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ABSTRACT many ways, such as changing the pitch without
altering the timing, changing timing without

The linear prediction method provides a robust, . : . .
reliable and accurate method for estimating thephangmg pitch, or blending the sounds of musical

parameters that characterize the linear time-varyingms'[ruments and voices.

system. It is very important tool in digital signal LP provides parametric modeling techniques which
processing[11] because it deals with applications inis used to model the spectrum as an autoregressive
variety of areas such as speech signal processingprocess. These parametric models are basically used
image processing etc. It has become the predominanin compression systems, system identification
technique for estimating the basic speech parameterproblems in modern control systems, time series
such as pitch, formants, and spectra. The importanceanalysis for economic applications, spectral
of linear prediction lies in it’s ability to provide estimation in signal processing, maximum entropy
extremely accurate estimates of speech parametertechniques etc. The basis is the source-filter model
as well as it's relative speed of computation. where the filter is constrained to be an all-pole linear
filter.The ideas of linear prediction have been in use
under the names of system estimation and system
identification. The term system identification is
particularly descriptive of LPC methods in that once
the predictor coefficients have been obtained, the
system can be uniquely identified to the extent that it
can be modeled as an all-pole linear system. The
appeal of linear prediction as applied to speech,
however, is not only it’s predictive function but also
the fact that it gives us a very good model of the
vocal tract which is useful for both theoretical and
practical purposes.

The proposed talk covers the linear prediction model
which deals with the problem of predicting the
values of a stationary random process either forward
in time or, backward in time known as forward and
backward prediction. | will discuss basic principles
of linear prediction analysis and the fundamental
problem related with the analysis as applied to
speech processing. As linear prediction refers to a
variety of formulations of the problem of modeling
the speech waveforms, | will discuss few basic
formulations of linear prediction analysis and
examine the similarities and difference among them.
| will then highlight the basic problems related with These objectives formed the need for the
linear prediction as applied to speech which will lead development of linear prediction techniques.
to PLP analysis, an extension over linear prediction.

2. BASIC PRINCIPLES
1. INTRODUCTION

The block diagram of basic model for speech
One of the results of science of estimation theory hasproduction, appropriate for the linear predictive
been the development of the linear prediction[16] analysis[1] can be seen in Figurel. In this model, the
algorithms. This allows us to compute the composite spectrum effects of radiation, vocal tract
coefficients of a time-varying filter which simulated and glottal excitation are represented by a
the spectrum of a given sound at each point in time.time-varying digital filter[18] whose steady state
This filter has found uses in many fields, not the leastsystem function is of the form
of which is speech analysis and synthesis as well as
music. The use of the linear predictor in speech
applications allows us to modify speech sounds in
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H(z) = (2 = 1

@ =0 . @ en) = s(m- 3 aB(n-K ©
k=1 Thus the prediction error filter is the output of the

The system can be excited by an impulse train for system whose transfer function is

voiced speech or a random sequence of unvoicec

) ; : ) p
speech. The pitch period and voiced/unvoiced _ —K
parameters can be estimated using linear predictive A2 = 1- Z a Lz ™
analysis. The speech samples s(n) can be given b k=1
using simple difference equation Comparison of equations(2) and(5) suggests that if
a, = @, thene(n = GOu(n) and in such
P condition, prediction error filter A(z) will be an
s(n) = kZ a, [5(n— K + G [u(n) ) inverse filter for the system H(z).

