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ABSTRACT discarding the knowledge that the same speaker is, in
fact, speaking every utterance. In doing so, the

In typical state-of-the-art large vocabulary system is negating the ability of the models to
conversational speech recognition (LVCSR) systemsdescribe the peculiarities of each specific speaker
a single model is developed using data from a large(vocal tract shape and length, accent, etc.) in favor of
number of speakers to cover the variance across2 general model of any speaker.

dialects, speaking styles, etc. With this, we expecton the other hand, there is a very large problem with
that our systems will generalize well to any developing such a speaker-dependent system: doing
particular speaker. However, from experience we sg would require a large amount of training data
know that there are speakers who are poorly from every speaker involved which is impractical for
modeled using this paradigm. Thus, it is most applications. There are vast amounts of training
advantageous to adapt the system, during run-timegata available for speaker-independent tasks such as
to the new speaker. In this paper we discuss method:'s\w | TCHBOARD [3]. This provides clear

for accomplishing this goal. Most of the effort is  mgtivation for techniques which would allow us to
spent in describing one popular method that uses é3dapt the speaker-independent models to a new
maximum likelihood linear regression (MLLR) speaker using a small amount of adaptation data.
approach to speaker adaptation. A derivation of thepyom this need, there have been many attempts to

relevant reestimation equations is provided as wellgeyelop robust speaker adaptation techniques.
as a discussion of computational and data sufficiency

issues. 2. SPEAKER ADAPTATION

1. INTRODUCTION The basic idea of speaker adaptation can be seen in
Figure 1. Essentially, we want to use a a small
Commercially available dictation systems have gmount of adaptation data as possible to change our
recently hit the speech products market. These haveygcognition system such that they model as much of
for the most part, received rave reviews from users.the speaker-specific information as possible [4].

box but perform better as the user performs moreproduce this effect.

dictation with it. This indicates that the systems used
in these applications are somehow adjusting to the
speaker — also that the speaker is adjusting to the
subtleties of getting the application to work. It is this
phenomena that we will discuss in this paper.

Speaker adaptation techniques for HMM-based
recognition systems fall into two basic categories.
The first of these employs methods which transform
the input speech of the new speaker to a vector space
that is common with the training speech. These are
Speaker-independent recognition systems have beeknown asspectral mapping techniquesSecond are
developed to the point that they perform very well methods which transform the model parameters to
for LVCSR in the general case. However, petter match the characteristics of the adaptation
speaker-independent systems, in general, are knowigata. These techniques are knownrasdel

to have poorer performance than systems withmapping approaches The following sections
speaker-dependent models [1, 2]. The main reasordescribe each of these, in brief.

for this is that speaker-independent systems are
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Figure 1. A high-level representation of the speaker adaptation process. The speaker adaptation process
uses the adaptation data to affect the modeling process such that the models are a closer match to the ad-
aptation data.

2.1. Spectral Mapping Approach 2.2. Model Mapping Approach

The spectral mapping approach is based on the belieThe aim of spectral mapping is to improve the match
that a recognition system can be improved by between the reference speaker and new speaker.
matching the new speaker’s features vectors to theHowever, this goal does not explicitly try to increase
vectors of the training data [5]. The mapping is the accuracy of the models for the new speaker and,
designed so that the difference between the referencithus, does not take full advantage of the adaptation
vector set and the mapped vector set is minimized.data. This is where the model mapping approach
These differences are due to the spectral differenceattempts to make its improvements. Rather than
of the speakers’ speech production systems (e.gtrying to map all speakers to one space, the model
vocal tract length and shape). mapping approach adjusts the model parameters to
best represent the new speaker as illustrated in

Initial attempts at spectral mapping adaptation were ™
P P pPIng p Figure 3.

used in the spectral template matching systems
[6, 7, 8]. These consider the template to be from the
reference speaker and automatically generate a
transformation to minimize the difference between

the new speaker and the reference speaker [5]. Other

approaches [9] have mapped both the reference data Reference Speaker
and the new speaker’s data into a common vector set /\@
which is said to maximally correlate the two. A

variation on these methods which is similar to \
speaker normalization uses a transform to map each =

speaker in the speaker-independent training set onto Training Speakers %ﬂ

a reference speaker [10, 11]. Thus, the models - :
generated act as speaker-dependent models. This Figure 2. Spectral Mapping approach where both
approach is illustrated in Figure 2 and is commonly e training speakers and new speaker feature

referred to as a speaker normalization technique. vectors are mapped to a common space which
maximizes the correlation between the two.



