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ABSTRACT

Maximum likelihood (ML) estimation has been
primary optimization technique for hidden Markov
model (HMM) parameter estimation. However, ML
suffers for severe assumptions that includes t
assumption that the underlying model is of a kno
form. ML estimation uses all the positive example
belonging to the class being modeled. This lack
discriminatory power has given rise to severa
estimation techniques that explicitly incorporat
discriminative information into the optimization
process. I n this paper we will present an overview
two commonly used discriminative training
techniques for HMMs — Maximum Mutual
Information and Minimum Classification Error.
MMI incorporates discriminative information
implicitly by using mutual information as the
ob jec t ive func t ion . MCE does th is
explicitly. Implementation details and comparison o
performance of the techniques on a small vocabula
task will also be presented.

1. INTRODUCTION

Maximum Likelihood (ML) is the most commonly
used parameter estimation technique in hidd
Markov models (HMM). The existence of efficien
implementations in the form of the EM algorithm
make the use of ML very attractive [10]. A drawbac
of the ML approach is that the model parameters a
estimated based on the data belonging to that mo
only. It is independent of all the other models bein
estimated. This is however not the best way
improve recognition performance. Some form o
discrimination needs to be added to the estimati
process to improve the performance. Neur
networks and support vector machines estima
parameters discriminatively [14, 15]. However the
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are not tractable to model temporal variation in the
basic form. at the core of which is still an HMM
parameter optimization problem.

Figure 1, shows a sample classification proble
where using a ML approach is not the best fo
classification accuracy. The two classes are deriv
f rom two comple te ly separab le un i fo rm
distributions. ML is used to fit Gaussians to thes
classes and a simple Bayes classifier is bui
However, we see that the decision threshold occu
inside the range of class 2. This means that t
probability of error is significant. However if we
were to simply recognize that the range of da
points in class 1 is less than 3.3 and that no da
point in class 2 occurs within this range, we ca
achieve perfect classification. This makes for
strong case to pursue explicit discriminatio
techniques for HMM parameter estimation.

In this paper we wil l review the theory and
imp lementa t ion o f Max imum Mutua l
Information (MMI) and Minimum Classification
Error (MCE) estimation techniques [1,2,9].
Performance on a small vocabulary task, TIMIT, wi
also be discussed [13].

2. MAXIMUM LIKELIHOOD

The goal of the HMM parameter estimation proce
is to maximize the likelihood of the data given th
mode l , t rad i t i ona l l y known as Max imum
Likelihood (ML) estimation [5]. In effect ML tries to
maximize the a posteriori probability of the training
data given the model. Note that this implies tha
other models are not part of this optimizatio
process. One of the most compelling reasons for t
success of ML and HMMs has been the existence
iterative methods to estimate the parameters wh
guaran tee ing convergence
Expectation-Maximization (EM) is one algorithm
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 class 2Bayes
decision
that is used extensively to perform ML estimation.

2.1. EM Theorem and Maximum Likelihood

If,

(1)

then,

(2)

The gist of the above theorem is that, if we start wit
a model and find a model such that equation
is satisfied, then the observed data is mo
probable under the model than under [7]. Th
is a very powerful theorem in that it guarantee
convergence at least to a local minimum. In th
above formulation is the intermediate random
variable that depends on the model paramet
settings. For example, could be the state seque
in an HMM which is not something we observed
The terms on the LHS and RHS of equation 1 can
represented as the auxiliary functions
and . Since we are maximizing the
auxiliary function in the EM framework, the
parameter update equations can be obtained
differentiating with respect to each of the
parameters and setting the derivative to zero. Wh
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, is chosen as the state sequence, the EM formulat
is called the Baum-Welch algorithm [5]. A detailed
explanation of the update equations for each of t
HMM parameters can be found in [1].

The ML approach works well if the assumption that th
form of the parametric probability model that compute

is the same as the true underlying distributio
This is a very restrictive assumption is many cases a
assumes the availability of a large amount of trainin
data to estimate the parameters of a complex proc
like speech.

