficiencies such as tendency to overfit _ _ _ )
and slow convergence. The aim of this paper is to demonstrate the potential

of SVMs on pattern classification problems and
In this paper, we use SVMs for the two multi-class familiarization with SVMs theory. The experiments
pattern classification problems. The first problem is were conducted on two sets of data. First data set
purely static in nature while the second problem has a without the temporal characteristic and the second
temporal dimension associated with it. The excellent data set with temporal characteristic. Good
recognition rates achieved in both the experiments recognition rates were achieved on both the data sets.
indicate that SVMs are well-suited for the pattern
recognition problems. SVMs performed worst than This paper is organized as follows. In section 2, we
Hidden markov models (HMMs) on the second data give a brief introduction to the theory of SVMs. In
set since the HMMs has an advantage of modelling Section 3, we describe the experiments done to

underlying markov process. classify the two data sets using SVMs. Finally,
section 4 summarizes the conclusions that can be
1. INTRODUCTION drawn from the experiments presented.
The theory of SVMs was first introduced by Vapnik, 2. THEORITICAL OVERVIEW

based on the principle of Structural Risk

Minimization [1]. Intuitively, given the set of samples  In this section, we recall the basic notions of the
belonging to two classes, SVMs learn the boundary theory of SVMs. Lack of space prohibits a detailed
between these two classes by mapping the input discussions on SVMs, a good tutorial [5,6] is
samples to a high dimensional space and then finding fecommended for detailed information on the subject.
a hyperplane in this high dimensional space that We have not included the theory behind Structural
Separates the Samp|es of the two classes. ThlSRISk Minimization. Again, this can be referred in [1]
hyperplane is choosen such that it leaves the largestfor details. We start the introduction to the theory of



SVMs with the simple case of linearly separable data now the problem is to maximize equation (7) or

points. equivalently minimizing|w|"/2 subject to the
_ constraints as given by equation (5). This constrained
2.1. The Linearly Separable Case minimization problem can made into an

. . _.__unconstrained optimization problem for equality
Suppose, we have a set of linearly separable training constraints by forming the Lagrangian, and solving

n
samplesxy, X, ..., Xm whereq DR™ . Each sample for the dual problem. This dual is given by
has a corresponding labef,y,, ...,y,  where

y; 0{-1, 1} . The label indicates one of the two 1
classes that each corresponding sample belongs to. § @; =353 a;0;y;y;(%; L) 8
Now, a plane known as hyperplane in the SVMs ! L]

literature is given by (Wwk)+b separates the

data if and only if The problem now is to minimize equation (8)

subjected to
(Wx)+b>0 if y; =1 1)
(Wk)+b<0 if y, = -1 )

a;20 9)

Sy =0 (10)
Here, scalingv and gives '

. _ Herea; are the Lagrange multipliers; one for each
(Wx)+b=1 if yi=1 ®3) training sample. The training samples for which the
Wik)+bs -1 if y, = -1 4) Lagrange multiplier is non-zero are called agpfort

' ' Vectors and in this case the equality in equation (5)
hold. All the samples with Lagrange multipliers equal
to zero can be removed from the training set without
affecting the position of the final hyperplane. Another
Y. (WD) +b) =1 Oi ) train.ing data set with the same non-zero Lagrange

multiple would produce exactly the same hyperplane.

To find the optimal hyperplane that separates the two This is a very well known quadratic programming

gl'asses, vge need tor:‘mq th(laf plager'][hatlmaxmlzes treproblem that can be solved using software packages
Istance between the itself and the closest sample. 5\ 4ijaple. Such solvers employ non-trivial algorithms

;ibfnrgsximized distance of the closest sample iS jive chunking [6] when we have large training data

We can combine the above two equations to get an
equivalent form

sets.
dw b) = min  wix +b 2.2. The Linearly Non-separable Case
X =1 w o - .
'| ' v (6) The optimization problem described in section 2.1
max wik +b will have no solution if the data is not separable. In
B Xi|yi =1} W such a case, we modify the constraints given by

equations (3) and (4) to be loose by adding the slack

From equation (3) and (4), we see that the appropriate Variablesg; . However, a penalty is incurred for
minimum and maximum values are given by . So, EVery misclassification:
now we need to maximize the following equation

(W) +b>1-¢; if y, =1 (12)
_ 1 -1_ 2 (Wk)+b<§ -1 if y; = -1 (12)

diw,b) = =-— = —= ) i i i
Wl wi | £20 O (13)

This equation gives the distance between the two

closest samples on either side of the hyperplane. So,!f X; is to be misclassified, we must hage>1 , and
hence we have the upper bound on the number of



errors that isy &, . So, we add the penalty for
misclassifyingitraining samples by replacing the
function with
2
wi®
2

allows us to specify how strictly we want the
classifier to fit the training data. Higher the value of
C, harder the system will try to minimize the training
errors. Thus, increasing the training time.

C&EE, where C is a parameter that
|

As we formed the Lagrangrain in the previous
section, we form the Lagrangrain here also. The dual
is now given by

1
I i)
This dual is minimized subjected to
0z2a,2C (15)
>ay; =0 (16)
|

Now from the above equatiorss;  can be calculated
from which the position of the hyperplane can found.

