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ABSTRACT

The linear prediction method provides a robus
reliable and accurate method for estimating th
parameters that characterize the linear time-varyi
system. It is very important tool in digital signa
processing[11] because it deals with applications
variety of areas such as speech signal processi
image processing etc. It has become the predomin
technique for estimating the basic speech paramet
such as pitch, formants, and spectra. The importan
of linear prediction lies in it’s ability to provide
extremely accurate estimates of speech parame
as well as it’s relative speed of computation.

The proposed talk covers the linear prediction mod
which deals with the problem of predicting the
values of a stationary random process either forwa
in time or, backward in time known as forward an
backward prediction. I will discuss basic principle
of linear prediction analysis and the fundament
problem related with the analysis as applied
speech processing. As linear prediction refers to
variety of formulations of the problem of modeling
the speech waveforms, I will discuss few bas
formulations of linear prediction analysis an
examine the similarities and difference among them
I will then highlight the basic problems related with
linear prediction as applied to speech which will lea
to PLP analysis, an extension over linear predictio

1. INTRODUCTION

One of the results of science of estimation theory h
been the development of the linear prediction[16
algor i thms. This al lows us to compute th
coefficients of a time-varying filter which simulated
the spectrum of a given sound at each point in tim
This filter has found uses in many fields, not the lea
of which is speech analysis and synthesis as well
music. The use of the linear predictor in speec
applications allows us to modify speech sounds
,
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many ways, such as changing the pitch witho
altering the timing, changing timing without
changing pitch, or blending the sounds of music
instruments and voices.

LP provides parametric modeling techniques whic
is used to model the spectrum as an autoregress
process. These parametric models are basically u
in compression systems, system identificatio
problems in modern control systems, time seri
analysis for economic applications, spectra
estimation in signal processing, maximum entrop
techniques etc. The basis is the source-filter mod
where the filter is constrained to be an all-pole line
filter.The ideas of linear prediction have been in us
under the names of system estimation and syst
identification. The term system identification is
particularly descriptive of LPC methods in that onc
the predictor coefficients have been obtained, t
system can be uniquely identified to the extent tha
can be modeled as an all-pole linear system. T
appeal of linear prediction as applied to speec
however, is not only it’s predictive function but also
the fact that it gives us a very good model of th
vocal tract which is useful for both theoretical an
practical purposes.

These ob jec t ives formed the need for th
development of linear prediction techniques.

2. BASIC PRINCIPLES

The block diagram of basic model for speec
production, appropriate for the linear predictiv
analysis[1] can be seen in Figure1. In this model, t
composite spectrum effects of radiation, vocal tra
and glot ta l exci tat ion are represented by
time-varying digital filter[18] whose steady state
system function is of the form
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The system can be excited by an impulse train f
voiced speech or a random sequence of unvoic
speech. The pitch period and voiced/unvoice
parameters can be estimated using linear predict
analysis. The speech samples s(n) can be given
using simple difference equation

(2)

The linear predictor with predictor coefficients
and order p is defined as a system whose output i

(3)

The system function of this linear predictor is

(4)

The prediction error is defined as

(5)

H z( ) S z( )
U z( )
------------ G

1 ak z
k–⋅

k 1=

p

∑–

--------------------------------------= =

s n( ) ak s n k–( )⋅
k 1=

p

∑ G u n( )⋅+=

αk

s̃ n( ) αk s n k–( )⋅
k 1=

p

∑=

P z( ) αk z
k–⋅

k 1=

p

∑=

e n( ) s n( ) s̃ n( )–=
u(n)
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(6)

Thus the prediction error filter is the output of th
system whose transfer function is

(7)

Comparison of equations(2) and(5) suggests tha
, then and in such

condition, prediction error filter A(z) will be an
inverse filter for the system H(z).

(8)

The basic problem of linear prediction here is t
determine a set of predictor coefficients
directly from speech signal in such a manner as
obtain a good estimate of spectral properties
speech signal through the use of equation(8).

