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ABSTRACT are not tractable to model temporal variation in their
basic form. at the core of which is still an HMM

Maximum likelihood (ML) estimation has been parameter optimization problem.

primary optimization technique for hidden Markov Figure 1, shows a sample classification problem
model (HMM) parameter estimation. However, ML \yhere using a ML approach is not the best for
suffers for severe assumptions that includes thecassification accuracy. The two classes are derived
assumption that the underlying model is of a know from two completely separable uniform
form. ML estimation uses all the positive examples gijstributions. ML is used to fit Gaussians to these
belonging to the class being modeled. This lack of cjasses and a simple Bayes classifier is built.
discriminatory power has given rise to several However, we see that the decision threshold occurs
estimation techniques that explicitly incorporate jpsjde the range of class 2. This means that the
discriminative information into the optimization probability of error is significant. However if we
process. | n this paper we will present an overview of \yere to simply recognize that the range of data
two commonly used discriminative training points in class 1 is less than 3.3 and that no data
techniques for HMMs — Maximum Mutual point in class 2 occurs within this range, we can
Information and Minimum Classification Error. zchieve perfect classification. This makes for a
MMI incorporates discriminative information strong case to pursue explicit discrimination

implicitly by using mutual information as the techniques for HMM parameter estimation.
objective function. MCE does this

explicitly. Implementation details and comparison of _In this paper we will review the theory and

performance of the techniques on a small vocabulary! MP!€mentation of - Maximum Mutual
task will also be presented. Information (MMI) and Minimum Classification

Error (MCE) estimation techniques [1,2,9].
1. INTRODUCTION Performa_nce on a small vocabulary task, TIMIT, will
also be discussed [13].

Maximum Likelihood .(ML)_ is the mo_st commqnly 2 MAXIMUM LIKELIHOOD

used parameter estimation technique in hidden

Markov models (HMM). The existence of efficient .
implementations in the form of the EM algorithm | "€ goal of the HMM parameter estimation process
make the use of ML very attractive [10]. A drawback IS to maximize t_he likelihood of the data given the
of the ML approach is that the model parameters aremOdel' traditionally known as Maximum

estimated based on the data belonging to that mode"ikm,ihc_)Od (ML) estimgtio_n [5]. In gffect ML tries t.o
only. It is independent of all the other models being maximize the a posteriori probability of the training

estimated. This is however not the best way to data given the model. Note that Fhis ‘”?P'?es t_hat
improve recognition performance. Some form of other models are not part of this optimization

discrimination needs to be added to the estimationP'0c€ss: One of the most compelling reasons for the
process to improve the performance. Neural success of ML and HMMs has been the existence of

networks and support vector machines estimateiterative methods to estimate the parameters while

parameters discriminatively [14, 15]. However they guarant.eeing L convergence.
Expectation-Maximization (EM) is one algorithm
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Figure 1. An example where maximum likelihood estimation fails to perfectly classify completely separable da-
ta. Notice the Bayes decision threshold is inside the distribution on the right. A discriminator that learns the in-
formation that class 1 does not go beyond the value 3.3 can do a perfect job of classification.

that is used extensively to perform ML estimation. t, is chosen as the state sequence, the EM formulation
is called the Baum-Welch algorithm [5]. A detailed
2.1. EM Theorem and Maximum Likelihood explanation of the update equations for each of the

HMM parameters can be found in [1].

It The ML approach works well if the assumption that the

> Pg(tly)logPg(t]y) > 5 Pg(ty)logPg(tly) (1) form of the parametric probability model that computes
T T P(O| M) is the same as the true underlying distribution.
then, This is a very restrictive assumption is many cases and
assumes the availability of a large amount of training
Po(y) > Pg(y) (2) data to estimate the parameters of a complex process

like speech.
The gist of the above theorem is that, if we start wit

amodel® andfind amodél such that equation2 2. Optimization

is satisfied, then the observed daga is mol

probable under the mod@l thanund®r  [7]. Thin order to compute the probability of the state
is a very powerful theorem in that it guaranteesequence in the HMMs en route to computing the
convergence at least to a local minimum. In thlikelihood of the data given the model, the forward and
above formulationt is the intermediate randotbackward probabilities are used and form the sufficient
variable that depends on the model parametstatistics for this estimation process [5]. To talk about
settings. For example, could be the state sequelthese computations we need to start with the definition
in an HMM which is not something we observedof the HMM.

