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ABSTRACT

The aim of this project is to perform phone classification on the Mel Frequency Cep
Coefficients (MFCCs) generated by a speech recognition front-end. We have used
classification techniques, namely Linear Discriminant Analysis and Decision Trees. The form
a linear technique where as the latter is a nonlinear one. The motivation for the application
nonlinear techniques was to observe some reduction in the misclassification error rate
experiments have shown that the decision tree approach does well on the training data b
performance degrades in case of the test data due to over-training.

INTRODUCTION

Linear Discriminant Analysis and Decision Trees are two well-founded, commonly u
classification techniques. Since previous work shows that they have enjoyed success in
application domains, such as scenic beauty estimation, generation of proper noun pronunc
etc., a logical progression is to apply them to classification of phonetic segments of speech
Another motivation is that many existing methods do not achieve good performance when d
with this particular classification problem. Also we hope to investigate some new functiona
of these two traditional methods.

Linear Discriminant Analysis (LDA)[1] helps us discriminate between different classes base
a linear classification rule. It typically uses a linear transformation which can either
implemented in a class-dependent or class-independent fashion. The effectiveness of L
restricted in that it fails to construct nonlinear decision regions. The advantage of usin
Decision tree [2] approach is that we need not make any such assumption about the classi
rule but they do require a large amount of training data to model a distribution tha
representative of the problem space.

In this work we present preliminary efforts to apply LDA and Decision Trees to ph
classification as a first step towards integration into a complete speech recognition syst
demonstrate the efficacy of these schemes using a subset of the OGI Alphadigit corpus
consists of telephone-bandwidth alphadigits strings and is described later.

CLASSIFICATION TECHNIQUES

In this section we give a comprehensive description of the two classification technique
implemented during the course of this project.

 Linear Discriminant Analysis
Linear Discriminant Analysis is the common technique used for multigroup data classific
and dimensionality reduction. LDA maximizes the ratio of between-class variance to the w
class variance in any particular data set thereby guaranteeing maximal separablity. It uses a
transformation which can either be implemented in a class-dependent or class-indep
fashion.

A within-class scatter matrix defines the scatter of samples around their respective class
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING May 5  1999
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Where is the mean of the th class and is the relative occurrence of members of clas

the training data. A between-class scatter matrix defines the scatter of the input data arou
global mean and is computed as:

Where is the global mean, is the individual mean of class and is the occurr

probability for class in the training data. The overall mixture scatter matrix is obtained by
covariance matrix of all samples and is computed using the following equation:

The optimizing criterion to obtain the LDA transform is a combination of within-class sca
between-class scatter and the mixture-scatter. The criteria commonly used are:

In our implementation, we used the first of these to optimize the class separation in the tran
space.

The transformation matrix is formed by the eigenvectors corresponding to the dom
eigenvalues of the optimizing criterion. An eigenvector of a transformation represents a
subspace of the vector space in which the transformation is applied. A set of these eigenv
whose corresponding eigenvalues are non-zero are all linearly independent and invariant
any vector space can be represented in terms of linear combinations of the eigenvectors.

LDA for data classification can be implemented in two ways: Class-dependent and C
independent transformation. The class-dependent approach involves maximizing the ra
between-class covariance to within-class covariance for each class separately. This resu
transformation. each corresponding to one maximizing the ratio of between-class scatter
within-class scatter across all classes simultaneously. In the class-independent approa
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optimizing criterion is used to define a single transformation.

Figure 1 outlines the flow of the training and testing procedure in our system.
Figure 1.A block diagram shows the steps involved in the classification of LDA
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 Decision Trees
Binary trees give an interesting and often illuminating way of looking at data in classifica
problems. In the last few decades, considerable research has been conducted on the
decision trees to solve classification problems. One important feature of decision trees is
capability to break down a complex decision-making or classifying problem into a se
simplified problems. The purpose of a decision tree classifier is to draw a conclusion throug
breaking down and solving of these simple problems that achieve the desired solution
original complicated problem.

