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ABSTRACT by the use of two or more mixtures of Gaussian
probability density functions (PDF’s) with diagonal
The paper claims that the combined use of mixture covariances matrices, these correlations are modelled
densities and factor analysis for speech recognition implicitly, there is no viable explicit technique to
leads to smaller, faster and accurate recognizers thanmodel these correlations. The use of full covariance
either of these in isolation. Two ways to model matrices is not a viable solution to model these
correlations between high-dimensional feature correlations explicitly since it involves a very large
vectors are: 1) implicitly by the use of mixtures, or 2) computational overhead. and it is very difficult to get
explicitly by the use of non diagonal elements in each the full covariance matrices because of lack of
covariance matrix. The latter one has a heavy enough data. The other technique of sharing the
computational overhead because of the use of full covariance matrices across the states or models,
covariance matrix. Factor analysis can be used to parameter-tying, is very complicated. The paper
model this high dimensional covariance matrix using claims that the statistical method of factor analysis is
small number of parameters. Factor analysis is not a compromise between the two extreme approaches
only a method for dimensional reduction but it also of the use of either full covariances or diagonal
models the variations outside the reduced- matrices to model correlations. Factor analysis is a
dimensionality subspace. Factor analysis can be usedlinear technique of dimensional reduction. In other
to increase likelihoods as well as word accuracies by words, factor analysis maps the high dimensional
use of an expectation-maximization (EM) algorithm space into a lower dimensional subspace by
for maximum likelihood estimation and a gradient expressing the full covariance matrices in terms of
descent algorithm for improved class discrimination. small number of parameters. In this way, factor
This paper will analyze the use of factor analysis analysis captures the most significant correlations.
technique in conjunction with mixture densities to Thus, it has a very small overhead in computation
model correlations by reviewing advantages and and memory requirements in comparison to the use
drawbacks of the EM algorithm and gradient descent of full matrices to model correlations explicitly.
algorithm.
The paper also claims that the use of mixture
1. INTRODUCTION densities to model discrete type of variability and the
use of factor analysis to model the continuos type of
In a speech recognizer, the spectral information variability are two complementary techniques. The
within a frame is represented by a feature vector combined use of both in Hidden Markov Model leads
consisting of approximately 30 dimensions. to smaller, faster and accurate recognizers than either
Correlations between these features may exists whenof these in isolation. While the former can be
the speech signal is either non stationary or is understood as clustering, the latter is dimensional
corrupted by noise. Background noise and reduction technique.
coarticulation effects give rise to continuos
variability. Currently, many Hidden Markov Models The small number of parameters of factor analysis
which are used to model the short-time, acoustic can be chosen in two ways either to increase
properties of speech, ignore this correlation. Though, likelihoods or to improve word accuracies by use of



an expectation-maximization (EM) algorithm for The HMM’s use the mixtures of these PDF’s to
maximum likelihood estimation or by use of a implicitly model correlations. The factor analysis
gradient descent algorithm for improved class HMM or FM-HMM'’s has mixtures modelled by the
discrimination. PDF'’s given above. Here distribution for each state is

estimated by
2. FACTOR ANALYSIS

We will discuss dimensionality reduction by using P(X9 = %P(Cl IP(Ns9 @
factor analysis, learning algorithm for ML and MCE
using factor analysis in sections 2.1, 2.2 and 2.3, Since, we employ PDF’s which requires less number
respectively. For each of these sections we will first of computations and memory to estimate the
consider the analysis for multivariate Gaussian PDF’s correlations, theP(x|s) can be computed in fewer
and then extend the method to HMM’s using multiple number of computations than required for a full
mixtures per state. Here each mixture represents acovariance matrix.

Gaussian PDF.
2.2. ML FACTOR ANALYSIS

2.1. DIMENSIONALITY REDUCTION
Maximum likelihood criterion is used to estimate

The objective of the factor analysis is to reduce the parameters of the HMM’s. The EM algorithm is a

dimensions that captures the correlations among theiterative process to estimate the parameters of latent

features. variable models. If we have N data points, then the
D . _ ~ EM algorithm is a two step iterative procedure to

If xO R denotes a Gaussian random variable with estimate the parameters y apd that maximize

meanp , then the number of dimensions D is very the log likelihood. The first or the E-step is to

large. FactPr analysis reduces itta< D dimensions. calculate theQ -function given by