=1

The linear predictor with predictor coefficients, , H(2) = K%Z—) (8)

and order p is defined as a system whose output is
The basic problem of linear prediction here is to

p ) ) -
~ _ determine a set of predictor coefﬂuen{@(k}
s(n) = Z Ak [B(n-K 3) directly from speech signal in such a manner as to
k=1 obtain a good estimate of spectral properties of
The system function of this linear predictor is speech signal through the use of equation(8).
p
—k
P(2) = T o 5 4) 3. LP APPROACH
k=1

Given a signal, s(n), we seek to model the signal as a

linear combination of its previous samples as given

e(n) = s(n)—3(n) (5)  inequation(2). The short term average prediction
error is defined as

The prediction error is defined as
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Figure 1. Block diagram of simplified model for speech production



E = ye(n) (©)

(10)

E =y (n)-5(n)f

(11)

p 2
= Z{s(n)— > o Bs(n- k)}
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We minimize the mean square prediction error[17].

in order to find the values otnk . This can be done

by setting
g% =0 1<i<p (12)
Differentiation gives
Yy s(ms(n—-1i) = a (13)
n
p
a= Z{ > os(n— k)} [8(n—1i) (14)
Nik=1
If we define
@i, k) = S s(n—is(n-K (15)
n

Then equation(13) and(14) can be more compactly

written as

k) = @,(i,0) (16)

p
z Gk(pn(i’

This is known as linear prediction (Yule-Walker)
equation. Solution[19] of this equation gives the

range [0, N-1], and assuming the values outside this
range to be identically zero, we can take the limits to
be [0, N+p-1]. Thus mean square prediction error
can be properly expressed as
N+p-1
nzo
Because of the finite length constraint, it is important
in the autocorrelation method to apply a window.
Normally, a Hamming window is used. Application
of the window eliminates the problems caused by
rapid changes in the signal at the edges of the
window, which ensures a smooth transition from
frame to frame of the estimated parameters in the
overlapping analysis.

E e2(n) (18)

Under this condition, we can write equation (15)
simply as

N+p-1
o,(i.k) = 5 s(n-is(n-K (19)
n=0
which, alternatively, can be expressed as
I
@, (i, k) = > s(n=i)s(n+ i—K (20
n=0
where = N-1-(i—-k) (21)

Due to finite length constraint we can modify
equation (20) as

@,(i, k) = R, (i—k)

R, (i —k) is known as the autocorrelation function
evaluated for (i-k).R, (i —k) is an even function.
Under these condltlons linear prediction equation

(22)

values of the pred|Ct0r coefficients. Mean square gnd mean square pred|ct|on error can be W”tten

prediction error can be written as

p
S @ 9,(0K)
k=1

E = 9,00 - 17)

Basically two methods are used to solve the linear

prediction equation. Here we will consider both of
them one by one.

4. THE AUTOCORRELATION METHOD

Constraining the evaluation interval to the

respectively, as

p
k=1
p
E=R(0)- 3 aR (K (24)
k=1

In matrix form, the linear prediction equation
can be expressed as:



_1 solving predictor coefficients is proportional té,p

a=R"0I (25) and allow the entire LP computation to be performed
where, with a complexity of approximatelp + 3N + .

S - . The signal model, which actually is the inverse of
ay R.(1) A(z), is given by:

_ a R.(2) G

a=|2 r=| "N 26 H(z) = —— 35
RS ) @)
_a o _Rn(p)_ Where G is the model gain, and is given as:
- G = JEP (36)

RO R(1) ..R(p-1)

Which can also be expressed as:
R = R,(D R0 ... Ry(p-2)

27) p )
G = Rn(O) |—| (1_ki) (37)
R(p-1) R(p-2) ... R(0) =1

. ] The gain term allows the spectrum of the LP model

to be matched to the spectrum of the original speech
signal.

R is symmetric, and all of the elements along the
diagonal are equal, which means (1) an inverse

exists; (2) the roots are in the left half plarig.  is _ _ _
known as Toeplitz matrix. This simplification causes The important observations[4] obtained by the use of

the predictor coefficients to be computed efficiently this form of LP solution are as follows:

using the Levinson-Durbin recursion([2]: (1) The intermediate variablelg, called the
(0) reflection coefficients are bounded:
E = R(0) (28)

_ o -1<k <1 (38)

Forl<i<p andl<j<i-1 :
This result is extremely useful for storage and
compression applications involving LP models, such

} (29) as for the speech recognition system that store large

numbers of recognition models[5].

