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ABSTRACT

Support Vector Machines (SVMs) is a relativel
novel pattern recognition approach that has attrac
a great deal of attention from the machine learnin
and automatic speech recognition community. SVM
are based on the theory of underlying statistic
lea rn ing , spec ia l l y the St ruc tu ra l R isk
Minimization(SRM). SVMs have proven to be
successful in many pattern classification problem
such as image identification and face recognition.
many of these problems, SVMs have outperform
other non-linear classifiers such as artificial neur
networks and k-nearest neighbors since these su
from many deficiencies such as tendency to over
and slow convergence.

In this paper, we use SVMs for the two multi-clas
pattern classification problems. The first problem
purely static in nature while the second problem has
temporal dimension associated with it. The excelle
recognition rates achieved in both the experimen
indicate that SVMs are well-suited for the patter
recognition problems. SVMs performed worst tha
Hidden markov models (HMMs) on the second da
set since the HMMs has an advantage of modelli
underlying markov process.

1. INTRODUCTION

The theory of SVMs was first introduced by Vapnik
based on the pr inc ip le o f S t ruc tu ra l R is
Minimization [1]. Intuitively, given the set of samples
belonging to two classes, SVMs learn the bounda
between these two classes by mapping the inp
samples to a high dimensional space and then find
a hyperplane in this high dimensional space th
separates the samples of the two classes. T
hyperplane is choosen such that it leaves the larg
d

r

t
g
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s
t

fraction of samples of the same class on the same s
while maximizing the distance from the closes
training samples from each class. This distance
referred to as margin in SVMs literature.

The use of the connectionist systems such as neu
networks has been limited because of variou
limitations such as lack of generalization[2]
optimization process [3] and slow convergence [2,4
The SVMs have clearly two distinct advantage
Firstly they have an excellent ability to generaliz
and secondly they do not need any fine tuning
parameters . SVMs a lso demons t ra te goo
convergence property.

The aim of this paper is to demonstrate the potent
of SVMs on pattern classification problems an
familiarization with SVMs theory. The experiments
were conducted on two sets of data. First data s
without the temporal characteristic and the seco
data set with temporal character ist ic. Goo
recognition rates were achieved on both the data s

This paper is organized as follows. In section 2, w
give a brief introduction to the theory of SVMs. In
section 3, we describe the experiments done
classify the two data sets using SVMs. Finally
section 4 summarizes the conclusions that can
drawn from the experiments presented.

2. THEORITICAL OVERVIEW

In this section, we recall the basic notions of th
theory of SVMs. Lack of space prohibits a detaile
discussions on SVMs, a good tutorial [5,6] i
recommended for detailed information on the subje
We have not included the theory behind Structur
Risk Minimization. Again, this can be referred in [1
for details. We start the introduction to the theory o
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SVMs with the simple case of linearly separable da
points.

2.1.  The Linearly Separable Case

Suppose, we have a set of linearly separable train
samples where . Each sampl
has a corresponding label wher

. The label indicates one of the two
classes that each corresponding sample belongs
Now, a plane known as hyperplane in the SVM
literature is given by separates th
data if and only if

(1)

(2)

Here, scaling  and  gives

(3)

(4)

We can combine the above two equations to get
equivalent form

(5)

To find the optimal hyperplane that separates the tw
classes, we need to find the plane that maximizes
distance between the itself and the closest samp
This maximized distance of the closest sample
given by

(6)

From equation (3) and (4), we see that the appropri
minimum and maximum values are given by . S
now we need to maximize the following equation

(7)

This equation gives the distance between the tw
closest samples on either side of the hyperplane.

x1 x2 … xm, , , xi R
n∈

y1 y2 … ym, , ,
yi 1– 1,{ }∈

ẇ x⋅( ) b+

ẇ xi⋅( ) b+ 0> if yi 1=

ẇ xi⋅( ) b+ 0< if yi 1–=

w b

ẇ xi⋅( ) b+ 1≥ if yi 1=

ẇ xi⋅( ) b+ 1–≤ if yi 1–=
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e
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e

,

now the problem is to maximize equation (7) o
equivalently minimizing subject to the
constraints as given by equation (5). This constrain
min im iza t ion prob lem can made in to an
unconstrained optimization problem for equalit
constraints by forming the Lagrangian, and solvin
for the dual problem. This dual is given by

(8)

The problem now is to minimize equation (8
subjected to

(9)

(10)

Here are the Lagrange multipliers; one for eac
training sample. The training samples for which th
Lagrange multiplier is non-zero are called as Support
Vectors, and in this case the equality in equation (5
hold. All the samples with Lagrange multipliers equa
to zero can be removed from the training set witho
affecting the position of the final hyperplane. Anothe
training data set with the same non-zero Lagran
multiple would produce exactly the same hyperplan

This is a very well known quadratic programmin
problem that can be solved using software packag
available. Such solvers employ non-trivial algorithm
like chunking [6] when we have large training dat
sets.