Herez R is also a Gaussian random variable with

zero mean and identity covariance matrix. The

marginal distribution ok is given by Q(p, A, O, A, )
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storing/A and) requires less memory than storing a

full covariance matrix. Also, the covariance matrices

of these form can be inverted using matrix inversion
lemma[2]. Using whichP(x) can be gomputed with ~
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classification error criterion since one cannot
estimate the parameters of the true distribution and
These updates are guaranteed to convergethe finite training set[4] . The goal of MCE training
monotonically to a extremum of the log-likelihood.  approach is correctly discriminate data rather than to
) ) _ fit the distributions to the data as done in maximum
These parameters are estimated using the assumptiofelihood. The error rate estimated from the limited

that the likelihood is unimodal and approximately  aining data is a piece wise constant function of the
symmetric. But the likelihood can be multimodal and - ¢|assifier parameter, it is not differentiable functions
asymmetric, which undermines the maximum of |og-Jikelihoods. Using the smoothed MCE loss
likelihood criterion[3] function J[4(23)] , we can update the parameters

. : . iteratively by gradient descent.
The same iterative process can be used to estimate the ybyd

parameters of each mixture in every state of the

2 . 1 1
HMM's, except that the each observation is weighted  J = =%
by the posterior probability given by the following NG 1+ exp(=d0x,)) (11)
equations. O . - ﬂ(q))g—j) (12)

~ sc. s s T wheren(®) is a positive learning rate.
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The partial derivative in (12) can be decomposed
using the log-likelihoods [4(25)].
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ui,/\ij, quj are given by [1(27-29]. Using these

equations iteratively, the variance parameters are

updated in the log domain by choosing the positive

matrix n(®) .
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~ T ~T mixture component in a given state of HMM’s.
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3. EXPERIMENTS
The updates for mixture weights and transition

matrices in FA-HMM'’s are similar to the The experiments were conducted Gonnected
conventional full covariance matrix HMM since the Alpha-Digits (36 words) andNew Jersey Town
FA-HMM's are form the subset of HMM’s whose Names (1219 words)Various combinations of

mixture employ full covariance matrix. number of mixture components and number of
factors in each state of HMM were evaluated. This is
2.3. MCE FACTOR ANALYSIS a reasonable way to find out the performance of the

system at different Factors.
The maximum likelihood criterion is not always the 4

desired one because though it does maximizes thefFor Connected Alph®igits, the results in Table 1[1]
likelihood, it does not guarantees minimum error ghowed that there is a significant increase

rate. We cannot use MAP decision for minimum performance by increasing the number of factors.



The graphs between average likelihood versus the two extreme techniques of full covariance matrix and
number of parameters and word error rate versus thediagonal covariance technique analysis.

number of parameters clearly shows that models with

factored covariance matrices have better likelihood The experiments conducted very well support the
and word error rates than models with only diagonal above mentioned conclusions. The experiments
covariances matrices. Table II[1], shows that varying conducted, establish the fact that for the same
the number of factors in each component give better accuracy, the factored analysis HMM's are faster and
word error and log-likelihood in comparison to a smaller than diagonal covariance matrix HMM’s. In
fixed number of factors in each component but the the MCE based task fdiew Jersey Town Namethe
CPU time also increases. In other words, the error rate showed an increase with the increase in
performance does not increase. But there is an parameters which contradicts the factored MCE

improvement of about a factor of two in speed and analysis for minimum error rate.

memory over diagonal covariance matrix HMM'’s _ _
with the same accuracy levels. Factor analysis and mixture components were used as

a complementary techniques to improve the
For New Jersey Town Namemly factored HMM'’s performance of the system. The system performed
with one factor per mixture component were better by employing both the techniques rather than
employed since in previous experiment largest €ither of these. Since performance is improved by
improvement (per parameter) occurred with small tying full covariance matrices, the paper suggests that
number of factors. We observe that the rate of the clever tying of factor loading matrices across
improvement in performance is not linear with the units, states, and/or mixture components would lead
increase in the number of factors per mixture to further improvement in the performance. This
components though it is comparable to the diagonal Promising idea may be further explored. Also, the
covariance matrix HMM'’s. Form the figure 3[1], itis method of factor analysis may be applied to arbitrary
evident that the word error rate increases and then features that model short time properties of speech.
drops back with increase in number of parameters in
MCE-based factor analysis, this increase in WER is REFERENCES
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