A common example of the model mapping approach Two issues that must be addressed when discussing
is the bayesian MAP (maximum a posteriori) model mapping approaches are the training modes
technique for adapting HMMs. In a MAP approach, (supervised verses unsupervised) and the adaptation
the transformation is chosen such that the new modemode (incremental verses batch). In a supervised

parameters maximize a likelihood function, training mode the recognition system is given the
correct transcription and has only to align the user’s

P(O[A)P(A) b 15 Oy 0 a19n e
P(A|O) = (1) speech to that transcription. In unsupervised

P(O) adaptation the recognizer feeds itself, perhaps
whereO is the adaptation observation sequence andncluding recognition errors. Obviously, the
A is the parameter set defining the distribution. Supervised mode is preferred when available. This is
Different methods have been used to estimate thewhy commercial dictation systems employ an
value of )\ inc'uding a Segmental K-means enrollment process where the user recites some
approach [12] and an EM-based approach [13]. Pre-transcribed sentences.

Most of these MAP approaches are limited in that The adaptation mode describes when the adaptation
they only adapt the parameters that are directlytakes place and what models are employed to
observed in the adaptation data. produce the hypotheses used for adaptation. In
A more successful model mappn‘]g technique is incremental mOde, the models are adapted qUite
maximum likelihood linear regression Oftenand the adapted models are used to produce the
(MLLR) [1, 5, 14]. MLLR was designed to  hypotheses for the next adaptation. This is the
overcome the disadvantages of both the spectratypical method seen in real-time systems that use
mapping and model mapping techniques. MLLR is a adaptation. Batch mode is similar to a training run
transform-based method which adapts the mode/Where hypotheses for the entire adaptation set are
parameters like the MAP-based adaptation but, usincStored and then used to iteratively update the adapted
transform tying, is robust enough to produce effectsmodels. Again, this is similar to the enrollment
from a small amount of training data. This approach Process in commercial systems.

was developed from work by Hewitt [15] which o

applied a least squares regression to adapt template2-3- Performance Equals Motivation

in dynamic time warping. MLLR extends this idea to ] )

the continuous density HMMs and uses maximum Table 1 demonstrate; why adaptation techniques
likelihood (ML) to optimize the regression. have become popular in recent years. These systems
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Figure 3. Representation of a model mapping approach where speaker-independent models are mapped
to speaker-dependent models.




use combinations of vocal tract length normalization described as a likelihood function. So, we arrive at
(VTLN — a speaker armalization technique) and estimating the parameters of the model to maximize
MLLR to adapt a medium vocabulary triphone a likelihood function.

systerp [18]. On average, the Icombine((’j We typically solve an MLE problem using the
normalization and adaptation yielded a 35% g, o 1ation Maximization (EM) algorithm [20]. EM

reductlo_n in word err(())r rate (WER) for superws_ed determines the estimated parameters of a model set
adaptation and a 15% reduction for unsuperwsedsuch that the newly estimated parameters are

adaptation. Similar, though not quite as good, reSUIthuaranteed to increase the value of some specified
hold for large vocabulary tasks such as function. This is described as:

SWITCHBOARD and Broadcast News.
fmle()‘)meleo\) ' (2)

where\ are the parameters of the model. Rather
than trying to maximize this function directly, we
often formulate an auxiliary function that is more
computationally tractable and which has nice
convergence properties. For speech training systems,
this takes the form:

