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A Simple Markov Model For Weather Prediction

What is a first-order Markov chain?

We consider only those processes for which the right-hand side is
independent of time:

with the following properties:

The above process can be considered observable because the output
process is a set of states at each instant of time, where each state
corresponds to an observable event.

Later, we will relax this constraint, and make the output related to the states
by a second random process.

Example: A three-state model of the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny
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Basic Calculations

Example: What is the probability that the weather for eight consecutive
days is “sun-sun-sun-rain-rain-sun-cloudy-sun”?

Solution:
O = sun sun sun rain rain sun cloudy sun

3 3 3 1 1 3 2 3

Example: Given that the system is in a known state, what is the probability
that it stays in that state for d days?

O = i i i ... i j

Note the exponential character of this distribution.
We can compute the expected number of observations in a state given
that we started in that state:

Thus, the expected number of consecutive sunny days is (1/(1-0.8)) = 5;
the expected number of cloudy days is 2.5, etc.

What have we learned from this example?

P O Model( ) P 3[ ]P 3 3[ ]P 3 3[ ]P 1 3[ ]P 1 1[ ]P 3 1[ ]P 2 3[ ]P 3 2[ ]=
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Why Are They Called “Hidden” Markov Models?

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

What is a reasonable model of the system?

O HHTTTHTTH…H( )=

1 2

P(H) 1-P(H)

1-P(H)

P(H)

1 2

a11 a22
1-a11

1-a22

1 2

3

Heads Tails

1-Coin Model
(Observable Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

2-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 1 1 2 2 1 2 1 1 2 2 1 ...

P(H) = P1 P(H) = P2

P(T) = 1-P1 P(T) = 1-P2

a11 a22

a12

a21

a13

a31
a32

a23

a33

P(H): P1 P2 P3

P(T): 1-P1 1-P2 1-P3

3-Coins Model
(Hidden Markov Model)
O = H H T T H T H H T T H ...
S = 3 1 2 3 3 1 1 2 3 1 3 ...
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Why Are They Called Doubly Stochastic Systems?

The Urn-and-Ball Model

P(red) = b1(1)

P(green) = b1(2)

P(blue) = b1(3)

P(yellow) = b1(4)

...

P(red) = b2(1)

P(green) = b2(2)

P(blue) = b2(3)

P(yellow) = b2(4)

...

P(red) = b3(1)

P(green) = b3(2)

P(blue) = b3(3)

P(yellow) = b3(4)

...

O = {green, blue, green, yellow, red, ..., blue}

How can we determine the appropriate model for the observation
sequence given the system above?
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Elements of a Hidden Markov Model (HMM)

• N — the number of states

• M — the number of distinct observations per state

• The state-transition probability distribution

• The output probability distribution

• The initial state distribution

We can write this succinctly as:

Note that the probability of being in any state at any time is completely
determined by knowing the initial state and the transition probabilities:

Two basic problems:

(1) how do we train the system?

(2) how do we estimate the probability of a given sequence
(recognition)?

This gives rise to a third problem:

If the states are hidden, how do we know what states were used to
generate a given output?

How do we represent continuous distributions (such as feature vectors)?

A aij{ }=

B bj k( ){ }=

π πi{ }=

λ A B π, ,( )=

π t( ) A
t 1– π=
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Formalities

The discrete observation HMM is restricted to the production of a finite set
of discrete observations (or sequences). The output distribution at any state
is given by:

The observation probabilities are assumed to be independent of time. We
can write the probability of observing a particular observation, , as:

The observation probability distribution can be represented as a matrix
whose dimension is K rows x S states.
We can define the observation probability vector as:

, or,

The mathematical specification of an HMM can be summarized as:

For example, reviewing our coin-toss model:

b k i,( ) P y t( ) k= x t( ) i=( )≡

y t( )

b y t( ) i( ) P y t( ) y t( )= x t( ) i=( )≡

p t( )

P y t( ) 1=( )

P y t( ) 2=( )

…
P y t( ) K=( )

= p t( ) Bπ t( ) BA
t 1– π 1( )= =
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Recognition Using Discrete HMMs

Denote any partial sequence of observations in time by:

The forward partial sequence of observations at time  is

The backward partial sequence of observations at time  is

A complete set of observations of length  is denoted as .

