Review of Arcing Classifiers

Nusrat Jahan
Department of Mathematics and Statistics
Mississippi State University, Mississippi State, MS 39762 USA
email:njahan@ra.msstate.edu

Abstract

Some classification algorithms such as regression
trees, neural networks are very sensitive to their
training sets [2]. A minor change or perturba-
tions may produce a significant change to the
constructed predictor. In these cases of unsta-
ble classifiers, accuracy can be improved by ag-
gregating multiple versions of the predictor gen-
erated by perturbing the original training set.
Bagging and arcing (or boosting) are two well
known methods for improving accuracy in terms
of reduced test set error. In case of bagging, dif-
ferent versions of the classifiers are constructed
from the original training set by resampling and
then these multiple classifiers are combined by
simple voting. In case of arcing, multiple clas-
sifiers are generated by adaptive resampling of
the training set and then they are combined by
weighted voting. Arcing algorithms have been
found to be very efficient in reducing the test
set error compared to bagging [2]. Two types
of arcing algorithms are investigated in this pa-
per. They are compared with each other and
also with bagging. The error reduction ability
of arcing has been attributed to the adaptive re-
sampling technique.

1 Introduction

A classification algorithm operates on a train-
ing set to produce a classification rule that will
provide low prediction error or low misclassifi-
cation rate on a separate test set. If the algo-

rithm is unstable, a small change either in the
training set or in construction may inflate the
prediction error [1]. The performances of unsta-
ble algorithms can be improved by bagging or
boosting methods [2]. Both of these methods
work with the purturbed versions of the train-
ing set repeatedly to produce multiple predictors
and these are combined by a majority vote [3].
Bagging and boosting employ distinctly differ-
ent methods to introduce perturbation in their
training sets. Perturbations introduced by bag-
ging are random and independent, where as the
perturbations used by boosting are determinis-
tic and serial (dependent on the previous step)
[4]. Bagging uses bootstrap techniques to resam-
ple from the training set. Then classifiers are
built from each sample and combined. In case of
boosting adaptive resampling is used to resample
from the training set. Classifiers are constructed
from each sample, then they are combined. Be-
cause of the technique of “adaptive resampling
and combining” boosting algorithm is referred
to as “arcing algorithm”

Both bagging and arcing algorithms when ap-
plied to any unstable classification algorithm,
improves efficiency of that algorithm, reduces
variance. If they are compared with each other,
in most cases arcing algorithm out performs bag-
ging. Arcing algorithm was first introduced by
Freund and Schapire [3]. Their particular algo-
rithm is identified by arc-fs. It is found to pro-
duce very low variance on both synthetic and
real world data sets [2]. The author in [2] claims
that the variance reduction by arc-fs is due to the
adaptive resampling and not because of the spe-
cific form of arc-fs. To prove his claim, Breiman

proposed arc-x4 - a simpler form of arc algorithm
in [2]. The performacnces of arc-fs and arc-x4 are
compared on several different simulated and real
data sets [2]. They have been found to produce
equivalent results in most cases.

In this article, section 2 presents how arc-fs
and arc-x4 work and also their differences are
highlighted. Section 3 discusses and compares
the results from simulated and real data sets ob-
tained in [2] for arc-fs and arc-x4. An overall
summarization section ends this paper.

2 Arcing Algorithms

Bagging and arcing (boosting) techniques ma-
nipulate the training set to generate diverse clas-
sifiers. Then these classifiers are combined to
produce the finel improved classifier. In this sec-
tion procedures bagging, arc-fs and arc-x4 are
explored.

Suppose the training set T has N cases, n =
1,2,...,N with equal probabilities p(n) = 1/N
assigned to each case, the probability distribu-
tion of T given by p(n) is P. Bagging would use
these probabilities to sample with replacement
(bootstrap technique) N times from T. This re-
sampled training set (7") is iid from P, some
cases in T may not appear in T" and others may
appear more than once. The whole procedure
is repeated to produce a sequence of indepen-
dent bootstap training sets and from each set a
classification predictor C}, is constructed by ap-
plying the same classification algorithm. Then
these classifiers vote for each class. The con-
structed predictors are combined to produce the
final prediction rule [2]. For any point x, the
classifier Ci(x) depends on the underlying prob-
ability distribution Py that the training sets are
drawn from Cy(z) = Ck(z,Py). The classifier
resulting from bagging is Cy(z, P), which is an
approximation to Ci(z, Py) [2]. This fact is the
cause of variance reduction in bagging classfiers.