3. MLLR BASICS

MLLR produces a set of regression-based
transforms that are used to tune the HMM emission
parameters using some given adaptation data. MLLR
is able to build robust adaptation transforms even for
models that are not seen in the adaptation data usin
transform sharing. This helps to eliminate the Q(A,A) = g P(O,8|)) log{ P(O, 8]A)} (3)
problem of limited adaptation data. With very little uye]

data, a single global transform can be used for allyyhere @ contains all possible state sequences
models. As more data becomes available, morejgading to the recognition o® . Note that (3)
fine-grain transforms can be applied. In Figure 4 we gmounts to a cross-entropy function where the
see the basic approach of MLLR which is to take a convexity of the entropy function is exploited to
speaker-independent model (the solid red ovals) ancgarantee maximization. This form should be
use a transform to move the model space toward éapmiliar to those who have studied Baum-Welch
speaker-dependent model (the striped blue ovals)irajning [20]. Baum proved that this form was

Commonly, only a mean adaptation is performed gyaranteed to increase the probability function.

since it is assumed that the primary difference o
between speakers is in the average position 0fFor HMMs, the probabilities are related to both the

transition probabilities and the state emission
probabilities. Thus, we can expand the auxiliary
function as

phones in the acoustic space [14]. This is the same
reasoning given in many VQ/HMM adaptation

schemes [16, 17]. A covariance adaptation is less
commonly used and its effects are less profound thar

. T
the mean adaptation [19]. 3 log(transition prob). +
3.1. Maximum Likelihood Estimation eg@L(Q’ oA | T (4)
o logbg (0
In HMM-based recognition systems, we need to t; 906,

estimate the parameters of the system so that the! o o . _
yield the best performance possible. Ideally this This auxiliary function is differentiated with respect

would be done so as to minimize the error rate. t0 each parameter of interest and set to zero to
However, there is usually no closed-form description determine a closed-form solution for the parameter
of this problem so traditional optimization reestimation.

techniques (gradient descent, for example) will not . _

work. A more common approach is to modify the 3-2- Linear Regression

system so that the probability of the training data
given the new model is maximized. For
computational convenience the probability is often

In linear regression, we desire to explain a setof
output variables,(y;,y, ...y, as a linear



Push-to-talk Data with ~4600 word Vocabulary

Speaker S| MLLR VTLN MLLR/VTLN
Sup/UnSup Sup/UnSup Sup/UnSup

Meba 10.4% 4.717.3% 10.4/ 8.6% 5.6/6.9%
Mfmm 20.5% 16.7 /1 20.5% 19.3/21.6% 13.4720.1%

Mofc 11.8% 8.0/11.8% 9.4/8.5% 5.2/8.5%
Macc 27.1% 22.5/127.7% 26.5/26.1% 21.3/25.9%
Mrnn 31.5% 18.8/30.2% 26.5/28.7% 18.2/28.5%
Fcba 14.0% 12.1/16.7% 16.7/14.4% 10.7 /1 13.9%
Fnba 15.5% 10.4/14.9% 12.3/13.3% 10.4/13.3%
Fmcs 25.0% 16.4/23.1% 21.6/22.1% 16.0/21.4%
Fmgl 25.0% 20.4127.4% 22.4122.5% 13.2/22.5%
Avg 21.8% 15.3/21.3% 19.1/19.4% 14.0/ 18.6%

Table 1. Effects of speaker adaptation and speaker normalization on medium vocabulary recognition.
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Figure 4. Adapting speaker-independent models to speaker-dependent models using an MLLR approach.
Note that mean adaptation shifts the location of the models means in the space, while (co)variance adap-
tation changes the shape of the distributions.



combination ofm explanatory variables, system are iteratively redefined to maximize the
(Xp X9 .. X,) - We can define this set of likelihood function. It is desirable to have

simultaneous equations as closed-form reestimation formulae to generate the

_ new parameters on every iteration. In this section we

Y17 ot 8Xa ¥ e FBmX derive those formulae for the mean transform and
Yo = 8yt 8yyXq ...+ X the covariance transform in the MLLR scheme.

©®) These follow from [14] and [19] respectively.

