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ABSTRACT set of supervectors provided by separate speaker dependent

In this paper, we propose a Bayesian speaker adapta{SD) hidden Markov model (HMM) parameters. One of the
tion technique based on the probabilistic principal compo- drawbacks of the eigenvoice approach is that the adapted
nent analysis (PPCA). The PPCA is employed to obtain speaker model does not converge to the true SD model even
the canonical speaker models which provide #hpriori when a large amount of adaptation data is available. In order
knowledge of the training speakers. The proposed approacho alleviate this problem, the obtained eigen speaker models
is conveniently incorporated into the Bayesian adaptation are used as the prior information for the MAP adaptation
framework where the parameters are adapted to the newmethod [5].
speaker’s speech according to the maximarmposteriori In this paper, we propose a Bayesian speaker adaptation
(MAP) criterion. Through a number of continuous digit technique based on the probabilistic principal component
recognition experiments, we can find the effectiveness of analysis (PPCA) [7] . The PPCA method finds the canoni-
the PPCA-based approach compared to the other adaptatiogal speaker models based on the expectation maximization

approaches with a small amount of adaptation data. (EM) algorithm [8] . The proposed approach provides not
only the canonical speaker models but alsoalpeiori dis-
1. INTRODUCTION tribution of the model parameters, which can be directly ap-

plied to the MAP adaptation scheme. For that reason, the

Many adaptation techniques have been studied to reducd@rget speaker model converges to the true SD model when
the acoustic mismatches between the training and test con@ large amount of adaptation data is available. Performance
ditions of an automatic speech recognizer [1]. Recently, Of the proposed adaptation method is evaluated through a
there has been increasing interest in speaker adaptatiorseries of speaker independent continuous digit recognition
techniques that require only a small amount of data from the experiments which shows its effectiveness compared to the
target speaker. Such rapid adaptation schemes have beefither adaptation approaches.
developed for modeling the dependencies between differ-
ent speech units for effective use of a small adaptation data 2. EIGENVOICES
[2]. To estimate the dependencies between diverse units of
speech, a large corpus of training speakers and a variety of  Let {my,k = 1,---,M} be a set ofM well-
correlation modeling approaches are used [2]. In general,trained SD HMM mean vectors. Herem; =
the basic adaptation techniques are classified into three catfm/ , ,,--- ,m; ;,---mj y ;|7 is the supervector of di-
egories: the maximum a posteriori (MAP) adaptation [3], mensionD constructed from théth speaker model. Specif-
parameter transformation based adaptation using maximumically, m, ; ; represents the mean vector gh Gaussian
likelihood linear regression (MLLR) [4], and speaker clus- in the ith state of thekth speaker HMM withN and K
tering based adaptation approaches [5]. being the number of states and mixture components for

The eigenvoice technique which is one of the speaker each state, respectively. The eigenvoice method tries to find
clustering based adaptation methods was introduced forthe P-dimensional linear subspace (eigenspace) spanned by
rapid speaker adaptation in [5]. The eigenvoice technique wy, ws, - - - , wp Wherew; is thelth basis vector called the
performs speaker adaptation by constructing a new speakeeigenvoice representing a canonical speaker model. The
model as a weighted sum of eigen speaker models. To findeigenspace is spanned by tRedominant eigenvectors of
the eigen speaker models which characterizeathpeiori the sample covariance matr® = (1/M) Z,i”:l(mk -
knowledge of the training speakers, the conventional prin- u,,)(my — u,,)7 such thatCW = AW , where A
cipal component analysis (PCA) method [6] is applied to a is a diagonal matrix defined by the largest eigenvalues of



C, u,, is the mean vector anW = [wy,wo, -+ ,wWp|.
Let m be the supervector of a new speaker. Thancan
be obtained by a linear combination Bfprincipal speaker
models such that

P
m = Zmlwl = Wx Q)
1=0

wherex = [z1,---,zp]’ is the weight vector. Us-
ing the maximume-likelihood eigen-decomposition (MLED)
method proposed in [5], the weight vectorcan be found
given an adaptation data as follows:

%X =

argmazx logp(O|Wx) . (2)

3. PROBABILISTIC PCA

Here we review the concept and formulations for PPCA.
Lety = [y1,v2,--- ,yp]? be an observation vector of di-
mensionD. Assume thay is related to the latent variable
x = [r1,T2, -+ ,zp]T of dimensionP(« D) by