What is the likelihood of an HMM?

We would like to calculate — however, we can’t. We can

(see the introductory notes) calculate . Consider the brute

force method of computing this. Let denote a specific

state sequence. The probability of a given observation sequence being
produced by this state sequence is:

The probability of the state sequence is

Therefore,

To find , we must sum over all possible paths:

This requires flops. For and , this gives about

 computations per HMM!

yt1

t2 y t1( ) y t1 1+( ) y t1 2+( ),, …, y t2( ),{ }≡

t
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T

y t 1+( ) y t 2+( ), …, y T( ),{ }≡

T y y1
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P M y y=( )

P y y= M( )
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The “Any Path” Method (Forward-Backward, Baum-Welch)

The forward-backward (F-B) algorithm begins by defining a “forward-going”
probability sequence:

and a “backward-going” probability sequence:

Let us next consider the contribution to the overall sequence probability
made by a single transition:

α y1
t

( ) P y
1
t

y1
t

= x t( ) i=, M( )≡

β yt 1+
T

i( ) P y
t 1+
T

yt 1+
T

= x t( ) i= M,( )≡
i

S

2
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•
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2
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•
•
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•

j

α y1
t

i,( )

α y1
t 1+

i,( )

y t 1–( ) y t( ) y t 1+( )
Summing over all possibilities for reaching state “ “:

α y1
t 1+

j,( ) α y1
t

i,( )P x t 1+( ) j= x t( ) i=( ) ×=

P y t 1+( ) y t 1+( )= x t 1+( ) j=( )
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Baum-Welch (Continued)

The recursion is initiated by setting:

Similarly, we can derive an expression for :

This recursion is initialized by:

We still need to find :

for any state . Therefore,

But we also note that we should be able to compute this probability using
only the forward direction. By considering , we can write:

These equations suggest a recursion in which, for each value of we iterate

over ALL states and update . When , is computed by

summing over ALL states.

The complexity of this algorithm is , or for and ,

approximately 2500 flops are required (compared to flops for the
exhaustive search).
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t
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β
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S

∑=
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The Viterbi Algorithm

Instead of allowing any path to produce the output sequence, and hence,
creating the need to sum over all paths, we can simply assume only one
path produced the output. We would like to find the single most likely path
that could have produced the output. Calculation of this path and probability
is straightforward, using the dynamic programming algorithm previously
discussed:

where

(in other words, the predecessor node with the best score). Often,
probabilities are replaced with the logarithm of the probability, which
converts multiplications to summations. In this case, the HMM looks
remarkably similar to our familiar DP systems.

Beam Search

In the context of the best path method, it is easy to see that we can employ
a beam search similar to what we used in DP systems:

In other words, for a path to survive, its score must be within a range of the
best current score. This can be viewed as a time-synchronous beam
search. It has the advantage that, since all hypotheses are at the same point
in time, their scores can be compared directly. This is due to the fact that
each hypothesis accounts for the same amount of time (same number of
frames).

D t i,( ) a i j∗,( )b k i( )D t 1– j∗,( )=

j∗ maxarg

valid j

D t 1– j,( ){ }=

Dmin t i,( ) Dmin t i∗t,( ) δ t( )–≥
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Training Discrete Observation HMMs

Training refers to the problem of finding such that the model,
, after an iteration of training, better represents the training data than the

previous model. The number of states is usually not varied or reestimated,
other than via the modification of the model inventory. The apriori
probabilities of the likelihood of a model, , are normally not reestimated
as well, since these typically come from the language model.

The first algorithm we will discuss is one based on the Forward-Backward
algorithm (Baum-Welch Reestimation):

Also, denotes a random variable that models the transitions at time

and a random variable that models the observation being emitted at

state  at time . The symbol “•” is used to denote an arbitrary event.

Next, we need to define some intermediate quantities related to particular
events at a given state at a given time:

where the sequences , , , and  were defined previously (last lecture).
Intuitively, we can think of this as the probability of observing a transition
from state to state at time for a particular observation sequence, , (the
utterance in progress), and model .