3. LP APPROACH

Given a signal, s(n), we seek to model the signal a
linear combination of its previous samples as give
in equation(2). The short term average predictio
error is defined as

e n( ) s n( ) αk s n k–( )⋅
k 1=

p

∑–=

A z( ) 1 αk z
k–⋅

k 1=

p

∑–=

αk ak= e n( ) G u n( )⋅=

H z( ) G
A z( )
-----------=

αk{ }
s(n)

        Vocal
        Tract
   Parameters

ime-Varying
     Digital
     Filter

        Lip
   Radiation
      Model
Figure 1. Block diagram of simplified model for speech production
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(10)

(11)

We minimize the mean square prediction error[17
in order to find the values of . This can be don
by setting

(12)

Differentiation gives

(13)

(14)

If we define

(15)

Then equation(13) and(14) can be more compac
written as

(16)

This is known as linear prediction (Yule-Walker
equation. Solution[19] of this equation gives th
values of the predictor coefficients. Mean squa
prediction error can be written as

(17)

Basically two methods are used to solve the line
prediction equation. Here we will consider both o
them one by one.

4. THE AUTOCORRELATION METHOD

Constraining the evaluat ion interval to th

E e
2

n( )
n
∑=

E s n( ) s̃ n( )–〈 〉2

n
∑=

E s n( ) αk s n k–( )⋅
k 1=

p

∑–
2

n
∑=

αk

αi∂
∂E 0= 1 i p≤ ≤

s n( )s n i–( )
n
∑ a=

a αks n k–( )
k 1=

p

∑
n
∑ s n i–( )⋅=

φn i k,( ) s n i–( )s n k–( )
n
∑=

αkφn i k,( )
k 1=

p

∑ φn i 0,( )=

E φn 0 0,( ) αkφn 0 k,( )
k 1=

p

∑–=
.
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range [0, N-1], and assuming the values outside th
range to be identically zero, we can take the limits
be [0, N+p-1]. Thus mean square prediction err
can be properly expressed as

(18)

Because of the finite length constraint, it is importa
in the autocorrelation method to apply a window
Normally, a Hamming window is used. Application
of the window eliminates the problems caused b
rapid changes in the signal at the edges of t
window, which ensures a smooth transition from
frame to frame of the estimated parameters in t
overlapping analysis.

Under this condition, we can write equation (15
simply as

(19)

which, alternatively, can be expressed as

(20)

(21)

Due to finite length constraint we can modify
equation (20) as

(22)

is known as the autocorrelation function
evaluated for (i-k). is an even function
Under these conditions, linear prediction equatio
and mean square prediction error can be writte
respectively, as

(23)

(24)

In matrix form, the linear prediction equation
can be expressed as:

E e
2

n( )
n 0=

N p 1–+

∑=

φn i k,( ) s n i–( )s n k–( )
n 0=

N p 1–+

∑=

φn i k,( ) s n i–( )s n i k–+( )
n 0=

l

∑=

where l N 1– i k–( )–=

φn i k,( ) Rn i k–( )=

Rn i k–( )
Rn i k–( )

αkRn i k–( )
k 1=

p

∑ Rn i( )=

E Rn 0( ) αkRn k( )
k 1=

p

∑–=
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where,

(26)

(27)

is symmetric, and all of the elements along th
diagonal are equal, which means (1) an inver
exists; (2) the roots are in the left half plane. i
known as Toeplitz matrix. This simplification cause
the predictor coefficients to be computed efficientl
using the Levinson-Durbin recursion[2]:

(28)

For  and

(29)

(30)

(31)

(32)

(33)

Equations(29) to(33) are solved recursively for i = 1
2,..., p. and the finally the predictor coefficients ar
given as

(34)

The complexity of computation in this method o

α R
1–

r⋅=

α

α1

α2

…
αp

= r

Rn 1( )

Rn 2( )

…
Rn p( )

=

R

Rn 0( ) Rn 1( ) … Rn p 1–( )

Rn 1( ) Rn 0( ) … Rn p 2–( )

… … … …
Rn p 1–( ) Rn p 2–( ) … Rn 0( )

=

R

R

E
0( )

R 0( )=

1 i p≤ ≤ 1 j i 1–≤ ≤

ci R i( ) α j
i 1–( )

R i j–( )
j 1=

i 1–

∑–=

ki

ci

E
i 1–( )

----------------=

αi
i

ki=

α j
i α j

i 1–( )
ki α j 1–

i 1–( )⋅–=

E
i( )

1 ki
2

–( ) E
i 1–( )⋅=

α j α j
p( )

= 1 j p≤ ≤
e

,

solving predictor coefficients is proportional to p2,
and allow the entire LP computation to be performe
with a complexity of approximatelyNp + 3N + p2.