2.3. The Non-linear Case

The classification framework mentioned above is
limited to the linear separating hyperplanes. SVMs
solve this problem by mapping the sample points into

equations and we would never need to know
explicitly what® is.

Some of the kernel functions that are normally used
are the polynomial kerneK(x;, x;) = (x[y+ 1)
and the Gaussian radial basis function (RBF) given

by
K(x,xp) = e~ W/(2)
3. EXPERIMENTS

The SVMs were applied to the two given pattern
classification problems [7] since SVMs have proven
to be very effective on various pattern classification
problems. The main aim of the two set of
experiments was to demonstrate that SVMs provide a
good discrimination. All the experiments described in
this paper were conducted using the publicly
available SVM toolkit, SVMTorch Il [8]. All the
experiments were conducted by using N one vs. all
classifiers and then combining these N classifiers
using “multiclass” mode of the software.

Data set 1 consisted of static classification
problem[7] with 10 dimension of vectors, 11 classes,
83 eval set vectors, 379 development set vectors and
528 training set vectors. Table 1 shows the
performance by varying the parameter C = 1, 50, 100,
150, 1000 on a linear kernel. C controls the trade-off
between empirical fit to the data and the capacity of
the learning machine. The best performance was

a higher dimensional space where the sample pointsobtained for C=100. The results of two-class SVM

are separable using a non-linear mapping. This
mapping is chosen before training according to the
type of data. A mapping is done by the map

®:R" = H, whereH is a space with dimensions

higher thann . We now seek a hyperplane in this
higher dimensional space. This is equwalent to
finding a non-linear separating surfaceRin

classifiers with various kernels are shown in Table 2.
The best result with a classification accuracy of
92.63% was obtained with RBF kernel when using 11
one vs. all classifiers. This result was obtained by
averaging the classification rates of all the 11 two-
class classifiers.The SVMTorch employs the
maximum score theory to classify in multiclass
mode. The classification error obtained in this mode

We see that the data appears only as dot products inwas46.7%. Extracting the probabilities from SVM

training equations (8), (9) and (10). Hence, in high

outputs as post classification processing is a possible

dimensional space we have the dot products of the way to increase the accuracy.

form ®(x;) BD(x ). This may be very difficult or
computatlonally very expensive to find, especially if
the dimension oH are very large. A very neat way
to overcome this problem is to ugernel function
given by K(x;, x) = ®(x) DD(X]) Now, we can
use this in place of dot product in the optimization

Data set 2 consisted of temporal modeling problem
involving 39 dimension of vectors, 5 classes, 225 eval
set vectors (sets of 5 vectors for each class), 350
development set vectors (sets of 5 vectors for each
class) and 925 training set vectors (sets of 5 vectors



Data Set | Kernel C Accuracy
one RBF 1 91.20%
one RBF | 10 92.20%
one RBF 50 92.37%
one RBF 100 | 92.63%
one RBF | 150 | 92.61%
one RBF 1000] 92.13%

Table 1: Performance of two-class SVM as a function of C.

for each class). As shown in Table 2, the bes
classification accuracy of 83.60% with C=100 was
obtained with RBF Kernel in two-class mode. In
multi-class mode the performance degraded to an

classification error o27.43%. Comparing this result

to previous 1999 course HMMs results we see that
SVMs accuracy is less by 9.63%. This is the [3
drawback of SVMs since they are incapable of
successfully modelling the time-varying dynamics of

the data such as speech.

4. SUMMARY

The experiments conducted demonstrate that the
SVMs can be successfully applied to pattern
classification problems though they have drawback of

Data Set Kernel Accuracy
one Polynomial (Il degree) 91.44%
one Polynomial (Il degree) 90.419%j
one Polynomial (IV degree) 81.07%
one RBF 92.63%
two Polynomial (Il degree) 84.57%
two Polynomial (Ill degree) 84.23%
two RBF 83.60%

t Table 2: Classification Results in two-class mode.

in neural-network training: Overfitting may be
harder than expectedProceedings of the 14th
National Conference on Artificial Intelligence,
AAAI Press, pp. 540-545, 1997.

] F. Rosenblatt, “The Perceptron: A Perceiving and

Recognizing Automaton”Cornell Aeronautical
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[4] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What
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tion,” Technical Report UMIACSTR-96-2@sti-
tute for Advanced Computer Studies, University
of Maryland, USA, April 1996.

inability to model temporal characteristics. We also [5] Cristopher Burges, “A tutorial on Support Vector

observed that the multiclass classification requires a
postprocessing. Since SVMs need only the support
vectors for classification and not the complete

training set, they are very efficient classifiers.

5. FUTURE WORK

Due to the time limitation, code that extracts the

Machines for Pattern Recognitioryata Mining
and Knowledge Discover(2), 1998.

[6] A. Ganapathiraju, “Support Vector Machines for

Speech Recognition,” Ph.D. Dissertation, Depart-
ment of Electrical and Computer Engineering,
Mississippi State University, June 2000.

probabilities from two-class SVM outputs as post [7] “Common Evaluation, Pattern Recognition ECE

classification processing was not implemented.
Implementing this code looks a promising idea that

would lower the error classification rate.
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