The terms on the LHS and RHS of equation 1 can |
represented as the auxiliary functiong(#e', )
and Q(0,6) . Since we are maximizing the
auxiliary function in the EM framework, the
parameter update equations can be obtained
differentiating Q(@',08) with respect to each of the
parameters and setting the derivative to zero. Wh

HMMs are finite state machines in their basic form.
They differ from regular finite state machines in that
each state also has a probability of emitting a symbol.
Apart from this there is a probability distribution
representing the probability of a transition from one
state to another [12]. The complete description of the
model can be provided using the following quantities:



* N — the number of states probability computation.
e The state-transition probability

(t) = a. 9
distribution A = { &} Bi(t) = 2y ®)
* The output probability distributio® = {b.(0)} |, N1
PP y B = (b} B = Y ayb(o, PB;(t+1), for 1st<T
whereo is the input observation vector i=2
. N . . and, (10)
The output probability distribution gives the
N-1

probability of observing a vector in the given state.
The most commonly used form of the output P11 = 3 2;;b;(01)B;(1) (11)
distribution is a multivariate Gaussian. Other =2

distributions like Laplacians have been used in some2.2.3. Utterance Likelihood

systems [16]. The multivariate Gaussian can be The total utterance probabilite , given the model

written as: M, can be writteninterms af argl as:
— 1 OJ 1 < —1 0 T N
bj(0) = ————=exp5(0—1;)'Z; (0~ ;)5 (3)
I 02\~ Hi/ &) BT Hg _ .
(2m"z P(O|M) tgljglaj(t)ﬁj(t) or, (12)

where o, is the observation vector attime and the
subscriptj indicates that the Gaussian under2.3. Parameter Update
consideration belongs to thgth state. The
following formulation assumes that the input The forward and backward probabilities defined
consists ofT observation vectors. above form the sufficient statistics for the estimation
. process. The EM algorithm tells us that the
2.2.1. Forward Probability likelihood of the data given the model is maximized
The forward probability gives us the probability of if the expected value of the probability of the state
generating the observations from time 1tto  and thesequence is maximized. This conditional probability
model ending in statg  at time . is computed in terms of the forward and backward
_ . probabilities. The gradients are computed and
oj(t) = Pr(og 0z ey 0, X(1) = 1) “ parameters updated base on the gradient values. [7]
The above computation can be efficiently done usingcontains a detailed derivation for the update

the following recursive formulation. equations for all the parameters in an HMM.
0:(1) = a;b;(o 5
i i23(0) ©) 3. MAXIMUM MUTUAL INFORMATION
N-1
a;(t) = { > ai(t_l)aij}bj(ot)i for 1<t<T MMI tries to incorporate the discriminative
i=2 information into the optimization process implicitly.
and, (6)  As will be seen in the following sections, its theory
N-1 and implementation parallel ML significantly. The
ay(T) = Z a;(Mayy @) main difference is the parameter update process
i=2 which is based on a gradient descent approach unlike

ML estimation.

2.2.2. Backward Probability

The backward probability is the probability of
generating the observations from tinte- 1 To if The mutual information] , between variabl&s
the model was in stafe at time . and Y is defined as the average amount of
_ . uncertainty about the knowledge of  given
B;j() = Pr(0ts1 042 -n O7[X(V) = ) ®)  knowledge ofY [11]. Mathematically this can be
Similar to the forward probability computation, a defined as:
recursive formulation exists for the backward

3.1. Motivation



1(X;Y) = H(X)=H(X/Y) (13)  corresponding to the” utterance. The first term in
the above equation is equivalent to the ML
optimization criterion and the second term is what

z P(x y)logP(x/y) = —E[logP(x/ y)] (14) makes this a discriminative framework.
Xy

The conditional entropy oK givel is given by

Having defined mutual information, we now pose 3-2. Optimizing Mutual Information

the speech recognition problem in the same ) ) o ]
framework. Letw ,0 denote the random variables EQuation 18 defines the objective function to be
corresponding to the words and observation vectors OPtimized to achieve maximum mutual information.
The uncertainty in the word sequence given the The first term in the equation is the standard ML

acoustic observations is the conditional entropy of COMputation that can be done efficiently via the
W given O forward-backward probabilities for the correct

transcription of each of the training utterances.