The signal model, which actually is the inverse o
A(z), is given by:

(35)

Where G is the model gain, and is given as:

(36)

Which can also be expressed as:

(37)

The gain term allows the spectrum of the LP mod
to be matched to the spectrum of the original spee
signal.

The important observations[4] obtained by the use
this form of LP solution are as follows:

(1) The intermediate variableski , called the
reflection coefficients are bounded:

(38)

This result is extremely useful for storage an
compression applications involving LP models, suc
as for the speech recognition system that store la
numbers of recognition models[5].

(2) In the process of solv ing the predicto
coefficients of order p using this iterative method
the solutions for the predictor coefficients as well a
predictor error of all orders less thanp have been
obtained. This is convenient for signal processin
applications that require estimation of the mod
order as part of the task.

(3) Model fit becomes better with increase in th
order of linear predictor. This fact can easily b
verified using equation(33). .
Higher order linear predictor easily represents th
finer details in the spectrum, whereas lower ord
represents only trend of the spectrum.

(4) The reflection coefficients are orthogonal in the
sense that the best order “p” model is also the firs
“p” coefficients in the order “p+1” LP model.

H z( ) G
A z( )
-----------=

G E
p( )

=

G Rn 0( ) 1 ki
2

–( )
i 1=

p

∏=

1– ki 1≤ ≤

E0 E1 … Ep> > >
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5. THE COVARIANCE METHOD

Fixation of the interval over which mean-square
error is calculated gives a different way to solve th
linear predictor equations. We define:

(39)

Thus , for and , can be
written as:

(40)

Changing the index of summation simplifies abov
equation to:

(41)

(42)

(43)

Using above equations, the l inear predicto
equations:

(44)

can be written as:

(45)

where:

(46)

E e
2

n( )
n 0=

N 1–

∑=

φn i k,( ) 1 i p≤ ≤ 0 k p≤ ≤

φn i k,( ) s n i–( )s n k–( )
n 0=

N 1–
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φn i k,( ) s n( )s n i k–+( )
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N i 1––
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φn i k,( ) s n( )s n k i–+( )
n 0=

N k 1––

∑=

φn i k,( ) φn k i,( )=

αkφn i k,( )
k 1=

p

∑ φn i 0,( )=

φ Φ α⋅=

α

α1

α2

…
αp

= φ

φn 1 0,( )

φn 2 0,( )

…
φn p 0,( )

=

r

(47)

The matrix is a positive definite symmetric
matrix and have properties of covariance matrix[7
For the solution we use Cholesky decompositio
method[8], where the matrix is decomposed i
the form:

(48)

whereV is the lower-triangular symmetric matrix
with main diagonal elements equal to 1,D is a
diagonal matrix andVt is the transpose of the matrix
V. Equation[48] can be, for , written as:

(49)

which can be further simplified to:

(50)

Diagonal elements can be written as:

(51)

or, for

(52)

The initial condition is:

(53)

Thus we solve forV andD. The linear prediction
equat ion can be wri t ten, using notat ion o
equation[48], as:

(54)

Considering

Φ

φn 1 1,( ) φn 1 2,( ) … φn 1 p,( )

φn 2 1,( ) φn 2 2,( ) … φn 2 p,( )

… … … …
φn p 1,( ) φn p 2,( ) … φn p p,( )

=

p p×

Φ

Φ V D V
t⋅ ⋅=

1 j i≤ ≤

φn i j,( ) Vik dk V jk⋅ ⋅
k 1=

j

∑=

Vij d j φn i j,( ) Vik dk V jk⋅ ⋅
k 1=

j 1–

∑–=

φn i i,( ) Vik dk Vik⋅ ⋅
k 1=

i

∑=

i 2≥

di φn i i,( ) Vik
2

dk⋅
k 1=

i

∑–=

d1 1=

V D V
t α⋅ ⋅ ⋅ φ=
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linear prediction equation can be written as:

(56)

or

(57)

Y is a column vector which can be solved, fo
, using a simple recursion as:

(58)

with the initial condition:

(59)

Using vectorY, the linear predictor coefficients can
be solved, for , recursively using:

(60)

with initial condition:

(61)

The mean square prediction error given as:

(62)

can be simplified as follows:

(63)

or

(64)

which can be further simplified, using equation(59
as:

(65)