Yn = 8ot @ Xyt tag Xy
In matrix form this is

4.1. Mean Transform Estimation

Let the mean for a single mixture component be an

a0 a 1 n-dimensional vector defined ag  , Then, we define
Y1 10 211+ B1m X, the adapted mean estimate as~
Yo| = |0 81 - & R
= m | x, ® =W, )
Yn 8,0 81 - 8y X whereW, is an n x (n+1) transformation matrix and
Lm & = [W, Hgy -, Hgl' is the extended mean vector.
ory = Wx. w is the offset indicator so that = 1  indicates an
- offset andw = 0 indicates no offset. For Gaussian
3.3. Transform Sharing probability models, this gives an adapted mixture

density function of

Ideally, we would use one adaptation transform per 1 o

Gaussian model in an HMM system so thatall of the 1, gy = 1 50" Wb ZHe- Wb )
differences between the speaker-independent mode ~° n 1
and the speaker-dependent model could be
accurately found. However, in practice, this would
require too much adaptation data to accurately
estimate the adapted models. For this reason, a forn
of transform sharing is usually employed where sets
of Gaussians are pooled together and are adapted b4-1.1. General form

a single transform. In this scheme, components withossume the adaptation data is a series of T
little or no adaptation data can be adapted with thegpservations,o = o,...0; . Since we are

data pooled from similar models. interested in reestimating only the transformation

A common approach for transform pooling is to use matrix, we can ignore the terms in the auxiliary
a binary regression tree as shown in Figure 5. A function (4) due to the transition probabilities. This
pooling algorithm is needed to determine which gives an auxiliary function of the form

(&4

A maximum likelihood estimate of eagly, = matrices
is made, maximizing the likelihood of the adapted
model set generating the adaptation data.

components are pooled to each node. A centroid T
splitting algorithm is often used which attempts to  ¢onstant Y PO, 9\)‘”0969 (o) - 9)
split the components at a node into two sets of @ggt: 1 t =

components located at the two children of that node.
This is done in a way that ensures the components
that are closest together in the probability space are
pooled to the same child node [19].

We can define the posterior probability of occupying
states attimet given that the observation sequence
O is generated as

1
yo(t) = P(O, 6, = s|A). (10)
4. TRANSFORM ESTIMATION ° P(Q\)‘)Qg@ e

_ _ _ This is more commonly known as the state
Use of the EM algorithm typically involves an  gccupancy probability. Les — be the set of all states
iterative process whereby the parameters of thej, the system. Then we can sum the marginal




Figure 5. A binary regression tree for pooling components to be adapted. The leaf nodes (4, 5, 6, 7) are
the base regression classes. The dashed circles represent nodes that have insufficient training data and,
are thus, pooled to the next higher level in the tree. The solid circles have sufficient data for estimating a

transform.
probabilities across the set of states to get the total T A
probability. Thus the auxiliary function expands to P(O|A) Z V(D Z (0, —WEEL. (16)
t=1 o T
S T
constant P(OA) 5 5 v, (t)logb (Ot) (11) To optimize this function we set (16) to zero and
j=1t=1 group terms so that we have known quantities on one

We now differentiateQ(A, A)

with respect te/,
and obtain the differential —

S T

Y 3 vi(hlogh;(o,).

Tlsp=1t=1

d

(12)

expandingbj(ot) in (12) as a Gaussian we have

_-P(O\)\) Z Z yi(t) nIog(ZTI)+ (13)
Wy 5y o 1) + log

where

h(0, J) = (0, W;&)'E; Lo - WE)). (14)

Sinceh(o, s) is the only term in the summation
dependent oiw, , the differential of the auxiliary
function (13) reduces to

——P(O\)\) Z ys(t) h(ot, S)
Ws

(15)

or

side of the equation and unknown quantities (i.e.
terms multiplied byw, ) on the other. This results in

T T
T VI ToEd = T v (ISIWEES.  (17)
t=1 - T t=1 - T

(17) is the general form for computin‘dj/S . The

solution can only be found for specific types of
problems - most notably for diagonal covariance
matrices.