H(W/0) = H(W) ~1(W:0). (13) The second term is where the discrimination
Note that we do not knowP(w, o) in general and information is added. It can be rewritten as,
need to estimate a parametric fit. The conditional
entropy of the words given the acoustic observations  Py(a,) =y Py(a,/M)P, (W) (19)
can be shown to confirm to the following inequality: w
H, (W/ O) = H(W/ O), (16) wher'e\iv_ is thg set of all word sequences. For small

application this set of all word sequences can be

where A denotes a particular parametric fit to the compactly represented using a grammar or a graph.
actual distribution [1, 2, 11]. The equality holds only The forward-backward probabilities are computed
if Py(w/0) = P(w/0), we can get an optimal using this grammar instead of just the correct
estimate of the conditional distribution. This transcription. These probabilities can now be used
minimization can also be done as a maximization of for optimizing the objective function.

the mutual information and hence the name |, the case of large vocabulary applications,
maximum mutual information (MMI) to this  rapresenting the word sequences with a grammar can
optimization technique [1, 2]. be an ominous task, if not impossible. In such cases
The objective functionL,,,, for the MMI asub-optimal solution is chosen where an N-best list
estimation of the parameters is nothing but the or a word-graph is used instead.

mutual information of the words given the acoustic . . .
observations under the parametric distributon . 3.3. Gradient Descent and Iterative Solutions

Lymi (V) = 1,(X5Y) = Hy(W)-E[logPy(W/0)I(17)  The formulation in 18 is that is that of unconstrained

Replacing the expectations by the sample averageOptimization. Typically this is approached using
and assuming the training data to compriseRof  iterative procedures [1, 9]. Several procedures have
utterances, been developed over the years. The following

sections discuss the commonly use iterative
algorithms to find the maximum using a gradient

R
1
"R 2 1ogPy(w;) + approach. All the methods compute the gradient of

LymiA) = R r=1 the objective function with respect to the parameters
1 ¢, Pr(0; M )Py (w;) of the HMM, namely the mean, variance and
=y log .(18) e "
Rr <, P, (o,) transition probabilities.
1 R Let O be the observation sequence andMet  be the
= g 2 tlogPy(0, M) ~logP; (o)} models under consideration with a parametenset
=1 The likelihood of the observation sequence given the
Irghthe above equatiow, is the word sequence in themodel is defined as,
r utterance with a corresponding composite model L,(O/M) = logP,(O/ M) (20)

M,. o, are the set of observation vectors

re



such that, in equation 3. leferentlatmg this equation with
respect to thed™ component of the mean of

oLy _ 1 0 distribution corresponding to thé state, we get
" P)\(O\M)OAP)‘(O/ M) (21)

[Oig—HigO
The posterior probability can be written in terms of b j(0) = b; (Ot)DMD (28)
thea andp as, o® ja O
T N From 3, we know that,
P, = P,(O|M) = a (DB (1). 22
A = PA(O|M) tglgl {(0OB;() L oo 5
: (0] - S O3 oi(t=1)a; () (29)
In order to introduce the other parameters in the v ¢=1h=1 o

model into the above equation, we can write it as, gjng the chain rule for partial derivatives, we get,

Z Z DZ a;j(t)ay S’j(ot)Bj(t) (23) Py . Z c(t, )b, (ot)D——LD, where,  (30)
t=1j=10 Mg &,
o N
Transition Probability C(t ) = 0 o(t-1)a %j(t). (31)
=1 O

The transition probabilities need to be handled
carefully in order to guarantee that the transitions out
of any state sum to unity. For this reason, a \;riance
regularization function is used to redefine the

transitions as, As mentioned earlier, for simplicity we assume
diagonal covariances in these derivations. In the case
a falhy) andf (x) = & (24) of diagonal covariances, we need to constrain the
ij Zf (P ' values such that all of them are positive. In order to
convert the constrained set to an unconstrained set
which is also known as softmax is some (aswe did with the transitions), we use the following
literature [15]. Then, regularization.
03 04" = f(z4) andf(x) = €. (32)
an = i (32 (25) . . .
ik We can start first by looking at the gradient of the

wheres is the Kroneker delta. output distribution with respect to the variance.

SinceP depends 08; ‘s, applying the chain rule 2 0

gives _ 1D( Og—Hjg) 1 O
, ——b;(0) = by( t)— > ) E (33)

0P, 0P, da; 00’} g (@) Ty

oh, - 20h, R, (26)

Using 32, we can convert 33 in terms of the
Differentiating 23 with respect ta;; and using it regularization variable  as,

along with 25 in 26 yields, 2
1_[( td P—jd) O

P, az ———b;(0) = b;(0) ET—lg (34)
o, Z;ai(t—l)aij(ékj—aik)bj(ot)Bj(t) 27) | o . .
Using 29 and the chain rule for partial derivatives,
we get,
Mean

In order to get the contribution of the means towards
the likelihood, we need to start with the definition



Ax, = (L=n0OLym (X)) + TAX _ 1. (37)

- O 2 O
oPy _ . HOyg —Hjg) O . .
o Z C(t, ])bj(Ot)[]—z—lD (35) We see that this formulation uses the amount of
jd =1 E (0%jd) E change in the parameter value during the previous

iteration on top of the typical steepest descent
These quantities can be easily extended to includeupdate. So, in the case where consecutive iterations
multiple instances of the model and multiple mixture have the same sign for the gradient, the update
Gaussians. amount is larger and vice versa.