2.2. The Linearly Non-separable Case

The optimization problem described in section 2
will have no solution if the data is not separable. I
such a case, we modify the constraints given b
equations (3) and (4) to be loose by adding the sla
variables . However, a penalty is incurred fo
every misclassification:

(11)

(12)

(13)

If is to be misclassified, we must have , an
hence we have the upper bound on the number

w
2

2⁄

αi
1
2
--- αiα j yi yj xi x j⋅( )

i j,
∑–

i
∑

αi 0≥

αi yi
i

∑ 0=

αi

ξi

ẇ xi⋅( ) b+ 1 ξi–≥ if yi 1=

ẇ xi⋅( ) b+ ξi 1–≤ if yi 1–=

ξi 0≥ i∀

xi ξi 1>
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errors that is . So, we add the penalty fo
misclassifying training samples by replacing th
function with

, where C is a parameter that

allows us to specify how strictly we want the
classifier to fit the training data. Higher the value o
C, harder the system will try to minimize the trainin
errors. Thus, increasing the training time.

As we formed the Lagrangrain in the previou
section, we form the Lagrangrain here also. The du
is now given by

(14)

This dual is minimized subjected to

(15)

(16)

Now from the above equations can be calculat
from which the position of the hyperplane can foun

2.3. The Non-linear Case

The classification framework mentioned above
limited to the linear separating hyperplanes. SVM
solve this problem by mapping the sample points in
a higher dimensional space where the sample poi
are separable using a non-linear mapping. Th
mapping is chosen before training according to th
type of data. A mapping is done by the ma

, where is a space with dimension
higher than . We now seek a hyperplane in th
higher dimensional space. This is equivalent
finding a non-linear separating surface in .

We see that the data appears only as dot product
training equations (8), (9) and (10). Hence, in hig
dimensional space we have the dot products of t
form . This may be very difficult or
computationally very expensive to find, especially
the dimension of are very large. A very neat wa
to overcome this problem is to usekernel function
given by . Now, we can
use this in place of dot product in the optimizatio

ξi
i

∑

w
2

2
--------- C ξi

i
∑ 

 +

αi
1
2
--- αiα j yi yj xi x j•

i j,
∑–

i
∑

0 αi C≥ ≥

αi yi
i

∑ 0=

αi

Φ R
n

; H→ H
n

R
n

Φ xi( ) Φ xj( )⋅

H

K xi xj,( ) Φ xi( ) Φ xj( )⋅=
l

s

in

equations and we would never need to kno
explicitly what  is.

Some of the kernel functions that are normally use
are the polynomial kernel
and the Gaussian radial basis function (RBF) give
by

3. EXPERIMENTS

The SVMs were applied to the two given patter
classification problems [7] since SVMs have prove
to be very effective on various pattern classificatio
prob lems. The main a im of the two set o
experiments was to demonstrate that SVMs provide
good discrimination. All the experiments described
this paper were conducted using the publicl
available SVM toolkit, SVMTorch II [8]. All the
experiments were conducted by using N one vs.
classifiers and then combining these N classifie
using “multiclass” mode of the software.

Data set 1 consisted of stat ic classi ficat io
problem[7] with 10 dimension of vectors, 11 classe
83 eval set vectors, 379 development set vectors a
528 train ing set vectors. Table 1 shows th
performance by varying the parameter C = 1, 50, 10
150, 1000 on a linear kernel. C controls the trade-o
between empirical fit to the data and the capacity
the learning machine. The best performance w
obtained for C=100. The results of two-class SVM
classifiers with various kernels are shown in Table
The best result with a classification accuracy o
92.63% was obtained with RBF kernel when using 1
one vs. all classifiers. This result was obtained b
averaging the classification rates of all the 11 two
class classifiers.The SVMTorch employs th
maximum score theory to classify in multiclas
mode. The classification error obtained in this mod
was46.7%. Extracting the probabilities from SVM
outputs as post classification processing is a possi
way to increase the accuracy.

Data set 2 consisted of temporal modeling proble
involving 39 dimension of vectors, 5 classes, 225 ev
set vectors (sets of 5 vectors for each class), 3
development set vectors (sets of 5 vectors for ea
class) and 925 training set vectors (sets of 5 vecto

Φ

K xi xj,( ) x y⋅ 1+( )p
=

K xi xj,( ) e
x y– 2σ( )⁄

=
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Data Set Kernel C Accuracy

one RBF 1 91.20%

one RBF 10 92.20%

one RBF 50 92.37%

one RBF 100 92.63%

one RBF 150 92.61%

one RBF 1000 92.13%

Data Set Kernel Accuracy

one Polynomial (II degree) 91.44%

one Polynomial (III degree) 90.41%

one Polynomial (IV degree) 81.07%

one RBF 92.63%

two Polynomial (II degree) 84.57%

two Polynomial (III degree) 84.23%

two RBF 83.60%
for each class). As shown in Table 2, the be
classification accuracy of 83.60% with C=100 wa
obtained with RBF Kernel in two-class mode. I
multi-class mode the performance degraded to
classification error of27.43%. Comparing this result
to previous 1999 course HMMs results we see th
SVMs accuracy is less by 9.63%. This is th
drawback of SVMs since they are incapable o
successfully modelling the time-varying dynamics o
the data such as speech.

4. SUMMARY

The experiments conducted demonstrate that t
SVMs can be successfully applied to patter
classification problems though they have drawback
inability to model temporal characteristics. We als
observed that the multiclass classification requires
postprocessing. Since SVMs need only the supp
vectors for classification and not the complet
training set, they are very efficient classifiers.

5. FUTURE WORK

Due to the time limitation, code that extracts th
probabilities from two-class SVM outputs as pos
classification processing was not implemente
Implementing this code looks a promising idea th
would lower the error classification rate.
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