Y D V
t α⋅ ⋅=

V Y⋅ φ=

V
t α⋅ D

1–
Y⋅=

2 i p≤ ≤

Yi φi Vij Y j
j 2=

i 1–

∑–=

Y1 φ1=

1 i p 1–≤ ≤

αi

Yi

di
----- V ji α j

j 1=

p

∑–=

αp

Yp

dp
------=

E φn 0 0,( ) αkφn 0 k,( )
k 1=

p

∑–=

E φn 0 0,( ) αt φ⋅–=

E φn 0 0,( ) Y
t
D

1–
V

1– φ⋅–=

E φn 0 0,( ) Y
t
D

1–
Y–=
,

(66)

Thus mean square predic t ion error can b
determined directly using the column vectorY and
the matrixD. Similar to the Durbin’s recursive
method, here also the predictor error of all orde
less thanp is recursively obtained, thereby giving th
idea as to how the mean-squared prediction err
varies with the order of linear predictor.

6. SPECTRAL ANALYSIS

Addition of power an fundamental frequenc
information to the LP coefficients allows to
reconstruct an audio version of speech signal. LP
used to represent the spectral characteristics
speech[14]. Linear prediction method is preferre
over the other methods of spectral analysis, such
band-pass filter and analysis-by-synthesis for th
following reasons:

(1)It provides non-iterative parameter determinatio
for the spectral model

(2)In order to accurately represent the tren
characteristic, very small number of parameters a
required

(3)A gain constant is easily obtained to matc
spectral energies of the model and the data, using
autocorrelation method

(4)The model spectrum represents the smooth
version of the data spectrum.

For the spectral analysis of speech, there are t
reasons for using linear prediction:

(1)The spectral resonances of voiced speech
weighted most heavily in the error criterion and thu
represented most accurately.

(2)The all-pole model can be accurately fit to the lo
spectrum of a voiced sound with a sufficiently sma
number of resonances so that the problem of forma
extraction reduces to simple peak picking.

The model used for representing the input da
spectrum  is given by:

E φn 0 0,( )
Yk

2

dk
------

k 1=

p

∑–=

X jθ( )exp[ ]⋅ 2
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The use of autocorrelation method for spectr
estimation is global in that several pitch period
must be contained within the analysis window fo
meaningful results with voiced speech. As
practical matter, it is generally desirable to use th
minimum number of parameters necessary
accurately model the significant features of th
signal. In spectral modeling of speech, these featu
are the vocal tract resonances and regions betwe
these resonances. If “L” is the length of the voca
tract and “c” is the speed of sound, then the memo
of the model A(z) must be equal to twice2L/c,
which is the time required for sound wavs to trave
from the glot t is to l ips. For examples, the
representive values 34 cm/sec for c and 17 cm for
result in filter order 10, when sampling rate i
10 kHz and 7, when sampling rate is 6.5 kHz.

σ2

A e
jθ( )

2
---------------------- σ

A z( )
-----------

z e
j θ

=

2
=

       PRE

PROCESSING

    ROOT

SOLVING

SPECTRAL

CALCULATION
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{x(n)}{s(n)}
l

e
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l
y

l
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7. FORMANT ESTIMATION

Automatic formant analysis[20] is a major problem
due to the fact that the vocal tract impulse respon
is not a directly observable quantity. Parameters
an all-pole are desired where the signal to b
processed is the mode l convo lved wi th
quasi-periodic glottal driving function. For accurat
estimation, it is therefore necessary to perform
deconvolution to separate the impulse response a
the driving function. Cepstral analysis[10] and linea
prediction are the two widely used techniques. L
offers the advantages of minimal complexity
minimum computation time, and maximal accurac
in formant estimation.

A general procedure for formant trajector
estimation based upon linear prediction analysis
shown in Figure2 . Each frame of speech to b
analyzed is denoted by the N-length sequen
{s(n)}. The speech is fi rst preprocessed b
pre-emphasis and possibly windowing. Th
       A(z)

COMPUTATION

DECISIONS
{F, B}

FORMANT
ESTIMATES

RAW
DATA
Figure 2. Block diagram of a general procedure for formant energy estimation using linear prediction
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preprocessed speech is used to design the inve
filter A(z). Initial estimates for formant frequencies
and bandwidths are defined by solving for the roo
of polynomial A(z), and searching for the peaks i
the spectrum. Solving for the roots guarantees th
all possible formant frequency and bandwidt
candidates will be extracted. Parabolic interpretatio
about the peaks results in initial estimates for th
formant frequencies and bandwidths and
respectively. These are known as raw data.