3.3.3. Local Optimization

3.3.1. Steepest Descent Local optimization methods are a specific form of

The steepest descent method is the simplest andthe descgnt methods where individual learning rates
most commonly used iterative technique to are applled_ to each pargmeter. Another feature of
minimize a multivariate function. At the end of each these iterative methods is the ability to change the
iteration, the values of the parameters are updated irf®arning rates over time. Some of the heuristics used
the direction in which the objective function t© change the learning rates include:

decreases the most. The change in the paramete « when the sign of the gradient with respect to a

value is a constant proportion of the gradient of the parameter changes sign for several iterations, the
objective function with respect to the parameter. The learning rate is decreased

constant proportion is commonly referred to as the « when the sign of the gradient with respect to a

learning rate parameter does nor change for several frames,
This procedure can be concisely written as the learning rate is increased
Xer1 = X NOLym (%) (36)

3.3.4. RPro
where, x, is the value of the parameter in e P

iteration, L,,,, () is the gradient of the objective RProp differs from the procedures discussed above
function with respect to the parameter and  is the in that only the sign of the gradient is used to update
learning rate. The value of the learning rate is the parameter values instead of also using the
typically computed as a line search over magnitude. In RProp the learning rates are varied
Lyt % =N 0Ly () - This can be an expensive with iterations following a simple update procedure.

process if the number of parameters being estimatec

in(1.2 , if same direction
is large. EF“ (1-2hc—1: Nma) f .
=max0.5n, _ 1, N if opp. direction38
3.3.2. Momentum Nk E X031 Nmin) PP 38)
Nk—1 otherwise

Steepest descent can have slow convergenct
depending on the optimizing surface. The direction The change in the parameter value is then given by
of descent and the magnitude of the gradient play a o

role in defining the convergence properties of the B = signlb Ly (1N (39)
optimization process. At places where the function )
surface is fairly flat, the gradient vector has a small 3-4- Implementation
maghnitude and reaching the optimum may be slow.
Similarly when the function is steep, the gradient
may be large and the parameter can be updated to
value that may result in oscillation. Momentum
attempts to solve the above problems by introducing
a new term in the update equation in steepest
descent.

Figure 2 shows procedure involved in estimating
models in the MMI framework. Notice that the ML
models are also obtained as a by-product at the end
of this procedure. In large vocabulary applications,
instead of the recognition grammar, N-best lists or
word-graphs are used where the number of alternate
_ _ word sequences is limited. Using the N-best lists is
The new update equation a momentum term is actually good since only the most confusable data is
used to improve discrimination.



4. MINIMUM CLASSIFICATION ERROR distributions used above. Amari’'s generalized
probabilistic theorem comes to our rescue here [17].

Thus far we have seen parameter estimation using

the tradition ML technique and the discriminative 4.1. Generalized Probabilistic Descent

MMI technique. However, notice that neither of the o

two explicitly tried to optimized the primary goal of For an infinite sequence of random sampigs  and

a speech recognizer, classification rate. This sectiorStep size sequenece  that satisfies the conditions

looks at a parameter estimation technique geared tc w

handle this. 1.y ¢ -, and (41)
For a given loss functiom,(x,A) where is the t=1
feature vector belongingtothe cla8g  and  is the °
parameter set, the aim of parameter estimation usin¢ 2. ) ¢ < (42)
the Minimum Classification Error (MCE) principle t=1
is to optimize the overall expected Ids@\) ,
M adapting the system parameters according to
L(A) = P(CI [l (X, A)p(x/C,)dx (40)
kgl ‘[ t+1 = N—cUOL(X AY) (43)

However we do not have access to the probability converges with a probability of one to a local

training
data

denominator
statistics

numerator
statistics

7

original
HMMs

correct

recognition 2Ct
transcription

grammar

MMI ML
Estimation Estimation

MMI Estimated ML Estimated
K Models Models

Figure 2. Implementation of the MMI estimation process. Note that only the left-half of the figure involves the
new computations corresponding to MMI estimation. The right-half is the standard ML estimation process. Note
the need for a recognition grammar for MMI estimation process.