4.1.2. Closed-form solution

We now derive the closed-form solution for the
mean transform when all covariance matrices are

diagonal. Ist is shared byrR states,
{s;, s, ... sz}, then the general form in (17)
expands to

T R

DD R ALLA N

t=1r=1 % —

T R (18)
=3 TV (O IWEE!
t=1r=1 S T



We rewrite this as n+1

TR R Zij =i =Y Wigdly (27)

S 3V O3 = F VOWPO (1) o

t=1r=1 S r=1 wherez; andg() can be computed from the
where v is the state distribution inverse observation vectors and the model parameters. This

covariance matrix scaled by the state occupamcyglves a set of linear reestimation equations
probability andD(") is the outer product of the  ,t = (GM)-1zt (28)
extended mean vector - ="

wherew, andz are théi rows of W, andz

\Lr) = Z Yo ()21 (20) respectively.
=1 - 4.1.3. Optimizations
D = ES,ESrt' (21)  Note that the solution to each row involves an
- extremely expensive computational structure
Note that (21) defines a singular matrix. including inversion of singular matrices and
Let the right hand side of (19)a n x(n+1) matrix, ~ Numerous matrix multiplies. To reduce this load,
Y and let the elements of V() w_ QO e . diagonal or block-dlago_nal forms are often assumed
v w anddm respectiveITTr@n we can write Tor th(_a transform matrix. A diagonal transform is
U specified as
n n+l
= 2 2 Wng Z vipdfp.- (22) Wy W, 0 .o 0
p=1g=1 r=
w1 0w, g 0

SinceD(" is symmetric and since we have specified Ws = (29)

that all covariances are diagonal then &
Whp1 0 ... 0w

n, n+ 1
R v0dD, when i so that each component of the mean undergoes a
z viDd( = 21 iq" P (23)  shift and scaling
—_— r=
0, when iz p Hi = ww g+ w1 (30)
and Block-diagonal transforms assume independence
. amongst subsets of the mean components. For
typical LVCSR systems, we may define the
Yij = 2 Wiq Z vindg. @4 {ransform as
q_
Setting Wy 1 A, 0 0
R N —
W, = , . 31
— Wn,l 0 0 AAz
gives HereA, indicates the basic spectral featureg,  the
n+1 _ derivative features, antAA2 the acceleration
Y wigdly) (26)  features.
q=1
whereg() are the elements of an (n+1) x (n+1) 4.2. Covariance Transform Estimation
matrix, G() . Note that sinc®() is singulag() s _ _
also singular. * We define the adapted variance as
Setting the left hand side of (19) ® givgs= Y z =B tH Be (32)

and - —



whereH, is the transform to be estimated a\d

the inverse of the Cholesky factorof® . So,
sl =ccl o (33)
and
B, = CJl. (34)

isIf Hg is shared byR state§s,,s,, ..., sg}  then

R T ~
> Cs' Y Vsr(t){%)t_‘fsrg}csr
.= r=1 t =R1 . (40)

> 2 Vs
r=1t=1

T,

Cholesky decomposition is used as it insures that thevherex = xx' .
resulting matrix is non-singular. We, again, use the The transformation of the covariance using the

auxiliary function from (11)

S T
constant- P(O[A) ¥ 5 y;(t)logb;(o,). (35)
j=1t=1 o

ExpandinglogE)j(ot) using as (8) and (32), we obtain

A 1
IOij(gt) = _é[nlog(Zn) + IogE‘] +

1 ~
—§|Og i + . (36)

S0 i)

SinceBj = Cj-1 ,

i 1
Iogbj(gt) = —é[n|Og(2T[) + IogE‘] +

1 ~
—3log/Hj + (37)

1 NV i
10— 1)) CH TG (o~ )]
or
A 1
|Ogbj(8t) = —é[nlog(2n) + Iog‘a‘] +

_1'|0
509

ﬁj‘ + . (38)
1 ~ A~ ~
EICARCATL RGN

We then differentiate the auxiliary functio@(A, A)

with respect toH, , set the derivative to zero and

group like termsTo yield
T ~ ~
Cd T VOI(0,—He) (0 —Hg)ICq
H o= _t=1 - - - - =
S

. (39)
T Ve(t)
t=1

estimate forH, resultsin a tull covariance matrix,
but the off-diagonal terms ik,  can be set to zero
and an increase in likelihoodis still guaranteed.

5. A SIMPLE EXAMPLE

While the preceding derivations are fairly
straightforward, it is instructive to see a humerical
example that demonstrates the formulae in action.
What follows is the computation of a mean
transform for a single state recognition system using
a two-dimensional acoustic space and diagonal
covariances.