In case of arcing, p(n) = 1/N is used to re-
sample from T (the original training set) N times
and a classification predictor is constructed from

there. As the procedure is repeated, p(n) is up-
dated depending on the misclassifications up to
that step [2]. p(n) increases for most frequently
misclassified cases. At the final stage classifiers
are combined by weighted or simple voting. In
[2], the author discussed two arcing algorithms
namely arc-fs and arc-x4. The arc-fs algorithm
is developed based on a boosting theorem given
in [S], where as arc-x4 is an ad hoc invention
[2]. The initial steps are the same as described
above for both the arc-fs and arc-x4. They dif-
fer interms of how the probabilities are updated
at each step and how the different classifiers are
combined.

Arc — fs

At any step k the classifier C, constructed
from the resampled training set is used to clas-
sify the cases of T (original training set). In [2]
the author defined d(n) = 1 if the nth case is
misclassified otherwise zero. Then

e = pH(n)d(n), B =(1—ex)/ex

Therefore the updated probabilities for the next
step is given by,

p# D (n) = p® () 5e™ | 3p® () 5.

After a predetermined number of steps, the
Ci,....,Cy are combined using weighted voting,
where the classifier Cy, has the weight log(8) [S].
It has been observed that if €, becomes greater
than 1/2, the voting weights (; becomes neg-
ative. In that case, setting all p(n) equal and
restarting the algorithm would yield better re-
sults [2]. Also if ¢, becomes zero the step should
be made undefined, again setting all p(n) equal
and restarting would yield better results [2].

Are — 4

The classifier C}, is used to classify T. At step
k, m(n) is defined as the number of misclassifica-
tions of the nth case by Ci, ..., Cy. the updated
probabilities for the next step is given by,

p(n) = (1+m(n)) /32 (1+m(n)?).

After a fixed number of steps, the classifiers
Ci,....,Cy are combined by unweighted voting
[2].

If the three classification algorithms described
above are compared, we see that all of them are
methods of manipulating the training set to gen-
erate multiple classifiers. Just the manipulation
techniques and the techniques of combining the
multiple classifiers differ for each algorithm.

3 Discussion

This section discusses the performance of bag-
ging and two arc algorithms over a number of
data sets as described by [2]. The algorithms
were run on both artificial and real data sets.
Four artificial data sets were used, for each one
100 replicate training sets of size 300 were gener-
ated by Monte Carlo method. On each training
set bagging and arc-fs were used 50 times with
CART [3] as the classifier. This paper [2] ana-
lyzes the test set error in terms of bias and vari-
ance decomposition. Both methods reduced bias
a little bit. But the performance of arcing was
better than that of bagging in terms of variance
reduction. As the number of combined classi-
fiers was increased from 50, the arc-fs error rate
decreased significantly and came close to Bayes
minimum [6] (with 250 combined classifiers) [2].

In [2] six moderate and four larger real data
sets were used to compare bagging, arc-fs and
arc-x4. In addition to these another handwrit-
ten digit data set “U.S. Postal Service” was also
used.

For the moderate sized data sets, 10% of the
training sets was randomly selected to be used
as a test set. Both arc-fs and arc-x4 were run 50
steps on the remaining 90% of the training sets.
Then these 50 classifiers were combined to pro-
duce the final classifier. For the four larger data
set and also the digit data, separate training sets
and test sets were provided. Again each of the
arcing algorithms was used to construct 50 clas-
sifiers and then these were combined to produce
the final classifier. In case of the digit data 100

classifiers were used. When the test set errors
were compared for the three algorithms bagging
had the highest percentage of test set errors for
almost all the data sets. Both arc-fs and arc-x4
were comparable in test set error percentages. It
appeared that arc-x4 performed slightly better
in smaller data sets and arc-fs performed a little
better in larger data sets.

In order to understand arcing better, further
experiments were conducted on the six moderate
sized data sets and also on the artificial wave-
form data [2]. One thousand runs were made for
both arc-fs and arc-x4 in each case. It has been
observed that these two arcing algorithms were
very different in terms of arcing techniques. In
arc-fs, the constructed trees changed consider-
ably from one step to the next, where as in case
of arc-x4 changes were more gradual [2]. In these
seven data sets, arc-x4 used 35% to 60% of the
training set data, where as arc-fs used relatively
smaller fraction of the data (lowest was 13% on
breast cancer data). For arc-fs, the larger the
value of p(n) is, the more variable it is (standard
deviations of p(n) are large and increase linearly
with the average), where as standard deviations
for arc-x4 are quite small and increase slowly
with average p(n) [2]. It should also be noted
that the range of p(n) for arc-fs is 2 to 3 times
greater than that of arc-x4. For both algorithms,
the more frequently a case is misclassified, the
more its probability of selection increased and it
becomes more likely to be used in a training set.