2.2. Optimization

In order to compute the probability of the stat
sequence in the HMMs en route to computing th
likelihood of the data given the model, the forward an
backward probabilities are used and form the sufficie
statistics for this estimation process [5]. To talk abo
these computations we need to start with the definiti
of the HMM.

HMMs are finite state machines in their basic form
They differ from regular finite state machines in tha
each state also has a probability of emitting a symb
Apart from this there is a probability distribution
representing the probability of a transition from on
state to another [12]. The complete description of th
model can be provided using the following quantities

t

P O M( )
Figure 1. An example where maximum likelihood estimation fails to perfectly classify completely separable da-
ta. Notice the Bayes decision threshold is inside the distribution on the right. A discriminator that learns the in-
formation that class 1 does not go beyond the value 3.3 can do a perfect job of classification.
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• N — the number of states
• The state-transition probability

distribution

• The output probability distribution ,

where  is the input observation vector

The output probability distribution gives the
probability of observing a vector in the given state
The most commonly used form of the outpu
distribution is a multivariate Gaussian. Othe
distributions like Laplacians have been used in som
systems [16]. The multivariate Gaussian can b
written as:

(3)

where is the observation vector at time and th
subscript indicates that the Gaussian und
consideration belongs to the state. Th
following formulation assumes that the inpu
consists of  observation vectors.

2.2.1. Forward Probability

The forward probability gives us the probability o
generating the observations from time 1 to and t
model ending in state  at time .

(4)

The above computation can be efficiently done usi
the following recursive formulation.

(5)

, fo r

and, (6)

(7)

2.2.2. Backward Probability

The backward probability is the probability o
generating the observations from time to
the model was in state  at time .

(8)

Similar to the forward probability computation, a
recursive formulation exists for the backwar
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(9)

, fo r

and, (10)

(11)

2.2.3. Utterance Likelihood

The total utterance probability, , given the mode
, can be written in terms of  and  as:

 or, (12)

2.3. Parameter Update

The forward and backward probabilities define
above form the sufficient statistics for the estimatio
process. The EM algorithm tel ls us that th
likelihood of the data given the model is maximize
if the expected value of the probability of the stat
sequence is maximized. This conditional probabili
is computed in terms of the forward and backwa
probabilities. The gradients are computed an
parameters updated base on the gradient values.
contains a detailed derivation for the updat
equations for all the parameters in an HMM.

3. MAXIMUM MUTUAL INFORMATION

MMI tries to incorporate the discriminative
information into the optimization process implicitly
As will be seen in the following sections, its theor
and implementation parallel ML significantly. The
main difference is the parameter update proce
which is based on a gradient descent approach unl
ML estimation.

3.1. Motivation

The mutual information, , between variables
and is defined as the average amount o
uncertainty about the knowledge of given
knowledge of [11]. Mathematically this can be
defined as:

βi t( ) aiN=

βi t( ) aij bj ot 1+( )
i 2=

N 1–

∑ β j t 1+( )= 1 t T<≤

β1 1( ) a1 jbj o1( )
i 2=

N 1–

∑ β j 1( )=

P
M α β

P O M( ) α j t( )β j t( )
j 1=

N

∑
t 1=

T
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I X
Y

X
Y
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The conditional entropy of  given  is given by

(14)

Having defined mutual information, we now pos
the speech recognit ion problem in the sam
framework. Let , denote the random variable
corresponding to the words and observation vecto
The uncertainty in the word sequence given th
acoustic observations is the conditional entropy

 given ,

. (15)

Note that we do not know in general and
need to estimate a parametric fit. The condition
entropy of the words given the acoustic observatio
can be shown to confirm to the following inequality

, (16)

where denotes a particular parametric fit to th
actual distribution [1, 2, 11]. The equality holds onl
i f , we can get an opt imal
estimate of the conditional distribution. This
minimization can also be done as a maximization
the mutual information and hence the nam
maximum mutual information (MMI) to this
optimization technique [1, 2].

The object ive funct ion for the MMI
estimation of the parameters is nothing but th
mutual information of the words given the acoust
observations under the parametric distribution .