minimum of L(A) . The key here is that the overall 4.3. Implementation

loss is never computed but we optimize based on the

local lossl, (x, A) . There can be several definitions for the discriminant
function. The only requirement is that the provides a
distance metric to compare classes. Traditionally
likelihood has been used for this purpose for HMMs.
The computation of the likelihood is done as the

As seen above, the goal of MCE can be achieved viaProbability of all possible state sequen@% for the
optimization involving the local loss functions. In 9iven data. In a closed form, for one particular state

general there are certain desirable properties for lossS€duence this can be written as

4.2. Loss Functions

functions: ; T
PIAY =
. since the problem is that of minimizing (X1:® ‘/\) = I % 6P Ebetp(xt) (46)
classification errors, near-binary loss functions t=1
are desirable wherea andb are the model parameters. Using the
» continuous functions above definition of the likelihood, the discriminant
e Joss functions need to be first order function for thejth class can be defined as
differentiable to apply GPD 1
i i T T &8
The commonly used loss function with all the above g,(x1, A) = Iog[E[f(xl, ep‘/\)] } (47)
features is the sigmoid function: b
1 Note that wherg is large, the most probable state
I(d) = (44) . :
1+ sequence dominates the summation and approaches

_ . o the Viterbi framework.
whered is the misclassification error measure. . ]
We see how the quantities defined so far finally end

The misclassification error measure can be definedyp, relating the estimated losg,  our objective
classesC, we would like to discriminate better as athe chain rule for partial derivatives, we can find the
result of the MCE optimization process. In typical gradient of the loss with respect to the model

speech recognition applications these classes arparameters. At this point the optimization process is
either words in the vocabulary or the phonemes in gimilar to what we do in MMI estimation.

the system. Typically misclassifications for tk
class willadd 1 tod, and a correct classification will
subtract 1.

To look at the flow of the training procedure, let us
look at an application where MCE is applied at the
word level, i.e. the classes are the words in the
- vocabulary. We make an important assumption here
(X, A) = —g(x, A) + [L_il Zkgj(x, /\)““} v 45) that the discriminant function uses normalized
E:

where we assume the that this an  -class problem

and ¢ controls the contribution of each # of

misclassification towards the error metric. Note that mixtures | MLE MMI MCE
when g is large, the most confusable class

contributes the most to the summation. This fits in 1 44.0 39.0 39.0

well with the N-best list processing paradigm or the
Viterbi approximation commonly used in many
speech recognition systems . Note that in the current | 8 35.2 32.4 32.7
discussion we have not yet related the parameters of
the HMM to the objective function defined in
equation 40. The discriminant function for the'
class,g, , relates them together.

4 37.6 34.8 33.8

24 33.3 30.2 31.3

Table 1. comparison of ML, MMI and MCE on
phone classification in TIMIT



probabilities in that we can compare scores for pursued that include the use of Viterbi state

instances of a word  with different durations.
We start with N-best lists. State-level alignments for

alignments for likelihood computation and N-best
list processing as a substitute for recognition

the N-best lists are obtained. The N-best lists at the9@mmars.

timing information is used to obtain the word
instances that the work
instance are used to computg(x,A) . This is used
to compute the losg(x,A) . GPD theorem is then [1]
used to update the parameters for the models tha
went into defining the word

5. PERFORMANCE [2]
Though it is obvious that ML is not the best
optimization criterion, the discriminative techniques
incur a heavy computational overhead for the gains[3]
in performance. Often, to reduce the computational
overhead, sub-optimal solutions like using the
Viterbi alignments or N-best list processing.

Most gains from using the above discussed[4]
estimation techniques have been reported on task:
ranging from small to medium vocabularies. We
present here the performance on TIMIT as reported
in [1] and [9]. Table 1 compares the three
reestimation paradigms on the TIMIT data [13].
MMI and MCE models consistently do better [5]
models estimated using ML. However the gains
reduce as the number of mixture components are
increased. the reason for MMI models doing better
than MCE is that MCE models has only their means
and variances updated unlike MMI models where [g]
mixture weights and transitions were also updated.

6. SUMMARY 7]
We have seen how discriminative information can be
made a part of the optimization process to estimate
the model parameters in HMMs. Theory and 8
implementation issues involved in applying MMI

and MCE paradigms have been presented in detalil
Though the discriminative techniques discussed here
are attractive theoretically, they suffer from high [9]
computational expense compared to the traditional
ML estimation process. The discriminative
technigues have been to perform better than ML on a[ l
TIMIT phone classification experiment. In order to
apply these techniques to large vocabulary
applications several sub-optimalities have to be
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