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ABSTRACT the class discrimination in the HDA space.
However, the experimental results clearly show

Heteroscedastic discriminant analysis (HDA) is a that HDA performs worse that LDA. The main
technique that maximizes the class reason for the improvement in the word error
discrimination in the projected space, similar to rate, on the Switchboard and Voicemail tasks, is
linear discrimination analysis (LDA), without  due to the maximum likelihood linear transform
the assumption of equal sample covariances. The(MLLT). In my opinion this paper should never
description of the algorithm looks promising have been published as all of the relevant
given the fact that LDA is known to be nformation content could have been obtained
inappropriate for classes with unequal sample from the references [2, 3.
covariances. This review will focus on two
things, the fact that HDA fails to live up to its This paper has been organized as follows:
billing as a better discriminator and the section 2 will describe the basics of LDA and
maximum likelihood linear transformation that is explain why LDA perform best under the equal

employed along with HDA. sample covariance assumption. Section 3 will
describe the extension of LDA to HDA and
1. INTRODUCTION section 4 will describe the MLLT. Finally section

o o 5 will focus on the why the focus of this paper
Most speech recognition applications perform ¢n4u1d have been the MLLT and not HDA.
some form of per-processing on the data in order

to extract features that can best model the data. 2. FISHER'’S LINEAR DISCRIMINANT
Principle component analysis (PCA) is used by

some applications because of its ability to pick Linear discrimination analysis considers the
out those dimensions that best represent the datgroblem of classifyingy d-dimensional samples
and thereby reducing the dimensionality. Linear by reducing it into a more manageabpe
discrimination analysis is preferred in speech dimension spacep(< n) [6]. In two-dimensions
applications primarily because PCA seeks the LDA can be thought of as the projection of the
directions that are efficient for representation samples onto a line. The goal of linear
where as LDA seeks directions that are efficient discrimination is to move the line around and
for discrimination. The paper in review, find an orientation for which the projected
“Maximum Likelihood Discriminant Feature samples are well separated.

Spaces,” was written by G. Saon, M.

Padmanabhan, R. Gopinath and S. Chen. In thelf we have a set oh d-dimensional samples
paper the authors defined a new objective X;...X, and if we use the samples in the set to
function, which is an extension of the work done form a linear combination of the companents of
by K. Nagendra [2], that they claim maximizes X, we obtain the scalar dot produgt= W'x  As



you can see the direction of the vect/ is maximum ratio of the between-class scatter to
importance in discriminating between the within-class scatter. However, the estimate

classes. Hence, our goal is simply the matter ofcan be shown to be dependent on the sample
finding the best possible direction\df covariances i.e., given unequal sample

_ _ ~ covariances linear discrimination does not yield
In order to determine the best possible directionthe direction of maximum discrimination.

for W we define thescatter matrices5; andsS,,.
Si is defined as a measure of the Varlablllty Or Assume that the classes we are try|ng to

scatter of the samples within the clafs discriminate are multinormal with equal
S = (x—m)(x—m;) covariances. The discriminant function for the
X gDi classes can be given by

. . . _ t _1
anqls\,},.ls a measure of.the. total within-class gi(x) = (_%)(X_“i) > (x—p;) + logP(w)
variability or scatter and is given by

C
Sw= 2 S

=1 i Where is a constant involving ther and the

Apart from the within-class scatter we define Yo g

g;(x) = wtix + W

. class priors
anotherscatter matrixcalled the between-class P _ Z_1
scatter. The between-class sca8grs a measure Wi = Hi
of the variability of the various class means w.r.t 0ln.t <1
= Wi = D200 577 + logP(w.
to the global mean and is given by 10— 0 2Elrl ' Hj +logP(cy)
c
Sp = Y n(m—m)(m; - m)t Using the individual class means and a common
i=1 sample covariance yields a transfownin the

Using thescatter matricesve define an objective  same direction as that & [5].
function J(.) such that maximizing the objective

function leads to the optimal value 1. 3. EXTENSION TO HDA
t
_ ‘W SbW‘ Using linear discrimination analysis as an initial
J(W) = 1| estimate the authors incorporated the individual
‘W SWW‘ weighted contributions of the classes using a new

Intuitively it can be seen that in order to objective function. The objective function uses

maximizeJ() the class means need to be as farthe original transfornW generated by LDA and

apart as possible (between-class) and thenaximizes it with respect to the individual
samples within the classes need to be tightlycovariance of each class. The objective function

clustered (within-class). It can be shown that a is given by

. . . N N
vectorW that maximized(.) must satisfy 3 ‘WSDWt‘ i ‘WSDWt‘
S.W = AS,, W 1 - 3 N,
° W j:l‘WZjW‘ M ‘WZ-Wt‘ :
Where A represents the eigen values &vid j=1 .

represents the eigen vectors of the between-clas$aking the log of the objective function gives us
to the within-class ratio. In order to reduce the the following discriminant function
dimensionality we select the eigen vectors with

thep largest eigen valueg € n). J

H(W):Z —leog‘WZth‘+Nlog‘WSbWt‘
Hence, LDA gives the value &V that yields the j=1



Maximizing the discriminant function by taking

the derivative gives us the following result
J

d _ tD_l
W) = 3 —2NJHNZJ-WD W3 +
j=1

-1
2N(WS,W') WS,
The above result however has no closed form
solution and so it must be solved numerically.