Wx+ py +€ 3

whereW is theD x P parameter matrix that represents the
principal subspace of the observation datg,is the mean

y:

vector ofy ande is a Gaussian random noise independent
of x. Conventionally, the latent variable is defined to be an

independent Gaussian of unit variance such that

) = On) Pepl—xTx) @

The noise is also modeled by a Gaussian such ¢hat
N(0,0°I) wherel is the D x D identity matrix. Based

on the above assumptions, the observation vectors are also x;x/ = E

normally distributed according to

ply) = (2m) P25y |1/

%)
~ exp{—%(y —1y) TSy TNy — iy}

whereXy, = ¢?I + WWT. We can derive the conditional
probability distribution ofy givenx by

o 1 A
p(y|x) = (2m0?) D/Zexp{—@lly—Wx—uyllz}- (6)

Given an observation sequend = {yi,y2,---,¥r},
the PPCA estimates the latent variable sequeKce=
{x1,%2, -+ ,xr} and finds the optimal model parameters
XA = {W,jiy,5%} according to the maximum likelihood
(ML) criterion such that

~

P —

argmaz [logp(Y|N)] . (7)
A

Since, however, the latent variabldx.} are consid-
ered to be hidden, it becomes highly difficult to solve
(7). For that reason, the EM algorithm which iteratively
updates the parameter values is applied. A&t
(W () 521 be the parameter values obtained in
thenth iteration. Then, the new parameter valuést) =
{Wnth) [y (1) [52,(n+1)1 gre obtained by

A = grgmaz QATY  AM) (8)
A

where
QI X) = B [log p(X, XN D) Y, A . (9)

After some manipulation, we are led to
1 T
(n+1)  _— = E : _whx
Hy T £ (Yt Xt) (10)

-1

T T
wH = [Z(Yt - ngnﬂ))ft] lz Wl (11)
t=1

t=1

T
>~ {llye = ngre01? — Wy

t=1

: (yt - ug,"“)) +tr (WWT,(HI)WMH))}

1
2(nt1) _ 1
g DT

(12)

where
xx=FE [Xt|Yt, A(n)] =3 "W (y: — py) (13)
[xtxﬂyt, )\(")] =’S 4% %7 (14)

with ¥, = %I + WT'W andtr representing the trace of
a matrix. The log-likelihood in the right hand side of (7)
is maximized when the columns & span the principal
subspace of the observation data. It is shown in [7] that
for the global maximum of the likelihood the ML estimate
‘W /1, contain the principal eigenvectors of the covariance
matrix of observation data.

4. PPCA-BASED SPEAKER ADAPTATION

If A, which is assumed to be a random vector, is the pa-
rameter vector to be estimated from the observatlosith
probability density function (pdff (O|\) and its prior pdfis
g(\|@), whered is a prior parameter, then the MAP estimate
is defined as the posterior mode)qfi.e.,

Avap = argmaz F(OIN)g(Af) . (15)



Usually the MAP estimation problem becomes too compli-

cated for incomplete data such as the HMM because of the

underlying hidden process . If the prior pdf belongs to the
conjugate family of the complete-data density, the EM al-
gorithm can be efficiently applied to MAP estimation.

Let us assume that is generated by a model given by
(3), which has a hidden variablewith the prior parameter
6. Then, the complete-data likelihood farcan be easily
defined. In this case we apply the EM algorithm to itera-
tively increase the posterior likelihogdA|O). The auxil-
iary function to be optimized is given as follows:

R(LA™) = E [log p(Y|)) +log p(A, x19)|0, A" |

= E [log p(Y|N)|0,A™] + E [log p(A, x/6) A" |
(16)

whereY is the complete data fap, and{\, x} means the
complete data foh, respectively. It is shown in [8] that if
R\ A > R(AM X)) thenp(A|O) > p(AM0).

LetO = {04,092, -+ ,0r} be a sequence of feature vec-
tors generated by an HMM. The observation densfty;|:)
for statei is assumed to be a mixture of Gaussians,

K
ploili) =Y wiiN(or; pij, Tij) (17)
j=1

where K is the number of mixturesy; ; is the probability
of mixture componenj in state:, and N represents the
conventionali-dimensional normal distribution.

In this paper, we consider only the adaptation of the
mean vectors among the HMM parameters. Let =
[nly,--+, ui k]" be asupervector that augments all the
Gaussian mean vectors. Assume thatis generated by
a PPCA model with a latent variabbke and parameters
6 = { @, W,o?} and\® = {u(™} be the current esti-
mate and\ = {u} be the new estimate. Then, the auxiliary
function for the EM algorithm is defined by

RO = B [logp(O,S,C’|)\)|O,)\(")]

(18)
+E [1og ey x|0)|)\(”)]
whereS = {s1,---,sr} represents the state sequence,
C = {c1, -+ ,cr} is the mixture component sequence.