(17)

Replacing the expectations by the sample averag
and assuming the training data to comprise of
utterances,

. (18)

In the above equation is the word sequence in t
utterance with a corresponding composite mod
. are the set o f observa t ion vec tors
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corresponding to the utterance. The first term
the above equation is equivalent to the M
optimization criterion and the second term is wh
makes this a discriminative framework.

3.2. Optimizing Mutual Information

Equation 18 defines the objective function to b
optimized to achieve maximum mutual information
The first term in the equation is the standard M
computation that can be done efficiently via th
forward-backward probabilities for the correc
transcription of each of the training utterances.

The second term is where the discriminatio
information is added. It can be rewritten as,

(19)

where is the set of all word sequences. For sm
application this set of all word sequences can
compactly represented using a grammar or a gra
The forward-backward probabilities are compute
using this grammar instead of just the corre
transcription. These probabilities can now be us
for optimizing the objective function.

In the case of large vocabulary applications
representing the word sequences with a grammar c
be an ominous task, if not impossible. In such cas
a sub-optimal solution is chosen where an N-best l
or a word-graph is used instead.

3.3. Gradient Descent and Iterative Solutions

The formulation in 18 is that is that of unconstraine
optimization. Typically this is approached usin
iterative procedures [1, 9]. Several procedures ha
been developed over the years. The followin
sections discuss the commonly use iterativ
algorithms to find the maximum using a gradien
approach. All the methods compute the gradient
the objective function with respect to the paramete
of the HMM, namely the mean, variance an
transition probabilities.

Let be the observation sequence and let be t
models under consideration with a parameter set
The likelihood of the observation sequence given t
model is defined as,

(20)

r
th

Pλ ar( ) Pλ ar Mŵ⁄( )Pλ ŵ( )
ŵ
∑=

ŵ

O M
λ

Lλ O M⁄( ) Pλ O M⁄( )log=
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such that,

(21)

The posterior probability can be written in terms o
the  and  as,

. (22)

In order to introduce the other parameters in th
model into the above equation, we can write it as,

(23)

Transition Probability

The transition probabilities need to be handle
carefully in order to guarantee that the transitions o
of any state sum to unity. For this reason,
regularization function is used to redefine th
transitions as,

 and . (24)

wh ich is a lso known as so f tmax is som
literature [15]. Then,

, (25)

where  is the Kroneker delta.

Since depends on ‘s, applying the chain ru
gives,

. (26)

Differentiating 23 with respect to and using i
along with 25 in 26 yields,

(27)

Mean

In order to get the contribution of the means toward
the likelihood, we need to start with the definition
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in equation 3. Differentiating this equation with
respect to the component of the mean o
distribution corresponding to the  state, we get,

(28)

From 3, we know that,

(29)

Using the chain rule for partial derivatives, we get,

, where, (30)

. (31)

Variance

As mentioned earlier, for simplicity we assum
diagonal covariances in these derivations. In the ca
of diagonal covariances, we need to constrain t
values such that all of them are positive. In order
convert the constrained set to an unconstrained
(as we did with the transitions), we use the followin
regularization.

 and . (32)

We can start first by looking at the gradient of th
output distribution with respect to the variance.

(33)

Using 32, we can convert 33 in terms of the
regularization variable  as,

(34)

Using 29 and the chain rule for partial derivatives
we get,
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These quantities can be easily extended to inclu
multiple instances of the model and multiple mixtur
Gaussians.

3.3.1. Steepest Descent

The steepest descent method is the simplest a
most commonly used iterat ive technique t
minimize a multivariate function. At the end of eac
iteration, the values of the parameters are updated
the direction in which the objective function
decreases the most. The change in the parame
value is a constant proportion of the gradient of th
objective function with respect to the parameter. Th
constant proportion is commonly referred to as th
learning rate.

This procedure can be concisely written as

, (36)

where, is the value of the parameter in the
iteration, is the gradient of the objective
function with respect to the parameter and is th
learning rate. The value of the learning rate
typ ica l l y computed as a l ine search ove

. This can be an expensive
process if the number of parameters being estima
is large.