To construct a decision tree, the tree is first grown to completion so that the tree partition
training sample into terminal regions of all one class [4]. Tree construction uses the recu
partitioning algorithm, and its input requires a set of training examples, a splitting rule, a
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING May 5  1999
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The partitioning of the tree is determined by the splitting rule and the stopping rule determin
the examples in the training set can be split further. If a split is still possible, the examples i
training set are divided into subsets by performing a set of statistical tests defined by the sp
rule. The test that results in the best split is selected and applied to the training set which d
the training set into subsets. This procedure is recursively repeated for each subset until n
splitting is possible.The splitting rules usually involve an exhaustive search in finding the
split. A statistical value is obtained for every possible split of all attributes at each node. Fig
summarizes the decision trees algorithm in our implementation
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING May 5  1999
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DATABASE

We have used the OGI Alphadigit corpus[5] to test the performance of the classification sch
The OGI Alphadigit corpus is a telephone database collected using a T1 interface with ove
subjects reading a list of either 19 or 29 alphanumeric strings. These strings averaged 6 w
length and each list was designed to balance the phonetic context of all letter and digit
There were 1102 unique propounding strings.

EXPERIMENTAL DESIGN

We first used the ISIP front-end[6] to extract the required features for the phones. The featu
used were 12 mel scaled cepstral coefficients (MFCC’s). These are the standard features u
most state-of-the-art phone classification as well as speech recognition systems. The num
phones in to which these would be classified were thirty. So this turns out to be a thirty-
twelve-dimensional classification problem.

The division of the data into training and test sets was done. The distribution of both thes
was identical to the distribution of the original data. Also the division was done randomly so
no bias is introduced.

Since the goal of our project was also to better understand how each of the classific
algorithms that we had employed actually work, we wanted to be able to visually inspec
results. So we first performed the classification on a reduced two-dimensional two-class pro
We took the phones ‘f’ and ‘uw’ and classified them on the basis of the first and eight MFC
The reason we took these two phones was because one of them represented a conson
vowel respectively. The coefficients were also chosen so that they are comparatively apart
the classification was done, we wanted to plot the decision region for both the cases.

Once we understood how LDA and DT based classification work, we wanted to apply them
complete data set with all the features. This was done and the closed and open loop resul
computed.

RESULTS

The results for the simplified two-class two-dimensional problem are shown in Figure 3.
black dots represent one class whereas the red dots represent the other. The green dots r
the data points that have been misclassified. The variable along the X axis the first M
coefficient and the variable along the Y axis is the eighth MFCC coefficient. We can notice
the discriminant function is a straight line in case of LDA whereas it is a nonlinear one in ca
the decision tree based classification. The open loop error rates are also shown in Table 1.

The misclassification rates for the thirty-class twelve-dimensional case are also given in Ta
Observe that DT’s have a near zero classification error in all cases when tested on the train
i.e. closed loop error.The LDA results are comparable to the best error rates obtained from
linear classification techniques.
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING May 5  1999
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Figure 3. The test set and decision region plots obtained using LDA and DT

                 The test set

LDA based classification DT based classification
LDA DT

Closed loop error 20.15% 0.1%

Open loop error 25.62% 34.94%

Table 1: Misclassification rates for two-class two-dimensional problem
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING May 5  1999
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SUMMARY AND CONCLUSIONS

Linear and nonlinear classification techniques were studied and applied to the phone classifi
problem. LDA was chosen as the linear classification technique and Decision tree
classification was employed for the nonlinear case. DTs seem to perform very well in ca
closed loop testing but their performance is not satisfactory in case of open loop testing
reason for this is overtraining resulting in their inability to generalize. The decision tree b
approach does not stop training till all the elements are classified correctly leading to overtra
The challenge lies in having an appropriate stopping rule during threshold.

LDA results are comparable to those obtained from other linear classifiers. It was evident th
decision region was not a linear one. So we can also conclude that nonlinear classifi
techniques should be used for phone classification to achieve a low misclassification error.

FUTURE WORK

As a continuation to this work, these classification techniques can be applied to better fe
extracted from the speech signal. The other common features that can be used are th
coefficients and the mean in addition to the MFCCs. Also the DT approach can be employe
with better pruning strategies. To further understand the decision region, other non
techniques such as Neural Networks and Support Vector Machines can also be employed.
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