Solving the above result numerically requires the
use of constrained quadratic optimization algo-
rithms [1]. A loose upper bound on the error used
to maximize H(W) is given by %

e
Hence, the authors hope that minimizing the
upper bound on the error rate will maximize H.

4. LIKELIHOOD TRANSFORM

There are several places in the paper where the

authors use a maximum likelihood (ML) linear
transform to show how HDA does better that
LDA in reducing the word error rate. In this sec-
tion we will take a closer look at the MLLT and

how it improves classification performance.

In speech recognition we generally assume that

the underlying distribution is normal. There are

separability is maximized. We can then model
the training set in the feature space and use it to
classify the test samples. However, it is difficult
to compare the likelihood of a test sample given
that the classes have been modeled in the trans-
formed space. The problem is one of scaling and
if we let A; represent the transform we can

always choosed such that Al = 1 for every
class. If we letA; be a volume preserving trans-

form we see that the likelihoods are equal.
J N .
pOSH; ) = POy ) ] A
j=1

When we add constrains to the ML principle, in
our case a diagonal covariance, we can show that
the inequalities

[diag(Z)l z|5]  44q  Pdiag®) = P(X)
hold. Also, we can represent the equation of a
normal distribution as
1o
a(N, dye ?
where

~ 0 t—1 1. 0
CD—%N]E(HJ- uj)z l(“j pj)+Tr§j szHOg‘zj‘B

and Nd

a(N, d) = 27t ?

several reasons for doing this among them being Hence our equation for the likelihood in the orig-

the minimum number of parameters of a gauss- inal space becomes

ian, high entropy rate of a gaussian distribution
and the fact that any distribution can be approxi-
mated by a mixture of gaussians.

Let P(x {K;},{Z;}) representa gaussian used
to model clas$ of our training set. The ML prin-
ciple maximizes the likelihood that the estimated

N.
.
Paiag® = 9(N. @ [T |diag(Z))
j=1
and the likelihood in the feature space ig.
j

3 _J
oo —= .t 2
pdiag(y) = g(N, d)_l_ll‘mag(Ajszj)‘
J =

mean and covariance are close to their true val- We can see from the above equation that the best
ues. We can then use the trained gaussians to testML solution is a function ofA. The likelihood

for class membership on the test samples. In can be maximized ovek to obtain the best fea-
most cases the classes in the original space haveture space in which to model the diagonal covari-
a high overlap and hence classification yields ance constraint. By inspection we can show that

poor results. However, in some cases the data canone optimal choice foA is the eigen basis of the
be transformed to a new space where the class sample covariance wherg, = AS Al and



N— J —71
p) = a(N. ) [T N 2 =N [] I
j=1 j=1
Hence, the likelihood in the original space which

achieves the likelihood of a full-covariance is

Nj

J N t| 2
00 = oo [ [A] |aiac(AZ,A)
i=1

= p(¥)

pdiag

Imposing diagonal gaussian models in the fea-
ture space reduces the storage and memory
requirements. However, it comes at a loss of like-
lihood and does not discriminate since the model
parameters are estimated independently. We can
globally transform the data with a unimodular
and model the transformed data. The loss of like-
lihood can be minimized by searching for a suit-
ableA. This intern forms the basis of the MLLT.

5. CONCLUSION

A closer inspection of the experimental results
on the Switchboard task gives us more of an
insight into performance of HDA.

Table 1: Word error rates for Switchboard.

System WER
HDA 54.89%
LDA 43.16%
LDA+MLLT 40.46%
HDA+MLLT 39.67%

It is clear from the above results that HDA per-
forms worse that LDA on the Switchboard task.
The authors main objective in this paper is to
convince us that HDA is a better discriminator
that LDA given unequal sample covariances.
However, the experimental data seem to suggest
otherwise. HDA does however show an improve-
ment over LDA, albeit a minor 0.79% improve-
ment, when applied along with the MLLT. It is

hard not to be skeptical about the implementa-
tion of HDA because: the improvement in per-

formance is too small to be statistically

significant and the MLLT appears to play a much
larger role in the improvement than HDA.

In conclusion, | would say that although the con-
cept behind HDA does sound promising the new
objective function given by the author fails to
deliver what it promises. In fact the most inter-
esting thing about the paper is the MLLT of
which not much was said. A better approach to
the paper would have been to focus on the role
played by the MLLT in reducing the word error
rate. However, that approach was already cov-
ered in another paper [3].
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