-l (i-1)n,: .
C, = |:R(I)— > aj R(i—j)
j:

C (2) In the process of solving the predictor
ki = (i-1) (30) coefficients of order p using this iterative method,
E the solutions for the predictor coefficients as well as
predictor error of all orders less thgnhave been
a; =k (31) obtained. This is convenient for signal processing
, _ _ applications that require estimation of the model
O‘Ij - GE' -1 _ K [dg'__ll) (32)  order as part of the task.

(3) Model fit becomes better with increase in the
(33)  order of linear predictor. This fact can easily be
verified using equation(33Ey>E; > ... >E
Higher order linear predictor easily represents the
finer details in the spectrum, whereas lower order
represents only trend of the spectrum.

eV = -1k E Y
Equations(29) to(33) are solved recursively fori=1,
2,..., p. and the finally the predictor coefficients are
given as

o, = O(Ep) 1<j<p (34) (4) The reflection coefficients are orthogonal in the

: ] o ) sense that the best order “p” model is also the first
The complexity of computation in this method of “0” coefficients in the order “p+1” LP model.



5. THE COVARIANCE METHOD

01D @1, 2 ... (1, p)
Fixation of the interval over which mean-squared 02D 02,2 ... 9.(2,p)
error is calculated gives a different way to solve the © =N : : (47)
linear predictor equations. We define:
N-1 5 _(pn(p’ l) (pn(p’ 2) (pn(p7 p)_
E = zoe (n) (39) The p x p matrix is a positive definite symmetric
n=

matrix and have properties of covariance matrix[7].
Thus@(i,k) ,forl<si<p andds<sk< p ,canbe For the solution we use Cholesky decomposition

written as: method[8], where the matri® is decomposed in
the form:
N-1
Gn(ik) = 5 s(n-is(n—-K “0) o =yvmn (48)
n=0 o -

whereV is the lower-triangular symmetric matrix

Changing the index of summation simplifies above . S .
equation to: vv_|th main dlggonal _elements equal toD,is a
diagonal matrix and/! is the transpose of the matrix
N-i-1 V. Equation[48] can be, fat < j <i , written as:
(i k) = 3 s(s(n+i-k @ j
n=0 o,(.1) = 5 Vik Ede\/jk (49)
N-k-1 k=1
(pn(" k) = > s(n)s(n+ k-1 (42) which can be further simplified to:
n=0
: : j-1
0,(i. k) = @ (ki) (43) Vid; = @i, )= Y Vi OV (50)
Using above equations, the linear predictor k=1
equations: Diagonal elements can be written as:
p i
> 0@, (i k) = @,(i, 0) (44) .0, 1) = 5 V; W DV, (51)
k=1 k=1
can be written as: or, fori =2
¢=om (45) L
d; = @,(i,i)— Y V (52)
where: k=1
o r 1 O)_ The initial condition is:
a @ (L,
1 : dy =1 (53)
- ¢ Thus we solve fo andD. The linear prediction
" equation can be written, using notation of
apn ®.(p, 0) equation[48], as:

VDIV B = ¢ (54)

Considering



Y=DV'@ (55)
linear prediction equation can be written as:

VIV = ¢ (56)
or

vim =D v (57)

Y is a column vector which can be solved, for

2<i<p, using a simple recursion as:

i—1
Yi=@- 3 VY, (58)
j=2
with the initial condition:
Y1 = @ (59)

Using vectory, the linear predictor coefficients can

be solved, foll <i<p -1 , recursively using:

Y, p
| j= 1
with initial condition:

Y

— _b

a, = —+ (61)
p

dp

The mean square prediction error given as:

p
E = (pn(o’ O)_ z ak(pn(oa k) (62)
k=1
can be simplified as follows:
_t
or
E=¢(00-YD 'V (64)
which can be further simplified, using equation(59),
as:
t—1
E=9,00-YD"Y (65)

pyi

E=6¢,000- 3 + (66)
k=1"K

Thus mean square prediction error can be
determined directly using the column vectvand

the matrixD. Similar to the Durbin’s recursive
method, here also the predictor error of all orders
less tharp is recursively obtained, thereby giving the
idea as to how the mean-squared prediction error
varies with the order of linear predictor.