Arc-fs reduces the training set error to zero
very rapidly (on average at most five tree con-
structions), but it does not do the same for test
set error [2]. In fact the accompanying test set
error is higher than that of bagging. In order
to obtain optimum reductions in test set error,
arc-fs must continue to run beyond the point of
zero training set error.

In case of arcing, instead of randomly sam-
pling from the probabilities p(n), the weighted
probabilities for selection of each case are com-
puted, so randomness is not involved. But in
case of bagging, random sampling is critical, the
selection probabilities for each case must remain
equal and constant. It has also been observed

that arcing takes longer to attain its minimum
error rate compared to bagging [2]. Breiman [2]
also suggested that if error reduction properties
of arcing are related to its steady-state behavior,
then the longer reduction time may be due to
the fact that the dependent Marcov property of
the arc-fs algorithm takes longer to reach steady
state than bagging. In case of bagging because
of the i.i.d. bootstrap training sets, steady-state
is achieved sooner (because of law of large num-
bers). In [7], arcing was compared with C4.5 (a
tree-structured program [8] similar to CART),
the arc-fs test set error was 20% larger than that
of C4.5.

The effectiveness of bagging or arcing appears
to be applicable only in case of unstable classi-
fication methods. It has been shown in [2] that,
linear discriminant analysis - a stable low vari-
ance procedure which fits a simple normal para-
metric model, does not improve much with either
bagging or arcing. Niether of the procedures can
reduce the linear discriminant analysis test set
error.

4 Summary

Breiman’s work in [2] shows the effectiveness of
aggregating classifiers for reducing classification
error. Both bagging and arcing are methods of
manipulating the original training set to gener-
ate diverse classifiers. From these classifiers sim-
ple or weighted voting will yield a better clas-
sifier, in the sense that the combined classifier
will produce greater reduction in test set error.
But this strategy works for only unstable classi-
fication algorithms. If an algorithm is stable, it
will not change much with replication of train-
ing sets. The same cases tend to be misclassified
even with the changing training sets.

The arc-fs and other arcing algorithms are in-
novative and highly efficient methods for reduc-
ing test set error for unstable classification algo-
rithms. For a number of classification methods,
arc-fs and other arcing algorithms can reduce the
test set error to the point of most accurate. Arc-

ing algorithms particularly arc-fs is very easy to
use. Though there are some concerns about the
error reduction properties of arc-fs, it still came
out as the top error reducer in almost every data
set [2]. The introduction of arc-x4 and its com-
parable performance to arc-fs indicates that fur-
ther improvement of arcing technique is possi-
ble. This also supports the author’s contention
that error reduction property of arc-fs does not
depend on the specific form of arc-fs, rather it
depends on the adaptive resampling technique.
There exists a huge scope of improvement and
research in the arcing method.

References

[1] Breiman,L.Bagging Predictors. Machine

Learning, Vol.26,pp.123-140,1996.

[2] Breiman,L.Arcing Classifiers.The Annals of
Statistics,Vol.26,No.3,pp-801-824,1998.

[3] Breiman,L.,Friedman,J.,Olshen,R.
and Stone,C.Classification and Regression
Trees.Chapman and Hall,London,1984.

[4] Freund,Y. and Schapire,R.Experiments with
a new boosting algorithm. In Machine Learn-
ing.Proceedings of the 13th International

Conference. Morgan Kaufmann,San Fran-
cisco,1996.
[6] Freund,Y. and Schapire,R.A descision-

theoretic generalization of on-line learning
and an application to boosting.J.Comput.
System Sci.Vol.55,pp.119-139,1997.

[6] Mackay,D.A practical bayesian frame-
work for backpropagation networks. Neural
Computation,Vol.4,pp.448-472,1992.

[7] Quinlan,J.R.Bagging,Boosting, and C4.5. In
proceedings of AAAT’96 National conference
on Artificial Intelligence. pp.725-730,1996.

[8] Quinlan,J.R. C4.5:Programs for Machine
Learning. Morgan Kaufmann,San Francisco,
1993.

