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ABSTRACT
In this paper, we propose a Bayesian speaker adapta-

tion technique based on the probabilistic principal compo-
nent analysis (PPCA). The PPCA is employed to obtain
the canonical speaker models which provide thea priori
knowledge of the training speakers. The proposed approach
is conveniently incorporated into the Bayesian adaptation
framework where the parameters are adapted to the new
speaker’s speech according to the maximuma posteriori
(MAP) criterion. Through a number of continuous digit
recognition experiments, we can find the effectiveness of
the PPCA-based approach compared to the other adaptation
approaches with a small amount of adaptation data.

1. INTRODUCTION

Many adaptation techniques have been studied to reduce
the acoustic mismatches between the training and test con-
ditions of an automatic speech recognizer [1]. Recently,
there has been increasing interest in speaker adaptation
techniques that require only a small amount of data from the
target speaker. Such rapid adaptation schemes have been
developed for modeling the dependencies between differ-
ent speech units for effective use of a small adaptation data
[2]. To estimate the dependencies between diverse units of
speech, a large corpus of training speakers and a variety of
correlation modeling approaches are used [2]. In general,
the basic adaptation techniques are classified into three cat-
egories: the maximum a posteriori (MAP) adaptation [3],
parameter transformation based adaptation using maximum
likelihood linear regression (MLLR) [4], and speaker clus-
tering based adaptation approaches [5].

The eigenvoice technique which is one of the speaker
clustering based adaptation methods was introduced for
rapid speaker adaptation in [5]. The eigenvoice technique
performs speaker adaptation by constructing a new speaker
model as a weighted sum of eigen speaker models. To find
the eigen speaker models which characterize thea priori
knowledge of the training speakers, the conventional prin-
cipal component analysis (PCA) method [6] is applied to a

set of supervectors provided by separate speaker dependent
(SD) hidden Markov model (HMM) parameters. One of the
drawbacks of the eigenvoice approach is that the adapted
speaker model does not converge to the true SD model even
when a large amount of adaptation data is available. In order
to alleviate this problem, the obtained eigen speaker models
are used as the prior information for the MAP adaptation
method [5].

In this paper, we propose a Bayesian speaker adaptation
technique based on the probabilistic principal component
analysis (PPCA) [7] . The PPCA method finds the canoni-
cal speaker models based on the expectation maximization
(EM) algorithm [8] . The proposed approach provides not
only the canonical speaker models but also thea priori dis-
tribution of the model parameters, which can be directly ap-
plied to the MAP adaptation scheme. For that reason, the
target speaker model converges to the true SD model when
a large amount of adaptation data is available. Performance
of the proposed adaptation method is evaluated through a
series of speaker independent continuous digit recognition
experiments which shows its effectiveness compared to the
other adaptation approaches.

2. EIGENVOICES

Let fmk; k = 1; � � � ;Mg be a set ofM well-
trained SD HMM mean vectors. Here,mk =

[mT
k;0;0; � � � ;m

T
k;i;j ; � � �m

T
k;N;K]T is the supervector of di-

mensionD constructed from thekth speaker model. Specif-
ically, mk;i;j represents the mean vector ofjth Gaussian
in the ith state of thekth speaker HMM withN andK
being the number of states and mixture components for
each state, respectively. The eigenvoice method tries to find
theP -dimensional linear subspace (eigenspace) spanned by
w1;w2; � � � ;wP wherewl is thelth basis vector called the
eigenvoice representing a canonical speaker model. The
eigenspace is spanned by theP -dominant eigenvectors of
the sample covariance matrixC = (1=M)

PM
k=1(mk �

�
m
)(mk � �

m
)T such thatCW = �W , where �

is a diagonal matrix defined by the largest eigenvalues of



C, �
m

is the mean vector andW = [w1;w2; � � � ;wP ].
Let m̂ be the supervector of a new speaker. Then,m̂ can
be obtained by a linear combination ofP -principal speaker
models such that

m̂ =

PX
l=0

xlwl =Wx (1)

where x = [x1; � � � ; xP ]
T is the weight vector. Us-

ing the maximum-likelihood eigen-decomposition (MLED)
method proposed in [5], the weight vectorx can be found
given an adaptation dataO as follows:

x̂ = argmax

x

log p(OjWx) : (2)

3. PROBABILISTIC PCA

Here we review the concept and formulations for PPCA.
Let y = [y1; y2; � � � ; yD]

T be an observation vector of di-
mensionD. Assume thaty is related to the latent variable
x = [x1; x2; � � � ; xP ]

T of dimensionP (� D) by

y = Wx+ �y + � (3)

whereW is theD�P parameter matrix that represents the
principal subspace of the observation data,�y is the mean
vector ofy and� is a Gaussian random noise independent
of x. Conventionally, the latent variable is defined to be an
independent Gaussian of unit variance such that

p(x) = (2�)�P=2 expf�
1

2
x
T
xg: (4)