6. SPECTRAL ANALYSIS

Addition of power an fundamental frequency
information to the LP coefficients allows to
reconstruct an audio version of speech signal. LP is
used to represent the spectral characteristics of
speech[14]. Linear prediction method is preferred
over the other methods of spectral analysis, such as,
band-pass filter and analysis-by-synthesis for the
following reasons:

(1)It provides non-iterative parameter determination
for the spectral model

(2)In order to accurately represent the trend
characteristic, very small number of parameters are
required

(3)A gain constant is easily obtained to match
spectral energies of the model and the data, using the
autocorrelation method

(4)The model spectrum represents the smoothed
version of the data spectrum.

For the spectral analysis of speech, there are two
reasons for using linear prediction:

(1)The spectral resonances of voiced speech are
weighted most heavily in the error criterion and thus
represented most accurately.

(2)The all-pole model can be accurately fit to the log
spectrum of a voiced sound with a sufficiently small
number of resonances so that the problem of formant
extraction reduces to simple peak picking.

The model used for regresenting the input data
spectrum|X [J exp(j0)]|” is given by:



2 7. FORMANT ESTIMATION

o - ‘ o
8,2 |A(zZ
INCH I
The use of autocorrelation method for spectral
estimation is global in that several pitch periods

must be contained within the analysis window for processed is the model convolved with a

meaningful results with voiced speech. As a g asj-periodic glottal driving function. For accurate
pr_ac_tlcal matter, it is generally desirable to use theestimation, it is therefore necessary to perform a
minimum number of parameters necessary t0geconyolution to separate the impulse response and

accurately model the significant features of the e griving function. Cepstral analysis[10] and linear
signal. In spectral modeling of speech, these featurefprediction are the two widely used techniques. LP
are the vocal tract resonances and regions betwee jttars the advantages of minimal complexity

these resonances. If "L" is the length of the vocal inimum computation time, and maximal accuracy
tract and “c” is the speed of sound, then the Memoryin formant estimation.

of the model A(z) must be equal to twic /c, _

which is the time required for sound wavs to travel A 9eéneral procedure for formant trajectory
from the glottis to lips. For examples, the estimation based upon linear prediction analysis is
representive values 34 cm/sec for ¢ and 17 cm for LShown in Figure2 . Each frame of speech to be
result in filter order 10, when sampling rate is @nalyzed is denoted by the N-length sequence

10 kHz and 7, when sampling rate is 6.5 kHz. {s(n)}. The speech is first preprocessed by
pre-emphasis and possibly windowing. The

2

0 (67)
z=¢ Automatic formant analysis[20] is a major problem
due to the fact that the vocal tract impulse response
is not a directly observable quantity. Parameters of
an all-pole are desired where the signal to be

PRE
PROCESSING

{s(n)} A@2)

COMPUTATION

RAW
ROOT DATA
SOLVING
{F. B}
DECISIONS
FORMANT
SPECTRAL PEAK ESTIMATES

CALCULATION PICKING

Figure 2. Block diagram of a general procedure for formant energy estimation using linear prediction



preprocessed speech is used to design the inversthe all-pole filter, is not satisfactory. Although a zero
filter A(2). Initial estimates for formant frequencies can be approximated arbitrarily closely by a large
and bandwidths are defined by solving for the roots number of poles.

of polynomial A(z), and searching for the peaks in

the spectrum. Solving for the roots guarantees thatg_ PERCEPTUAL LINEAR PREDICTION

all possible formant frequency and bandwidth
candidates will be extracted. Parabolic interpretation
about the peaks results in initial estimates for the
formant frequencies and bandwidtlrs  aBgd
respectively. These are known as raw data.