3.3.2. Momentum

Steepest descent can have slow convergen
depending on the optimizing surface. The directio
of descent and the magnitude of the gradient play
role in defining the convergence properties of th
optimization process. At places where the functio
surface is fairly flat, the gradient vector has a sma
magnitude and reaching the optimum may be slo
Similarly when the function is steep, the gradien
may be large and the parameter can be updated
value that may result in oscillation. Momentum
attempts to solve the above problems by introduci
a new term in the update equation in steepe
descent.

The new update equation a momentum term is

zjd∂
∂Pλ C t j,( )bj ot( )
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We see that this formulation uses the amount
change in the parameter value during the previo
iteration on top of the typical steepest desce
update. So, in the case where consecutive iteratio
have the same sign for the gradient, the upda
amount is larger and vice versa.

3.3.3. Local Optimization

Local optimization methods are a specific form o
the descent methods where individual learning rat
are applied to each parameter. Another feature
these iterative methods is the ability to change t
learning rates over time. Some of the heuristics us
to change the learning rates include:

• when the sign of the gradient with respect to
parameter changes sign for several iterations,
learning rate is decreased

• when the sign of the gradient with respect to
parameter does nor change for several fram
the learning rate is increased

3.3.4. RProp

RProp differs from the procedures discussed abo
in that only the sign of the gradient is used to upda
the parameter values instead of also using t
magnitude. In RProp the learning rates are vari
with iterations following a simple update procedure

(38)

The change in the parameter value is then given b

(39)

3.4. Implementation

Figure 2 shows procedure involved in estimatin
models in the MMI framework. Notice that the ML
models are also obtained as a by-product at the e
of this procedure. In large vocabulary application
instead of the recognition grammar, N-best lists
word-graphs are used where the number of altern
word sequences is limited. Using the N-best lists
actually good since only the most confusable data
used to improve discrimination.

∆xk 1 ζ–( )η LMMI xk( )∇ ζ∆xk 1–+=

ηk

min 1.2ηk 1– ηmax,( ) if same direction

max 0.5ηk 1– ηmin,( ) if opp. direction

ηk 1– otherwise
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4. MINIMUM CLASSIFICATION ERROR

Thus far we have seen parameter estimation us
the tradition ML technique and the discriminativ
MMI technique. However, notice that neither of th
two explicitly tried to optimized the primary goal of
a speech recognizer, classification rate. This sect
looks at a parameter estimation technique geared
handle this.

For a given loss function where is the
feature vector belonging to the class and is th
parameter set, the aim of parameter estimation us
the Minimum Classification Error (MCE) principle
is to optimize the overall expected loss ,

(40)

However we do not have access to the probabili

l k x Λ,( ) x
Ck Λ

L Λ( )

L Λ( ) P Ck( ) l k x Λ,( ) p x Ck⁄( ) xd∫
k 1=

M

∑=
denominator
statistics

MMI
 Estimation

tra

recognition
grammar

MMI Estimated
Models
g

n
to

e
g

y

distributions used above. Amari’s generalize
probabilistic theorem comes to our rescue here [1

4.1. Generalized Probabilistic Descent

For an infinite sequence of random samples a
step size sequence  that satisfies the conditions

1. , and (41)

2. (42)

adapting the system parameters according to

(43)

converges with a probability of one to a loca

xt
ct

ct
t 1=

∞

∑ ∞→

ct
2

t 1=

∞

∑ ∞<

Λt 1+ Λt ctU∇l k xt Λt,( )–=
original
HMMs

numerator
statistics

ML
 Estimation

ining
data

correct
transcription

ML Estimated
Models
Figure 2. Implementation of the MMI estimation process. Note that only the left-half of the figure involves the
new computations corresponding to MMI estimation. The right-half is the standard ML estimation process. Note
the need for a recognition grammar for MMI estimation process.
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# of
 mixtures

MLE MMI MCE

1 44.0 39.0 39.0

4 37.6 34.8 33.8

8 35.2 32.4 32.7

24 33.3 30.2 31.3

Table 1. comparison of ML, MMI and MCE on
phone classification in TIMIT
minimum of . The key here is that the overa
loss is never computed but we optimize based on t
local loss .