π 1( ) A B, ,{ }
M

π 1( )

uj i label for a transition from statei to statej≡

u• i set of transitions exiting statei≡

uj • set of transitions enteringj≡

u t( ) t

y
j

t( )

j t

ζ i j, t;( ) P u t( ) uj i= y M,( )≡

P u t( ) uj i= y, M( ) P y M( )⁄=

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

P y M( )
-------------------------------------------------------------------------------------- ,

0 , othert

t 1 2 … T, , ,=

 
 
 
 
 

=

α β a b

i j t y

M
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We can also make the following definition:

This is the probability of exiting state . Also,

which is the probability of being in state  at time . Finally,

which is the probability of observing symbol  at state  at time t.

Note that we make extensive use of the forward and backward probabilities
in these computations. This will be key to reducing the complexity of the
computations by allowing an interactive computation.

γ i t;( ) P u t( ) u• i∈ y M,( )≡ ζ i j, t;( )

j 1=

S

∑=
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t

i,( )β yt 1+
T

i( )
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----------------------------------------- ,

0, othert

t 1 2 … T, , ,=
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i
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0, othert 
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=
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0, otherwise 
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------------------------------------------ ,

0, otherwise

if y t( ) k= and 1 t T≤ ≤
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k j
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From these four quantities, we can define four more intermediate quantities:

Finally, we can begin relating these quantities to the problem of reestimating
the model parameters. Let us define four more random variables:

We can see that:

What we have done up to this point is to develop expressions for the
estimates of the underlying components of the model parameters in terms
of the state sequences that occur during training.

But how can this be when the internal structure of the model is hidden ?

ζ i j, •;( ) P u •( ) uj i∈ y M,( ) ζ i j, t;( )

t 1=

T

∑= =

γ i •;( ) P u •( ) u• i∈ y M,( ) γ i t;( )

t 1=

T

∑= =

ν j •;( ) P u •( ) uj •∈ y M,( ) ν j t;( )

t 1=

T

∑= =

δ j k •;,( ) P y
j

•( ) k= y M,( ) δ j k t;,( )

t 1=

T

∑ ν j t;( )

t 1=

y t( ) k=

T

∑= = =

n uj i( ) number of transitions of the typeuj i≡

n u• i( ) number of transitions of the typeu• i≡

n uj •( ) number of transitions of the typeuj •≡

n y
j

•( ) k=( ) number of times the observationk and statej jointly occur≡

ζ i j, •;( ) E n uj i( ) y M,{ }=

γ i •;( ) E n u• i( ) y M,{ }=

ν j •;( ) E n uj •( ) y M,{ }=

δ j k •;,( ) E n y
j

•( ) k=( ) y M,{ }=
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Following this line of reasoning, an estimate of the transition probability is:

Similarly,

Finally,

This process is often called reestimation by recognition, because we need
to recognize the input with the previous models in order that we can
compute the new model parameters from the set of state sequences used to
recognize the data (hence, the need to iterate).

But will it converge? Baum and his colleagues showed that the new model
guarantees that:

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
--------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

i,( )a j i( )b y t 1+( ) j( )β yt 2+
T

j( )

t 1=

T 1–

∑

α y1
t

i,( )β yt 1+
T

i( )

t 1=

T 1–

∑
-------------------------------------------------------------------------------------------------=

b k j( )

E n n y
j

•( ) k=( ) y M,( ) y M,
 
 
 

E n uj •( ) y M,{ }
----------------------------------------------------------------------- ζ i j, •;( )

γ i •;( )
------------------= =

α y1
t

j,( )β yt
T

j( )

t 1=
y t( ) k=

T

∑

α y1
t

j,( )β yt 1+
T

j( )

t 1=

T

∑
------------------------------------------------------=

P x 1( ) i=( )
α y1

1
i,( )β y2

T
i( )

P y M( )
----------------------------------=

P y M( ) P y M( )≥
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Since this is a highly nonlinear optimization, it can get stuck in local minima:
P y M( )

MGlobal
Maximum

Local
Maximum

Perturbation Distance
We can overcome this by starting training from a different initial point, or
“bootstrapping” models from previous models.

Analogous procedures exist for the Viterbi algorithm , though they are
much simpler and more intuitive (and more DP-like):

and,

These have been shown to give comparable performance to the
forward-backward algorithm at significantly reduced computation. It also is
generalizable to alternate formulations of the topology of the acoustic model
(or language model) drawn from formal language theory. (In fact, we can
even eliminate the first-order Markovian assumption.)