In PLP analysis[9], the all-pole modeling is applied
to an auditory spectrum derived by (a) convolving
P(w) with a critical band masking pattern, followed

~ . by (b) resampling the critical band spectrum at
The bandwidthB and frequendy  for any complex approximatelyl Bark intervals, (c) pre-emphasis by
root z are obtained from the s-plane to z-plane a simulated fixed equal loudness curve, and finally

transformation z = exp(sT) where (d) compression of the resampled and
s = —TiB+ i PrE  1fz = Re(z) + Im(z) defines pre-emphasized spectrum through the cubic root
the real and imaginary terms of a complex root, thenNon-linearity, simulating the intensity-loudness
the raw data can be given as: power law. The low order all-pole model of such an
R auditory spectrum has been found to be consistent
B = —(f/m) OnlZ Hz (68)  with several phenomena observed in speech
perception[3].
and The block diagram of PLP Analysis[6] is shown in
f Figure 3.
2 S Im(2)
= — [atan ——= Hz 69
7 Bt ey ©9)

After windowing, the real and imaginary
The technique of formant estimation using linear components of the short-term speech spectrum are
prediction is quite similar to formant estimation squared and added to get the power spectrum,

using cepstral smoothing. The basic idea is that the

frames of windowed speech data are transformec 2 2

into smoothed spectral representations which have P(w) = R W] +Im[S W] (70)

the fundamental frequency associated with the
fine-grained structure removed. From the smoothed

9.1. CRITICAL BAND SPECTRAL RESOLUTION

for formant indicators. using approximation:
8. ALL-POLE LP MODEL: ISSUES QW) = 6[(f,w) +[F,w1*Y @1
LP provides an all-pole filter to model the vocal ~ f;(w) = w/(1200m) (72)
tract. This technique is quite accurate for vowels and

r . 2 0.5
vowel-like sounds. However, the tract introduces fo(w) = [w/(1200m)° + 1] (73)

both poles and zeros into the speech spectrum. Zero

are manifested by antiresonances in the spectrum oThe bark scale spectra is convolved with the power
speech sounds. They arise when nasal couples witiSPectra of the critical t_)and filter. This simula}tes t_he
theoral tract in producing nasalized sounds suchfféauency resolution of the ear which is
as/m/, In/, or Ing/. They can also arise due to the approximately constant on the Bark scale.
speaker’s environment, or if the excitation source is

not at the glottis but in the interior of the vocal tract.

The general assumption that zeros occurring in the

short term speech spectrum can be approximated b



0
L2 5Q+0.5)
o(Q) = 1
1
0
25
8(Q;) =

i=-1.3

G LoQ-05)

Q<-13

—1.3<Q<-05
—05<Q<05

,05Q0<25
,2.5<Q

> P(Q-Q) [p(Q)

(74)

(75)

at different frequencies. It is done by equal-loudness
curve

(W2 + Ky )w?
(W2 + kp)2(W? + k)

wherek, = 56.8x 1 k, = 6.3x 10 , and
kg = 0.38x 10.

E(w) = (76)

9.3. INTENSITY-LOUDNESS LAW

This convolution reduces the spectral resolution. ThePerceived loudness, L(w), is approximately the cube
smoothed bark scale spectrum is down-sampled byroot of intensity, I(w). Therefore this
resampling every 1 Bark(0 - 5 kHz mapsto 0 - 16.9 pre-emphasized function is then amplitude

Bark).

9.2. LOUDNESS PREEMPHASIS

compressed using cubic root amplitude
compression.