Assume that the following defines a single state in a
recognition system using a two-dimensional acoustic
space with diagonal covariances:

= 2},zlz {40] (41)
3’2 oo

Now let’s say that we have two frames of adaptation
data (generally this is not sufficient to generate a
robust estimate, but we continue for the sake of
example),

ol 53

Computing the mean and covariance of the observed
data we have

h= |41 5 = |002-002 43)
% 134 ° |-0.02 0.02

Recall that, for diagonal covariances, we want to
solve the set of functions

w;t = (G))-1zt (44)

wherew, andz are théi rows of W, andz



respectively and and
TR 123 [0.122 0.244 0.366
Z= t)z.1oE t. 45 : : :
t;r;ysr( 1257 o G = 012212 4 g = |0.244 0.488 0.733 (54)
For the sake of example we will define 369 0.366 0.733 1.099
y1(1) = 0.3y,(2) = 0.8. (46)
Solving forZ in (45) gives Note that both of thes()  are singular so we must
use a method such as singular value decomposition
025 0 || 4 to find the inverse.
0.3 [1 2 ?J +
. 0 0.111]3. ) - i
- T 1.86x1072 3.71x10 2 5.5%10°
. . 1)\-1 — _ _ _
O'E{ 0 0_11J L,; 123 (G =13 71x107 7.42002 11107 (59
or 5.57x1072 1.1x10 - 1.6%10 |
and
7= | 114 228 342/ 48) i .
0.4096 0.8192 1.2288 4.18<107 8.36<10 1.25¢10 "
For a diagonal covariance, we defined the elements (G®)™ = |g 36102 1.67%107 25107  (56)
(i) _ _ _
of G by 11.25x10°" 25107 3.76¢10
R
i = Solving for the rows ofv;t yields
off = 3 v, (a9)  Sobing oy
r= r
—2 —2 —2
whereq ranged from, ...,n+1 . We expand t 1.86x10 = 3.7x10 ~ 5.5&10 "} 1.1
Wi = 1371x1072 7.4%107 1.1x10 | |2.28 -
] O_:{0.25 0 J . 5571072 1.1x107" 1.6%107Y 4
0 011 -
VO = 3y )zt = (50) > 06p10
t=1 — 025 0 o |
08" 011 W' = |5 9ot and (57)
8.883x10 "
or .
0275 0 4184107 8.3610°2 1,250
V(D = { : 1 and (51) T L L 2499
0 0.122 Wo' = 18.36x10° 1.67%10 - 2.51x10 | |0-819
_1 _1 _1/11.228
1 103 11.25¢10 2,510 - 3.76<10
D) = . & t = = 52 r ~
— " %s%s 2[123; zgg (52) 239610
t — _
o Wo' = 14792107 - (58)
At this point, we have what we need to solve for 1
Gl - 17.188<10
Thus,

12
G = 0.2757 4

369

0.275 0.550 0.825
0.550 1.100 1.650
0.825 1.650 2.475

(53)



R _1 _1 _1
Wi, = [2961x10" 592210 8.88310 (59)
2.396x10 " 4.79%10 " 7.18810 2]
We can now compute the adapted mean as
Hy = W,E,
i- 296110~ 5.922107 8.883107 |
L=
— 2396107 4792107 7.18%107 |5 [3]
~ _la14
My = . (60)
1335
Recall that
[ [4]
w = |41 (61)
0 134

The mean has moved significantly closer to the
observed data mean. Note that the state occupanc
probabilities are quite high in this sample case which

is why the transformed mean jumped toward the[ ]
observed data mean after only two observations. In
general the state occupancy probabilities will be
much lower, giving a more gradual adaptation.

6. SUMMARY

[6]
In this paper we have derived and illustrated the use
of MLLR as a speaker adaptation technique. Using
MLLR, we are able to provide an extremely flexible
scheme for adapting to small quantities of
speaker-dependent data. It should be rememberec
though, that MLLR is a maximum likelihood [7]
estimator. While there is ample evidence that, in
general, maximizing likelihood also reduces word
error rate (the ultimate goal of speech recognition),
there is no guarantee. An interesting area for future
research will be hypothesis based optimization
where the recognizer hypothesis is specifically 8]
accounted for in the optimization scheme.
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