The bandwidth and frequency for any comple
root z are obtained from the s-plane to z-plan
transformation z = exp(sT) where

. If z = Re(z) + Im(z) defines
the real and imaginary terms of a complex root, the
the raw data can be given as:

(68)

and

(69)

The technique of formant estimation using linea
prediction is quite similar to formant estimation
using cepstral smoothing. The basic idea is that t
frames of windowed speech data are transform
into smoothed spectral representations which ha
the fundamental frequency associated with th
fine-grained structure removed. From the smooth
spectra all peaks are picked as potential candida
for formant indicators.

8. ALL-POLE LP MODEL: ISSUES

LP provides an all-pole filter to model the voca
tract. This technique is quite accurate for vowels an
vowel-like sounds. However, the tract introduce
both poles and zeros into the speech spectrum. Ze
are manifested by antiresonances in the spectrum
speech sounds. They arise when nasal couples w
theoral tract in producing nasalized sounds su
as /m/, /n/, or /ng/. They can also arise due to the
speaker’s environment, or if the excitation source
not at the glottis but in the interior of the vocal trac
The general assumption that zeros occurring in t
short term speech spectrum can be approximated

F̂i B̂i

B̂ F̂

s πB̂– j 2πF̂⋅±=

B̂ f s π⁄( )– zln⋅= Hz

F̂
f s

2π
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the all-pole filter, is not satisfactory. Although a zer
can be approximated arbitrarily closely by a larg
number of poles.

9. PERCEPTUAL LINEAR PREDICTION

In PLP analysis[9], the all-pole modeling is applie
to an auditory spectrum derived by (a) convolvin

with a critical band masking pattern, followed
by (b) resampling the critical band spectrum a
approximately Bark intervals, (c) pre-emphasis b
a simulated fixed equal loudness curve, and final
(d ) compress ion o f the resampled an
pre-emphasized spectrum through the cubic ro
non-linearity, simulating the intensity-loudnes
power law. The low order all-pole model of such a
auditory spectrum has been found to be consiste
with several phenomena observed in spee
perception[3].

The block diagram of PLP Analysis[6] is shown in
Figure 3.

After windowing, the real and imaginary
components of the short-term speech spectrum
squared and added to get the power spectrum,

(70)

9.1. CRITICAL BAND SPECTRAL RESOLUTION

The power spectrum is warped onto a bark sca
using approximation:

(71)

(72)

(73)

The bark scale spectra is convolved with the pow
spectra of the critical band filter. This simulates th
f requency reso lu t ion o f the ear wh ich is
approximately constant on the Bark scale.

P w( )

l

P w( ) Re S w( )[ ]2
Im S w( )[ ]+

2
=

Ω w( ) 6 f 1 w( )( ) f 2 w( )[ ]0.5
+[ ]ln=

f 1 w( ) w 1200π( )⁄=

f 2 w( ) w 1200π( )⁄ 2
1+[ ]

0.5
=
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(75)

This convolution reduces the spectral resolution. T
smoothed bark scale spectrum is down-sampled
resampling every 1 Bark(0 - 5 kHz maps to 0 - 16.
Bark).

9.2. LOUDNESS PREEMPHASIS

Equa l loudness preemphas is is needed
compensate for the non-equal perception of loudne

φ Ω( )

0 Ω, 1.3–<

10
2.5 Ω 0.5+( )

1.3– Ω 0.5–≤ ≤,

1 0.5–, Ω 0.5≤ ≤

10
1.0 Ω 0.5–( )–

0.5, Ω 2.5≤ ≤
0 2.5, Ω<

=

θ Ωi( ) P
i 1.3–=

2.5

∑ Ω Ωi–( ) φ Ω( )⋅=
SPEECH

CRITICAL

   BAND
ANALYSIS
   BAND

EQUAL
LOUDNESS

PRE
EMPHASIS

INTENSITY
LOUDNESS

CONVERSION
e
y

o
ss

at different frequencies. It is done by equal-loudne
curve

(76)

where , , and

.

9.3. INTENSITY-LOUDNESS LAW

Perceived loudness, L(w), is approximately the cu
roo t o f in tens i t y, I (w) . There fo re th is
pre-emphasized funct ion is then ampl i tud
compressed us ing cub ic roo t amp l i tud
compression.