4.2. Loss Functions

As seen above, the goal of MCE can be achieved
optimization involving the local loss functions. In
general there are certain desirable properties for lo
functions:

• since the problem is that of minimizing
classification errors, near-binary loss function
are desirable

• continuous functions
• loss functions need to be first orde

differentiable to apply GPD

The commonly used loss function with all the abov
features is the sigmoid function:

(44)

where  is the misclassification error measure.

The misclassification error measure can be defin
in terms of the discriminant functions of the
classes, we would like to discriminate better as
result of the MCE optimization process. In typica
speech recognition applications these classes
either words in the vocabulary or the phonemes
the system. Typically misclassifications for the
class will add 1 to and a correct classification wi
subtract 1.

(45)

where we assume the that this an -class proble
and con t ro ls the con t r ibu t ion o f each
misclassification towards the error metric. Note th
when is large, the most confusable clas
contributes the most to the summation. This fits
well with the N-best list processing paradigm or th
Viterbi approximation commonly used in many
speech recognition systems . Note that in the curre
discussion we have not yet related the parameters
the HMM to the objective function defined in
equation 40. The discriminant function for the
class, , relates them together.
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1 e
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L
ψ
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e
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4.3. Implementation

There can be several definitions for the discrimina
function. The only requirement is that the provides
distance metric to compare classes. Traditiona
likelihood has been used for this purpose for HMM
The computation of the likelihood is done as th
probability of all possible state sequences for th
given data. In a closed form, for one particular sta
sequence this can be written as

(46)

where and are the model parameters. Using t
above definition of the likelihood, the discriminan
function for the  class can be defined as

(47)

Note that when is large, the most probable sta
sequence dominates the summation and approac
the Viterbi framework.

We see how the quantities defined so far finally en
up relating the estimated loss, our objectiv
function, to the model parameters and . Usin
the chain rule for partial derivatives, we can find th
gradient of the loss with respect to the mode
parameters. At this point the optimization process
similar to what we do in MMI estimation.

To look at the flow of the training procedure, let u
look at an application where MCE is applied at th
word level, i.e. the classes are the words in th
vocabulary. We make an important assumption he
that the discriminant function uses normalize

Θp

f x1
T θp, Λ( ) a

θt 1–
p θt

p b
θt

p xt( )⋅
t 1=

T

∏=

a b

j
th

gj x1
T Λ,( ) f x1

T θp, Λ( )[ ]
ξ

p
∑

1
ξ
---

log=

ξ

L
a b
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probabilities in that we can compare scores fo
instances of a word  with different durations.

We start with N-best lists. State-level alignments fo
the N-best lists are obtained. The N-best lists at t
timing information is used to obtain the word
instances that the word is confused with. The
instance are used to compute . This is us
to compute the loss . GPD theorem is the
used to update the parameters for the models t
went into defining the word .

5. PERFORMANCE

Though it is obvious that ML is not the bes
optimization criterion, the discriminative technique
incur a heavy computational overhead for the gai
in performance. Often, to reduce the computation
overhead, sub-optimal solutions like using th
Viterbi alignments or N-best list processing.

Most gains from using the above discusse
estimation techniques have been reported on ta
ranging from small to medium vocabularies. W
present here the performance on TIMIT as report
in [1] and [9]. Table 1 compares the three
reestimation paradigms on the TIMIT data [13]
MMI and MCE models consistently do bette
models estimated using ML. However the gain
reduce as the number of mixture components a
increased. the reason for MMI models doing bett
than MCE is that MCE models has only their mean
and variances updated unlike MMI models wher
mixture weights and transitions were also updated

6. SUMMARY

We have seen how discriminative information can b
made a part of the optimization process to estima
the model parameters in HMMs. Theory an
implementation issues involved in applying MM
and MCE paradigms have been presented in det
Though the discriminative techniques discussed he
are attractive theoretically, they suffer from hig
computational expense compared to the tradition
ML est imation process. The discr iminat ive
techniques have been to perform better than ML on
TIMIT phone classification experiment. In order to
apply these techniques to large vocabula
applications several sub-optimalities have to b
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pursued that include the use of Viterbi stat
alignments for likelihood computation and N-bes
list processing as a substitute for recognitio
grammars.
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