The noise is also modeled by a Gaussian such that� �
N(0; �2I) whereI is theD � D identity matrix. Based
on the above assumptions, the observation vectors are also
normally distributed according to

p(y) = (2�)�D=2j�yj
�1=2

� expf�
1

2
(y � �y)

T�y
�1(y � �y)g

(5)

where�y = �
2I +WWT . We can derive the conditional

probability distribution ofy givenx by

p(yjx) = (2��2)�D=2 expf�
1

2�2
jjy �Wx� �yjj

2g: (6)

Given an observation sequenceY = fy1;y2; � � � ;yT g,
the PPCA estimates the latent variable sequenceX =

fx1;x2; � � � ;xT g and finds the optimal model parameters
�̂ = fŴ; �̂y; �̂

2g according to the maximum likelihood
(ML) criterion such that

�̂ = argmax

�

[log p(Yj�)] : (7)

Since, however, the latent variablesfxtg are consid-
ered to be hidden, it becomes highly difficult to solve
(7). For that reason, the EM algorithm which iteratively
updates the parameter values is applied. Let�

(n) =

fW(n)
; �y

(n)
; �

2;(n)g be the parameter values obtained in
thenth iteration. Then, the new parameter values�

(n+1) =

fW(n+1)
; �y

(n+1)
; �

2;(n+1)g are obtained by

�
(n+1) = argmax

�

Q(�(n+1); �(n)) (8)

where

Q(�(n+1); �(n)) = E

h
log p(Y;Xj�(n+1))jY; �(n)

i
: (9)

After some manipulation, we are led to
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where

xt � E

h
xtjyt; �

(n)
i
= ��1

x
W

T (yt � �y) (13)

xtx
T
t � E

h
xtx

T
t jyt; �

(n)
i
= �

2��1
x

+ xt � xt
T (14)

with �x = �
2I +WTW andtr representing the trace of

a matrix. The log-likelihood in the right hand side of (7)
is maximized when the columns ofW span the principal
subspace of the observation data. It is shown in [7] that
for the global maximum of the likelihood the ML estimate
WML contain the principal eigenvectors of the covariance
matrix of observation data.

4. PPCA-BASED SPEAKER ADAPTATION

If �, which is assumed to be a random vector, is the pa-
rameter vector to be estimated from the observationO with
probability density function (pdf)f(Oj�) and its prior pdf is
g(�j�), where� is a prior parameter, then the MAP estimate
is defined as the posterior mode of�, i.e.,

�MAP = argmax

�

f(Oj�)g(�j�) : (15)



Usually the MAP estimation problem becomes too compli-
cated for incomplete data such as the HMM because of the
underlying hidden process . If the prior pdf belongs to the
conjugate family of the complete-data density, the EM al-
gorithm can be efficiently applied to MAP estimation.

Let us assume that� is generated by a model given by
(3), which has a hidden variablex with the prior parameter
�. Then, the complete-data likelihood for� can be easily
defined. In this case we apply the EM algorithm to itera-
tively increase the posterior likelihoodp(�jO). The auxil-
iary function to be optimized is given as follows:

R(�; �(n)) = E

h
log p(Yj�) + log p(�;xj�)jO; �(n)

i
= E

h
log p(Yj�)jO; �(n)

i
+E

h
log p(�;xj�)j�(n)

i
(16)

whereY is the complete data forO, andf�;xg means the
complete data for�, respectively. It is shown in [8] that if
R(�; �(n)) � R(�(n); �(n)), thenp(�jO) � p(�(n)jO).

LetO = fo1;o2; � � � ;oT g be a sequence of feature vec-
tors generated by an HMM. The observation densityp(o tji)
for statei is assumed to be a mixture of Gaussians,

p(otji) =

KX
j=1

!i;jN (ot; �i;j ;�i;j) (17)

whereK is the number of mixtures,!i;j is the probability
of mixture componentj in statei, andN represents the
conventionald-dimensional normal distribution.

In this paper, we consider only the adaptation of the
mean vectors among the HMM parameters. Let� =

[ �T1;1; � � � ; �
T
N;K ]T be a supervector that augments all the

Gaussian mean vectors. Assume that� is generated by
a PPCA model with a latent variablex and parameters
� = f ��;W; �

2g and�(n) = f�(n)g be the current esti-
mate and� = f�g be the new estimate. Then, the auxiliary
function for the EM algorithm is defined by

R(�; �(n)) = E

h
log p(O; S; Cj�)jO; �(n)

i
+E

h
log p(�;xj�)j�(n)

i (18)

whereS = fs1; � � � ; sT g represents the state sequence,
C = fc1; � � � ; cT g is the mixture component sequence.
Now, (18) can be rewritten as

R(�; �(n)) =
X
S

X
C

p(S;CjO; �(n)) log p(O; S; Cj�)

+E

h
log p(�jx; �)p(x)j�(n)

i
:

(19)

Based upon (6) and (17), it is not difficult to derive

R(�; �(n))

=
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t(i; j)

�
�
1

2
(ot � �i;j)

T��1i;j (ot � �i;j)