Equal loudness preemphasis is needed to
compensate for the non-equal perception of loudnes:

SPEECH

Figure 3. Block diagram of Perceptual Linear Predicton model
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9.4. AUTOREGRESSIVE MODELLING sub-optimum solution for the filter coefficients. It
_ o _ shows improved spectral matching in regions of
Final function is approximated by the spectrum of an g nti-resonant nasalized sounds. Also the high

all-pole model using the autocorrelation method of frequency portion of the speech signal is matched
all-pole spectrum modeling[12]. The principle is t0 petter.

apply the inverse discrete Fourier transform (IDFT)

and find the dual of its autocorrelation function. The speech samplg(n) is predicted fromp
immediately preceding speech samples and

The PLP-derived spectrum is more robust to noise/MMediately preceeding samples of the resid(a),
compared to the LP-derived spectrum. hence:

p q
10. POLE-ZERO CELP s(n = > as(n—-K+ % be(n-K (77)
k=1 k=1

In pole-zero CELP, an optimum all-pole filt&/A(z)
and the coefficients of a closed loop pitch predictor
1/ P(z)first are calculated. Then an all-zero filter
B(z)is used in the synthesis of the speech as the
pitch predictorl/P(z)and the all-pole filtel/A(z).
B(z) models the zero information in the speech that
can not be modelled by either the codebook or the
all-pole filter 1/A(z). The block diagram of the coder

is given in Figure 4.

Pole-zero code excited linear prediction[13] is a new
approach towards speech coding. A short-time
spectral envelop of the speech the speech wave it
modelled with a pole-zero filter. Advantage is that
the zeros occurring in speech system, e. g. during
nasalized speech sounds, can be modelled mor:
accurately than with a traditional all-pole linear
prediction filter. Knowledge of the excitation in the
pole-zero CELP[18] coder leads to a linear but

ol 1/A@)

— Al P(2)

_ +
> 1/P@) 1/A(2) —»é
ERROR MINIMIZATION I

Figure 4. Pole-zero CELP coder where B(z) preceeds 1/A(z)




Objective and subjective comparisons were madenasalized sounds. Similar approaches may be used to
between the pole-zero CELP coders and CELPperform linear interpolation. In this technique least
coder. A 35 second segment of male speech,squares minimization technigue can be used to
low-pass filtered to 4 kHz was used for the tests. estimate unknown data values in terms of past and
Comparisons were based on segmental SNRs, powefuture values. Such approaches may lead to more
spectra and informal subjective listening tests. accurate pitch extraction in interpolating between
Segmental SNRs were calculated and they are showidata samples and may have applications in

in table 1.

understanding non-minimum phase characteristics

of speech.
Coder Seg SNR REFERENCES
dB [1] L.R. Rabiner and R.W. SchafeRigital Pro-
cessing of Speech Signal®rentice-Hall,
Standard CELP 14.96 Engelwood Cliffs, New Jersy, USA, 1978.
Pole-zero CELP (B(z) prer 14.72 [2] J.D. Markel and A.H. Gray JrLinear Predic-
ceeds 1/A(z)) tion of Speech, Springer-Verlag, Berlin
Heidelberg, New York, USA, 1976.
Pole-zero CELP (B(z) fol- ’ ’ '
lows 1/A(z)) 17.71 [3] R.J.Duncan, V. Mantha, Y. Wu and J. Zhao,
“Implementation and Analysis of Speech Rec-

Table 1.
coders

Segmental SNR (dB) of different CELP

Thus it can be seen that for the pole-zero coder
where the all-zero filteB(z) follows the all-pole

filter 1/A(z),there is an increase of 2.7 dB in
segmental SNR over the other two coders. Howeverl4]
the subjective quality slightly becomes disimproved
and spectral matching becomes better than
traditional CELP. For the other pole-zero CELP, [5]
segmental SNR is very much similar to standard
CELP but the spectral matching improves, especially
for nasal sounds.

11. SUMMARY

In this paper we have attempted to cover the linear
prediction. The emphasis is given to linear
prediction as applied to speech. A number of
properties and extensions of the basic linear
prediction mathematics have been discussed!’]
including speech synthesis structure, formant
estimation, and spectral analysis. Using linear
prediction we are able to provide an all-pole filter to [8]
model the vocal tract. LP analysis is also used for
speaker identification[15]. But this model is not
satisfactory to model the zeros manifested by
antiresonances in the spectrum of speech sounds. /[9]
more generalized approach is to use pole-zero CELF
which gives get better spectral matching for
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