E w( )
w2 k1+( )w4

w2 k2+( )2 w2 k3+( )
--------------------------------------------------=

k1 56.8 106×= k2 6.3 106×=

k3 0.38 109×=
INVERSE
DISCRETE
FOURIER

TRANSFORM

SOLUTION FOR
     AUTO

REGRESSIVE
COEFFICIENTS

ALL - POLE
   MODEL
Figure 3.  Block diagram of Perceptual Linear Predicton model
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9.4. AUTOREGRESSIVE MODELLING

Final function is approximated by the spectrum of a
all-pole model using the autocorrelation method
all-pole spectrum modeling[12]. The principle is to
apply the inverse discrete Fourier transform (IDFT
and find the dual of its autocorrelation function.

The PLP-derived spectrum is more robust to noi
compared to the LP-derived spectrum.

10. POLE-ZERO CELP

Pole-zero code excited linear prediction[13] is a ne
approach towards speech coding. A short-tim
spectral envelop of the speech the speech wave
modelled with a pole-zero filter. Advantage is tha
the zeros occurring in speech system, e. g. duri
nasalized speech sounds, can be modelled m
accurately than with a traditional all-pole linea
prediction filter. Knowledge of the excitation in the
pole-zero CELP[18] coder leads to a linear bu
CODE

BLOCK
B(z)

P(z)A(z)

1 / A(z)

+-

ERROR MIN
f

)

e

e
is

t
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t

sub-optimum solution for the filter coefficients. I
shows improved spectral matching in regions o
anti-resonant nasalized sounds. Also the hig
frequency portion of the speech signal is match
better.

The speech samples(n) is predicted fromp
immediately preceding speech samples andq
immediately preceeding samples of the residuale(n),
hence:

(77)

In pole-zero CELP, an optimum all-pole filter1/A(z)
and the coefficients of a closed loop pitch predicto
1/ P(z) first are calculated. Then an all-zero filte
B(z) is used in the synthesis of the speech as t
pitch predictor1/P(z)and the all-pole filter1/A(z).
B(z)models the zero information in the speech th
can not be modelled by either the codebook or t
all-pole filter1/A(z).The block diagram of the coder
is given in Figure 4.

s n( ) aks n k–( ) bke n k–( )
k 1=

q

∑+
k 1=

p

∑=
1 / P(z) 1 / A(z)

+-

IMIZATION
Figure 4. Pole-zero CELP coder where B(z) preceeds 1/A(z)
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Objective and subjective comparisons were ma
between the pole-zero CELP coders and CEL
coder. A 35 second segment of male speec
low-pass filtered to 4 kHz was used for the test
Comparisons were based on segmental SNRs, po
spectra and informal subjective listening test
Segmental SNRs were calculated and they are sho
in table 1.

Thus it can be seen that for the pole-zero cod
where the all-zero filterB(z) follows the all-pole
filter 1/A(z), there is an increase of 2.7 dB in
segmental SNR over the other two coders. Howev
the subjective quality slightly becomes disimprove
and spectral matching becomes better tha
traditional CELP. For the other pole-zero CELP
segmental SNR is very much similar to standa
CELP but the spectral matching improves, especia
for nasal sounds.

11. SUMMARY

In this paper we have attempted to cover the line
predict ion. The emphasis is given to l inea
prediction as applied to speech. A number o
properties and extensions of the basic line
prediction mathematics have been discusse
including speech synthesis structure, forma
estimation, and spectral analysis. Using linea
prediction we are able to provide an all-pole filter t
model the vocal tract. LP analysis is also used f
speaker identification[15]. But this model is no
satisfactory to model the zeros manifested b
antiresonances in the spectrum of speech sounds
more generalized approach is to use pole-zero CE
which gives get better spectral matching fo

Coder
Seg SNR

dB

Standard CELP 14.96

Pole-zero CELP (B(z) pre-
ceeds 1/A(z))

14.72

Pole-zero CELP (B(z) fol-
lows 1/A(z))

17.71

Table 1. Segmental SNR (dB) of different CELP
coders
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nasalized sounds. Similar approaches may be use
perform linear interpolation. In this technique leas
squares minimization technique can be used
estimate unknown data values in terms of past a
future values. Such approaches may lead to mo
accurate pitch extraction in interpolating betwee
data samples and may have appl icat ions
understanding non-minimum phase characterist
of speech.
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