Now, (18) can be rewritten as

ROLAM) = 3% " p(S,€10,A") 1ogp(0, S, C|A)
S C
+F [logp(/\|x,0)p(x)|/\(”)] .
(19)

Based upon (6) and (17), it is not difficult to derive

R\, A™M)
T N K 1
= Z%(iaj) [_5(% — wiy) %55 (00 = “iﬁi)]
t=1 i=1 j=1
K 1
+ ZE {—WH pij— Wijx — ﬁi,j”Z | A(n)]
i=1 j=1

(20)

wherev,(i,j) = P(s; = i,¢; = j|O,\") is the poste-
rior probability of being in staté and mixture componert

at timet given the observation sequen®GgandW ; ; rep-

resents the sub-matrix &V corresponding to theu; ; el-

ement. After differentiating (20) with respect o, ; and

equating to zero, we find the adaptation formula

-1

T
- .. 1
K5 = [Zi,} Z’Yt(%]) + ﬁI
t=1

T
' [Ei_,jl > ylisj)oe + %(Wi,jE [x|>\<">] + i)
t=1 a1
where
E[xA"] = (°T+ WIW) "W (0 — i) (22)

which is equivalentto (13) . Focusing on scalar observations
for ease of discussion, the mean adaptation equation (22)
can be written as

Hij = apigmr + (1 — a)pijppea (23)
where a = (o, } 330, 7(i,0)/ (0, Simy (i d) +
(1/0?)) . This tells us that the PPCA-based adaptation so-
lution provides a unified framework which simply interpo-
lates the ML estimate of the adaptation data;;, with the
PPCA prior estimategppca. As the amount of adapta-
tion data increases, so dogs+.(i, ), « approaches, and
the PPCA-based solution converges to the ML solution. On
the other hand, for a small amount of adaptation daltee-
comes smaller, and the adapted mean depends more on the
PPCA prior estimate.

5. EXPERIMENTS

Performance of the proposed method was evaluated with
speaker-independent continuous Korean digit recognition
experiments. Utterances from 105 speakers constructed the
training data and those from the other 35 speakers were
used for evaluation. Each speaker contributed 80 sen-
tences consisting of~37 digits. Each digit was modeled by



a seven-state left-to-right HMM without skips and two mix- | Methods| Sent. p

ture components for each state and the silence was modeleg 1 2 4 8 16
by an one-state HMM. To obtain the SD HMM models, we | MLED 2 89.01| 88.94 | 88.85 | 88.88 | 88.87
trained first a set of speaker-independent (SI) models onthg PPCA 2 89.24 | 88.96 | 88.90 | 88.70 | 88.70
speech from all the 105 speakers and then carried out the MLED 5 89.55| 89.55 | 89.35| 89.28 | 89.26
MAP-based adaptation for each training speaker. We ex-| PPCA 5 89.51| 89.36| 89.32 | 89.26 | 89.28
tracted a supervector by augmenting all the mean vectors of MLED 10 90.07 | 89.88| 89.90 | 89.98 | 89.96
each SD model. The order in which the mixture Gaussian| PPCA 10 90.09| 90.12 | 90.20 | 90.21 | 90.21

mean vectors are arranged in the supervector is automati-

cally determined based on the MAP-based adaptation. The 6. CONCLUSIONS

speech signal was sampled at 8 kHz and segmented into 30

ms frame at every 10 ms with 20 ms overlap. Each speech  We have proposed a Bayesian speaker adaptation ap-

frame was parameterized by a 24-dimensional feature vec-proach for speech recognition based on the PPCA. The

tor consisting of 12 mel-frequency cepstral coefficients and PPCA was used for finding the canonical speaker mod-

their first-order time derivatives. Consequently, each super-els from the SD HMM'’s based on the EM algorithm. We

vector contained® = 3840(= 11X 7Tx2x24+3x2x 24) derived the adaptation formula based on the PPCA model

parameters. Using the 105 supervectors constructed fromwhich combines the prior knowledge with the adaptation

the training data, we obtained the estimates for the PPCAdata from a new speaker according to the MAP criterion.

model parameters. From the results of a number of continuous digit recogni-
In the recognition experiments, we drew 2, 5 and 10 sen- tion experiments, we could see that the proposed approach

tences (220 sec) from each target speaker for adaptation, Performed well especially when a small amount of adapta-

and performed the recognition test on the remaining sen-tion data was available.

tences. All adaptation procedures were performed in a static

supervised manner using the transcripted adaptation data. 7. REFERENCES
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