�

+

NX
i=1

KX
j=1

E

�
�

1

2�2
jj �i;j �Wi;jx� ��i;j jj

2 j �(n)
�

(20)

wheret(i; j) = P (st = i; ct = jjO; �(n)) is the poste-
rior probability of being in statei and mixture componentj
at timet given the observation sequenceO, andW i;j rep-
resents the sub-matrix ofW corresponding to the� i;j el-
ement. After differentiating (20) with respect to� i;j and
equating to zero, we find the adaptation formula

�i;j =

"
��1i;j

TX
t=1

t(i; j) +
1

�
2
I

#
�1

�

"
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2
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#

(21)

where

E

h
xj�(n)

i
= (�2I+WT

W)�1WT (�(n) � ��) (22)

which is equivalent to (13) . Focusing on scalar observations
for ease of discussion, the mean adaptation equation (22)
can be written as

�i;j = ��i;j;ML + (1� �)�i;j;PPCA (23)

where � = (��1i;j
PT

t=1 t(i; j))=(�
�1
i;j

PT
t=1 t(i; j) +

(1=�2)) . This tells us that the PPCA-based adaptation so-
lution provides a unified framework which simply interpo-
lates the ML estimate of the adaptation data,�ML with the
PPCA prior estimate,�PPCA. As the amount of adapta-
tion data increases, so does

P
t(i; j), � approaches1, and

the PPCA-based solution converges to the ML solution. On
the other hand, for a small amount of adaptation data� be-
comes smaller, and the adapted mean depends more on the
PPCA prior estimate.

5. EXPERIMENTS

Performance of the proposed method was evaluated with
speaker-independent continuous Korean digit recognition
experiments. Utterances from 105 speakers constructed the
training data and those from the other 35 speakers were
used for evaluation. Each speaker contributed 30�40 sen-
tences consisting of 3�7 digits. Each digit was modeled by



a seven-state left-to-right HMM without skips and two mix-
ture components for each state and the silence was modeled
by an one-state HMM. To obtain the SD HMM models, we
trained first a set of speaker-independent (SI) models on the
speech from all the 105 speakers and then carried out the
MAP-based adaptation for each training speaker. We ex-
tracted a supervector by augmenting all the mean vectors of
each SD model. The order in which the mixture Gaussian
mean vectors are arranged in the supervector is automati-
cally determined based on the MAP-based adaptation. The
speech signal was sampled at 8 kHz and segmented into 30
ms frame at every 10 ms with 20 ms overlap. Each speech
frame was parameterized by a 24-dimensional feature vec-
tor consisting of 12 mel-frequency cepstral coefficients and
their first-order time derivatives. Consequently, each super-
vector containedD = 3840(= 11�7�2�24+3�2�24)

parameters. Using the 105 supervectors constructed from
the training data, we obtained the estimates for the PPCA
model parameters.

In the recognition experiments, we drew 2, 5 and 10 sen-
tences ( 2�20 sec) from each target speaker for adaptation,
and performed the recognition test on the remaining sen-
tences. All adaptation procedures were performed in a static
supervised manner using the transcripted adaptation data.
The SI system gives 88.03 % of word recognition rate. For
the purpose of comparison, we carried out two conventional
mean adaptation techniques, MLLR and MAP, whose word
recognition rate are shown in Table I. Table II shows the
recognition results for both the MLED where the MLED
is used as a prior for the MAP and the proposed method
with varying dimensionP . From Table II we can see that
both the MLED and PPCA techniques perform much better
than the conventional techniques. For two and five adapta-
tion sentences, we can observe that the performance of the
PPCA-based adaptation was similar to that of MLED adap-
tation. It is noteworthy that for very sparse adaptation data
the word recognition rate does not increase as the dimension
P increases. As for the 10 adaptation sentences, the recog-
nition rate of the PPCA-based approach was slightly better
compared to the MLED method.

Table I
Word recognition rate (%) for MAP and MLLR

No. of sentence 2 5 10
MAP 88.61 88.77 89.74

MLLR 88.15 88.18 88.60

Table II
Word recognition rate (%) for MLED and PPCA with

variousP

Methods Sent. P

1 2 4 8 16
MLED 2 89.01 88.94 88.85 88.88 88.87
PPCA 2 89.24 88.96 88.90 88.70 88.70
MLED 5 89.55 89.55 89.35 89.28 89.26
PPCA 5 89.51 89.36 89.32 89.26 89.28
MLED 10 90.07 89.88 89.90 89.98 89.96
PPCA 10 90.09 90.12 90.20 90.21 90.21

6. CONCLUSIONS

We have proposed a Bayesian speaker adaptation ap-
proach for speech recognition based on the PPCA. The
PPCA was used for finding the canonical speaker mod-
els from the SD HMM’s based on the EM algorithm. We
derived the adaptation formula based on the PPCA model
which combines the prior knowledge with the adaptation
data from a new speaker according to the MAP criterion.
From the results of a number of continuous digit recogni-
tion experiments, we could see that the proposed approach
performed well especially when a small amount of adapta-
tion data was available.
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