Further, the above algorithms are easily applied to many problems
associated with language modeling: estimating transition probabilities and
word probabilities, efficient parsing, and learning hidden structure.

But what if a transition is never observed in the training database?

a j i( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=

b k j( )
E n uj i( ) y M,{ }

E n u• i( ) y M,{ }
---------------------------------------=
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Continuous Density HMMs

The discrete HMM incorporates a discrete probability density function,
captured in the matrix , to describe the probability of outputting a symbol:B
output distribution for state k
b k j( )

k1 2 3 4 5 6 • • •

Signal measurements, or feature vectors, are continuous-valued
N-dimensional vectors. In order to use our discrete HMM technology, we
must vector quantize (VQ) this data — reduce the continuous-valued
vectors to discrete values chosen from a set of M codebook vectors. Initially,
most HMMs were based on VQ front-ends. However, recently, the
continuous density model has become widely accepted.
Let us assume a parametric model of the observation pdf:

The likelihood of generating observation  in state  is defined as:

Note that taking the negative logarithm of will produce a log-likelihood,
or a Mahalanobis-like distance. But what form should we choose for ?
Let’s assume a Gaussian model, of course:

Note that this amounts to assigning a mean and covariance matrix to each
state — a significant increase in complexity. However, shortcuts such as
variance-weighting can help reduce complexity.

Also, note that the log of the output probability at each state becomes
precisely the Mahalanobis distance (principal components) we studied at
the beginning of the course.

M S π 1( ) A f y x ξ i( ) 1 i S≤ ≤,
 
 
 

, , ,
 
 
 

=

y t( ) j

b y t( ) j( ) f y x y t( ) j( )≡

b( )

f ( )

f y x y i( )
1

2π Ci

------------------- 1
2
---– y µi–( )T

Ci
1–

y µi–( )
 
 
 

exp=
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Mixture Distributions

Of course, the output distribution need not be Gaussian, or can be
multimodal to reflect the fact that several contexts are being encoded into a
single state (male/female, allophonic variations of a phoneme, etc.). Much
like a VQ approach can model any discrete distribution, we can use a
weighted linear combination of Gaussians, or a mixture distribution, to
achieve a more complex statistical model.
b y j( ) three mixtures
composite (offset)

y

u1 u2 u3
Mathematically, this is expressed as:

In order for this to be a valid pdf, the mixture coefficients must be
nonnegative and satisfy the constraint:

Note that mixture distributions add significant complexity to the system: m
means and covariances at each state.

Analogous reestimation formulae can be derived by defining the
intermediate quantity:

f y x y i( ) cimℵ y µim Cim,;( )

m 1=

M

∑=

cim
m 1=

M

∑ 1= , 1 i S≤ ≤

ν i t l,;( ) P x t( ) i= y t( )produced in accordance with mixturel( )≡

α y1
t

i,( )β yt 1+
T

i( )

α y1
t

j,( )β yt 1+
T

j( )

j 1=

S

∑
-------------------------------------------------------

cil ℵ ytl
t µil Cil,;( )

cimℵ yt
t µim Cim,;( )

m 1=

M

∑
----------------------------------------------------------×=
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The mixture coefficients can now be reestimated using:

the mean vectors can be reestimated as:

the covariance matrices can be reestimated as:

and the transition probabilities, and initial probabilities are reestimated as
usual.

The Viterbi procedure once again has a simpler interpretation:

and

The mixture coefficient is reestimated as the number of vectors associated
with a given mixture at a given state:

cil
ν i • l,;( )

ν i • m,;( )

m 1=

M

∑
--------------------------------=

µil

ν i t l,;( ) y t( )

t 1=

T

∑
ν i • l,;( )

------------------------------------=

Cil

ν i t l,;( ) y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=

T

∑
ν i • l,;( )

------------------------------------------------------------------------------------=

µil
1

Nil
------- y t( )

t 1=
y t( ) il∼

T

∑=

Cil
1

Nil
------- y t( ) µil–[ ] y t( ) µil–[ ]T

t 1=
y t( ) il∼

T

∑=

cil

Nil

Ni
-------=


