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Abstract

A fundamental problem with sample data is that
the underlying distribution is unknown. There-
fore any modelling of the data or any kind of
analysis has to be carried out based on the es-
timated distribution of the data. kernel density
estimation technique is one of the widely used
technique for density estimation. This is a non
parametric technique. Therefore it does not im-
pose any rigid distributional assumption on the
data. When we have a data set containing data
from different densities(or classes), the problem
becomes identifying which data belongs to which
class or density. Using kernel method, the maxi-
mum likelihood value for each data is computed
for each class. The class that produces highest
maximum likelihood, it is highly likely that the
data point belong to that class than any other
class.

1 Introduction

If we have a set of observed data points assumed
to be a sample from an unknown probability den-
sity then there are primarily two different ways
of estimating the underlying density [1].

(i) Parametric Approach : If it can be reason-
ably assumed that the observed sample is drawn
from a known parametric family of distribution,
then the values of corresponding parameters can
be estimated from the observed data and substi-
tuted in the density function.

(ii) Nonparametric Approach : In this approach,
no rigid assumption about the distribution of the
observed data will be made. The underlying den-
sity will be estimated from the observed sample
data.

There are various nonparametric approaches to
density estimation [2]. A brief introduction of
some those methods are provided here. Let
z1,T2,...,T, be independently and identically
distributed random observations from unknown
density, then there estimated density is denoted
by f .The methods discussed here are primaily for
univariate data, but they can be easily general-
ized to multivariate case. Histogram : the most

widely used density estimator is the histogram.

(no.of X; in same bin as x)

f(z) =

1
n" (width of bin containing x)

The naive estimator :
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where h is a small number and w(x) is a weight
function defined as,

(z) = 1 ifz<1
I =90 0 otherwise.

The kernel Estimator :




where h is the window width, that is the smooth-
ing parameter or bandwidth and the kernel func-
tion K satisfies the condition,
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The nearest neighbour method : If the density
at t is f(t), then for a sample of size n, exactly
(k — 1) observations will fall in the interval [t —
di(t),t + di(t)], where dg(t) is the kth distance
from t to the points of the sample. Therefore an
estimate of the density at ¢ can be derived using,

k—1=2d(t)nf(t)

so kth nearest neighbour density estimate is de-

fined by, k1)
1@) = 5naro)

Variable Kernel method : The density estimate
is constructed in the same way as it is done in
kernel estimation method, except the scale pa-
rameter is allowed to vary from one data point
to another.

Orthogonal Series Estimators : In this approach
the density function is estimated by estimating
the coefficients of its Fourier expansion.

Maximum Penalized Likelihood Estimators :
This method places restrictions on the class of
densities over which the likelihood is to be max-
imized.

For this study, kernel density estimation tech-
nique ( for multivariate data) combined with
maximum likelihood method has been used.

In this article, section 2 presents how kernel
density estimation works. Section 3 discusses the
results from the data sets. An overall summa-
rization section ends this paper.

2 Kernel Density Estimation

The kernel estimator for univariate case (dis-
cussed in section 1) can easily be generalized for

multivariate case [2]. In this case we assume,
Z1,%2,...,ZTy be independently and identically
distributed d-dimensional random vectors from
unknown density, then there estimated density
is denoted by,

Fa) = #;K@‘hx)

where h is the window width (smoothing param-
eter), d is the dimension of the data vector z
and the kernel function K(x) is now a function,
defined for d-dimensional = which satisfies the
condition,
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Usually the kernel function is chosen to be
symmetric unimodal probability density func-
tion. If we look at the definition of kernel estima-
tor it is easily understood that the smoothness of
the estimated density depends on the choice of
h and the form of the estimated density depends
on the form of the kernel function.

Properties of Kernel Estimate f

(¢) The kernel K is a density function and it
is non-negative everywhere, therefore the esti-
mated f will be a probability density function
3] . )

(#) The f will contain all the continuity and
differentiability properties of the kernel K [3].

The kernel estimator becomes inefficient in
case of long-tailed distribution. The reason for
this is because the window width is fixed across
the entire sample, sometimes spurious noise ap-
pear at the tail part of the estiamted density [2].

Couple of widely used kernel functions are
given below [2].

Standard Multivariate Normal Density :

K(z) = (27r)d/2eacp(—%me).

Multivariate Epanechnikov Kernel :



Yd+2)1 —2TX) ifzTe <1

otherwise.

K(z) =

1.~
2
{ 5

Where ¢4 is the volume of the unit d-demensional
sphere. For the special case of d = 2, some useful

kernels are available. These are

K(z) = 3m (1 — :ET.'L')2 if 2Tz S 1
0 otherwise;
and
K(z) = 4711 - 2T2)” if 2T S 1
0 otherwise.

The choice of smoothing parameter, that is
bandwidth is very crucial to density estimation.
If it is too small, then the estimated density will
be rough, local maxima and minima will domi-
nate. On the other hand if h, the bandwith is too
big, the density will be smooth, but some specific
characteristics will be lost due to smoothness.
So in choosing h one has to balance the desired
smoothness with the desire to see the effect of
actual data points. An optimal window width
for smoothing of normally distributed data with
unit variance has been suggested by [1],

—1/(d+4)

hopt = A(K)TL

where A(K) depends on the form of the kernel

function. For a general data set with estiamted

covariance matrix S, the numerical values for

A(K) can be as given below for different kernels.
Multivariate Normal K :

A(K) = 4/(2d + 1)1/ (@)

Multivariate Epanechnikov K, :

8d(2d + 1)(d + 4)(2ym)? /Y

(2d+ 1)cq

A(K) =

3 Discussion

For this project, two data sets (evaluation sets)
were provided to be classified into different
classes (or densities). For each data set, a train-
ing set with known clssifications and a test set
were provided. The purpose of the test set and
training set was to train the specific classifica-
tion algorithm that is to be used on evaluation
sets. No information regarding to the context of
the data were available.

In this paper I have used kernel density esti-
mation technique to estimate the density or class
for each evaluation set vectors, depending on the
information obtained from training and test set
vectors (whose classifications were known).

The application involved for each of the ith
evaluation set vectors, the calculation of maxi-
mum likelihood value corresponding to each of k
classes of the training set. Then all these maxi-
mum likelihood values were compared. The class
that produced the highest ML value, has been
identified as the class for the ith evaluation set
vector. This process continued untill all the vec-
tors of evaluation set were classified.

In this paper the multivariate normal kernel
function is used. So the form of the estimated
density function is,

T
) (5
where x represent each vector of the evaluation
set and Xj; is the jth training set vector for the
ith class. And m is the number of vectors in ith

class, n is the number of classes in training set.
And ofcourse each vector is d (10) dimensional.

f) = o oy Sk (2

d(9
nhd( i=1j=1

Group 1

The dimension of the data sets in this group
is 10 with 11 classes or densities from where the
data came. The training set has 528 vectors and
the test set has 379 vectors. The bandwidth (h)
used in this case is equal to .6737.

When the kernel density estimation algorithm
has been used to identify the classes of test set



vectors errors have been found in 55% of the
cases.

Group 2

The dimension of the data sets in this group
is 39 with 5 classes or densities from where the
data came. The training set has 925 vectors and
the test set has 350 vectors.

When the kernel density estimation algorithm
has been used to identify the classes of test set
vectors, it identified only one class :class 1. error
rate is approximately 80%.

4 Summary

Kernel density estimation technique has wide ap-
plications in the area of statistical data mining.
The mathematical properties are well established
for kernel densities. Though the results obtained
here are not promising, still this method should
be investigated further.
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